On the Number of Hyperedges in the Hypergraph of Lines and Pseudo-Discs

Chaya Keller*

Department of Computer Science Ariel University Ariel, Israel

chayak@ariel.ac.il

Balázs Keszegh[†]

Alfréd Rényi Institute of Mathematics, and MTA-ELTE Lendület Combinatorial Geometry Research Group, Institute of Mathematics, Eötvös Loránd University, Budapest, Hungary

keszegh@renyi.hu

Dömötör Pálvölgyi[‡]

MTA-ELTE Lendület Combinatorial Geometry Research Group, Institute of Mathematics, Eötvös Loránd University, Budapest, Hungary

domotorp@gmail.com

Submitted: May 10, 2021; Accepted: Apr 19, 2022; Published: Jul 29, 2022 © The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Consider a hypergraph whose vertex set is a family of n lines in general position in the plane, and whose hyperedges are induced by intersections with a family of pseudo-discs. We prove that the number of t-hyperedges is bounded by $O_t(n^2)$ and that the total number of hyperedges is bounded by $O(n^3)$. Both bounds are tight.

Mathematics Subject Classifications: 05C10, 05C15

^{*}Research partially supported by Grant 1065/20 from the Israel Science Foundation. Parts of this research were done while the author was at the Mathematics Department, Technion – Israel Institute of Technology, Israel.

[†]Research supported by the Lendület program of the Hungarian Academy of Sciences (MTA), under the grant LP2017-19/2017, by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, by the National Research, Development and Innovation Office – NKFIH under the grant K 132696 and FK 132060 and by the ÚNKP-20-5 New National Excellence Program of the Ministry for Innovation and Technology from the source of the National Research, Development and Innovation Fund.

 $^{^{\}ddagger}$ Research supported by the Lendület program of the Hungarian Academy of Sciences (MTA), under the grant LP2017-19/2017.

1 Introduction

A family \mathcal{F} of simple Jordan regions in \mathbb{R}^2 is called a family of pseudo-discs if for any $c_1, c_2 \in \mathcal{F}$, $|\partial(c_1) \cap \partial(c_2)| \leq 2$, where $\partial(c)$ is the boundary of c. Given a set P of points in \mathbb{R}^2 and a family \mathcal{F} of pseudo-discs, define the geometric hypergraph $H(P, \mathcal{F})$ whose vertices are the points of P, and any pseudo-disc $c \in \mathcal{F}$ defines a hyperedge of all points contained in c.

The family of hypergraphs $H(P, \mathcal{F})$ – for a general \mathcal{F} and in the special case where all elements of \mathcal{F} are convex – have been studied extensively (see, e.g., [1, 3, 6, 9, 13]). In particular, it was proved in [7] that for any P, \mathcal{F} , the Delaunay graph of $H(P, \mathcal{F})$ (namely, the restriction of H to hyperedges of size 2) is planar, and that for any fixed t, the number of hyperedges of $H(P, \mathcal{F})$ of size t is bounded by $O(t^2|P|)$. This result was generalized in [11] (see also [4]) to the case where P is a family of pseudo-discs instead of points, and the hyperedges are defined by non-empty intersections of any element in \mathcal{F} with the elements of P.

In this note we consider hypergraphs $H = H(\mathcal{L}, \mathcal{F})$ whose vertex set $\mathcal{V}(H) = \mathcal{L}$ is a family of lines in the plane, and whose hyperedges are induced by intersections with a family \mathcal{F} of pseudo-discs. Namely, any $c \in \mathcal{F}$ defines the hyperedge

$$e_c = \{\ell \in \mathcal{L} : \ell \cap c \neq \emptyset\} \in \mathcal{E}(H).$$

We assume that the geometric objects are in general position, in the sense that no 3 lines pass through a common point, no line passes through an intersection point of two boundaries of pseudo-discs.

Unlike the hypergraphs of points w.r.t. pseudo-discs, $H(P, \mathcal{F})$, the number of hyperedges in a hypergraph $H(\mathcal{L}, \mathcal{F})$, of lines w.r.t. pseudo-discs, of any fixed size, may be quadratic in the number of vertices. Such a hypergraph was demonstrated in a beautiful paper of Aronov et al. [5]. They showed that for any family \mathcal{L} of lines, if \mathcal{F} consists of the inscribed circles of the triangles formed by any triple of lines, then for any $t \geq 3$, the number of t-hyperedges (i.e., hyperedges of size t) in $H(\mathcal{L}, \mathcal{F})$ is exactly $\binom{n-t+2}{2}$.

For any fixed t, there exist hypergraphs $H(\mathcal{L}, \mathcal{F})$ in which the number of t-hyperedges is larger than in the construction of Aronov et al. [5], even when \mathcal{F} is allowed to contain only discs (as some of those discs might not be inscribed in a triangle formed by the lines). We prove that the number of t-hyperedges cannot be significantly larger for any hypergraph $H(\mathcal{L}, \mathcal{F})$ of lines with respect to pseudo-discs. Pecifically, we prove:

Theorem 1. Let \mathcal{L} be a family of n lines in the plane, let \mathcal{F} be a family of pseudo-discs, and assume both families are in general position. Then

$$|\{e \in \mathcal{E}(H(\mathcal{L}, \mathcal{F})) : |e| = t\}| = O_t(n^2).$$

Our techniques combine probabilistic and planarity arguments, together with exploiting properties of arrangements of lines, in particular the *zone theorem*.

¹For the difference between hypergraphs induced by pseudo-discs and hypergraphs induced by discs, see [10] and the references therein.

In addition, we show that for any choice of \mathcal{L} and \mathcal{F} , the total number of hyperedges in $H(\mathcal{L}, \mathcal{F})$ does not exceed $O(n^3)$. This upper bound is tight, since the total number of hyperedges in the hypergraph presented by Aronov et al. [5] is $\binom{n}{3}$.

Proposition 2. Let \mathcal{L} be a family of n lines in the plane, let \mathcal{F} be a family of pseudo-discs, and assume both families are in general position. Then $|\mathcal{E}(H(\mathcal{L},\mathcal{F}))| = O(n^3)$.

2 Preliminaries

In this section we present previous results and simple lemmata that will be used in our proofs.

2.1 Pseudo-discs

The two following lemmata are standard useful tools when handling families of pseudodiscs:

Lemma 3 (Lemma 1 in [15], based on [16]). Let \mathcal{F} be a family of pseudo-discs, $D \in \mathcal{F}, x \in D$. Then D can be continuously shrunk to the point x, such that at each moment during the shrinking process, the family obtained from \mathcal{F} remains a family of pseudo-discs.

Lemma 4 (Lemma 2 in [15]). Let \mathcal{B} be a family of pairwise disjoint closed connected sets in \mathbb{R}^2 . Let \mathcal{F} be a family of pseudo-discs. Define a graph G whose vertices correspond to the sets in B and connect two sets $B, B' \in \mathcal{B}$ if there is a set $D \in \mathcal{F}$ such that D intersects B and B' but not any other set from B. Then G is planar, hence |E(G)| < 3|V(G)|.

2.2 Arrangements and zones

A finite set \mathcal{L} of lines in \mathbb{R}^2 determines an arrangement \mathcal{A} . The 0-dimensional faces of \mathcal{A} (namely, the intersections of two distinct lines from \mathcal{L}), are called the vertices of \mathcal{A} , the 1-dimensional faces are called the edges of \mathcal{A} , and the 2-dimensional faces are the cells of \mathcal{A} . Clearly, all cells are convex. The cell complexity of a cell f in \mathcal{A} , denoted by comp(f), is the number of lines incident with the cell. The zone of an additional line ℓ , is the set of faces of \mathcal{A} intersected by ℓ . The complexity of a zone is the sum of the cell complexities of the faces in the zone of ℓ , i.e., total number of edges of these faces, counted with multiplicities.

Theorem 5 (Zone Theorem [8]). In an arrangement of n lines, the complexity of the zone of a line is O(n).

The best possible upper bound in the theorem is $\lfloor 9.5(n-1) \rfloor - 3$, obtained by Pinchasi [14].

We shall use a generalization of the theorem, for which an extra definition is needed. Given an arrangement \mathcal{A} and a line ℓ , the 1-zone of ℓ is defined as the zone of ℓ , and for t > 1 the t-zone of ℓ is defined as the set of all faces adjacent to the (t-1)-zone, that do

not belong to any *i*-zone for i < t. The $(\leq t)$ -zone of ℓ is the union of the *i*-zones of ℓ for all $1 \leq i \leq t$.

The following generalization of the zone theorem was given as Exercise 6.4.2 in [12]. Its proof can be found in [17, Prop. 1].

Lemma 6 ([17]). Let A be an arrangement of n lines. Then for any t, the $\leq t$ -zone of any additional line ℓ contains at most O(tn) vertices.

By planarity, this implies:

Corollary 7. Let \mathcal{A} be an arrangement of n lines. Then for any t, the $\leq t$ -zone of any additional line ℓ has complexity $C_{\leq t}(\ell) = O(tn)$.

2.3 Leveraging from 2-hyperedges to t-hyperedges

The following lemma allows bounding the number of t-hyperedges in a hypergraph $H = (\mathcal{V}, \mathcal{E})$ in terms of the number of its 2-hyperedges (i.e., the size of its Delaunay subhypergraph) and its VC-dimension.

Let us recall the classical definition of VC-dimension. A subset $\mathcal{V}' \subseteq \mathcal{V}$ is shattered if all its subsets are realized by hyperedges, meaning $\{\mathcal{V}' \cap e \colon e \in \mathcal{E}\} = 2^{\mathcal{V}'}$. The VC-dimension of H, denoted by VC(H), is the cardinality of a largest shattered subset of \mathcal{V} , or $+\infty$ if arbitrarily large subsets are shattered.

Lemma 8 (Theorem 6 (ii),(iii) in [2]). Let $H = (\mathcal{V}, \mathcal{E})$ be an n-vertex hypergraph. Suppose that there exists an absolute constant c such that for every $\mathcal{V}' \subset \mathcal{V}$, the Delaunay graph of the sub-hypergraph induced by \mathcal{V}' has at most $c|\mathcal{V}'|$ edges. Then the VC-dimension d of H is at most 2c + 1, and the number of hyperedges of size at most t in H, is $O(t^{d-1}n)$.

The lemma generalizes similar results proved in [4, 7] for hypergraphs of pseudo-discs with respect to pseudo-discs. The assertion regarding the VC-dimension is a simple observation. (Indeed, if a set of d vertices is shattered, then we have $\binom{d}{2} \leqslant cd$, and thus, $d-1 \leqslant 2c$, or equivalently, $d \leqslant 2c+1$.) The assertion regarding the number of hyperedges is more involved.

3 The number of t-hyperedges in $H(\mathcal{L}, \mathcal{F})$

In this section we prove Theorem 1. We prove the following stronger statement:

Proposition 9. Let \mathcal{L} be a family of n lines in the plane, let \mathcal{F} be a family of pseudo-discs, and assume both families are in general position. Then for each $\ell \in \mathcal{L}$,

$$|\{e \in \mathcal{E}(H(\mathcal{L},\mathcal{F})) : |e| = t, \ell \in e\}| = O_t(n).$$

Consequently, $|\{e \in \mathcal{E}(H(\mathcal{L}, \mathcal{F})) : |e| = t\}| = O_t(n^2)$.

Proof of Proposition 9. First we prove the statement for hyperedges of size 3, and then we leverage the result to general hyperedges.

3-hyperedges. Fix a line ℓ . We observe that for a pseudo-disc c that defines a 3-hyperedge $\{\ell, \ell', \ell''\}$ there exists a cell of $\mathcal{A}(\mathcal{L} \setminus \{\ell\})$ which is in the \leq 2-zone of ℓ in $\mathcal{A}(\mathcal{L} \setminus \{\ell\})$ such that c intersects two edges of this cell where one of these edges is on ℓ' and the second is on ℓ'' . With every such pseudo-disk c we associate one such cell f_c and one such pair of edges of this cell, and denote this pair by e_c .

Define a graph G=(V,E) whose vertices are all edges in the (≤ 2) -zone of ℓ in $\mathcal{A}(\mathcal{L}\setminus\{\ell\})$, and whose edges are the pairs e_c associated with the pseudo-disks that define a 3-hyperedge. Note that for any hyperedge $e=\{\ell,\ell',\ell''\}$ we choose exactly one pair of edges of $\mathcal{A}(\mathcal{L}\setminus\{\ell\})$ - one is on ℓ' and one is on ℓ'' - that form a corresponding edge of G. Thus by construction, |E| is equal to the number of 3-hyperedges containing ℓ , and so, we want to prove that |E|=O(n).

Consider a single cell f of $\mathcal{A}(\mathcal{L}\setminus\{\ell\})$. For each pseudo-disk c that defines a 3-hyperedge containing l and has $f_c = f$, c does not intersect any other edge of f besides the two edges in e_c (as otherwise, c would intersect at least 4 lines of \mathcal{L}). Hence, the restriction of G to the edges of the cell f (after removing their endpoints), satisfies the assumptions of Lemma 4. Thus, by Lemma 4, the subgraph of G induced by the edges of f is planar, and hence, its number of edges is at most 3 times the complexity of f. Summing over all cells in the (≤ 2) -zone of ℓ , we obtain $|E| \leq 3 \sum_f comp(f) = O(n)$ by Corollary 7, and therefore, |E| = O(n), as asserted.

t-hyperedges. Fix a line ℓ , and consider the hypergraph H' whose vertex set is $\mathcal{L} \setminus \{\ell\}$ and whose edge set is $\{e \setminus \{\ell\} : e \in \mathcal{E}(H), \ell \in e\}$. The 2-hyperedges of H' correspond to 3-hyperedges of H containing ℓ , and thus, by the first step, their number is O(n). Furthermore, for any $\mathcal{L}' \subset \mathcal{L} \setminus \{\ell\}$, the number of 2-hyperedges in the restriction of H' to \mathcal{L}' is $O(|\mathcal{L}'|)$, by the same argument. Therefore, H' satisfies the assumptions of Lemma 8, which implies that the VC-dimension d of H' is constant, and that the number C_{t-1} of (t-1)-hyperedges of H' is $O(t^{d-1}n)$.

Finally, the number of t-hyperedges of H that contain ℓ is equal to C_{t-1} . This completes the proof.

4 The total number of hyperedges in $H(\mathcal{L}, \mathcal{F})$

In this section we prove Proposition 2.

Proof of Proposition 2. By Lemma 3 we can shrink the pseudo-discs one by one, such that the shrinking of each pseudo-disc $c \in \mathcal{F}$ is stopped when it becomes tangent to two lines. (Formally, first c is shrunk until the first time it is tangent to some line in \mathcal{L} , and then it is shrunk towards the tangency point until the next time it is tangent to some line in \mathcal{L} .) By the general position assumption, we can perform the shrinking process in such a way that the obtained geometric objects (i.e., lines and shrinked pseudo-discs) are also in general position. We replace each $c \in \mathcal{F}$ by its shrunk copy. Let \mathcal{F}' be the obtained family. Then $H(\mathcal{L}, \mathcal{F}) = H(\mathcal{L}, \mathcal{F}')$, and by a tiny perturbation we can assume that all tangencies are in a point.

For any two lines $\ell_1, \ell_2 \in \mathcal{L}$, denote by $\mathcal{F}'(\ell_1, \ell_2)$ the set of all pseudo-discs in \mathcal{F}' that are tangent to both ℓ_1 and ℓ_2 . We claim that for any $\ell_1, \ell_2 \in \mathcal{L}$, $|\mathcal{E}(H(\mathcal{L}, \mathcal{F}'(\ell_1, \ell_2)))| = O(n)$, and this implies $|\mathcal{E}(H)| = O(n^3)$, the assertion of Proposition 2.

To show this, for any $c \in \mathcal{F}'(\ell_1, \ell_2)$, we define $x_{\ell_1,\ell_2}(c) = c \cap \ell_1 \in \mathbb{R}^2$ and $y_{\ell_1,\ell_2}(c) = c \cap \ell_2 \in \mathbb{R}^2$ (see Figure 1). In each of the four wedges that ℓ_1, ℓ_2 form, we define a linear order relation on the elements of $\mathcal{F}'(\ell_1,\ell_2)$: $c \prec c'$ if the segment $[x_{\ell_1,\ell_2}(c),y_{\ell_1,\ell_2}(c)]$ is completely above the segment $[x_{\ell_1,\ell_2}(c'),y_{\ell_1,\ell_2}(c')]$ (that is, if the points $x_{\ell_1,\ell_2}(c),y_{\ell_1,\ell_2}(c)$ are closer to the intersection point within the wedge than the points $x_{\ell_1,\ell_2}(c'),y_{\ell_1,\ell_2}(c')$, respectively).

First, we claim that this relation is well defined, since for $c \neq c'$ two such segments never intersect. Indeed, assume to the contrary they intersect, so that $y_{\ell_1,\ell_2}(c')$ is above $y_{\ell_1,\ell_2}(c)$, while $x_{\ell_1,\ell_2}(c')$ is below $x_{\ell_1,\ell_2}(c)$. The pseudo-disc c divides the remainder of the wedge into two connected components – the part 'above' it and the part 'below' it. Now, consider the points $x_{\ell_1,\ell_2}(c'), y_{\ell_1,\ell_2}(c')$. In the boundary of c', these points are connected by two curves. As these points are in different connected components w.r.t. c, each of these curves intersects c at least twice, which means that c, c' intersect at least 4 times, a contradiction.

Second, we claim that in each wedge, every line in \mathcal{L} intersects a subset of consecutive elements of $\mathcal{F}'(\ell_1, \ell_2)$ under the order \prec . Indeed, assume that some line ℓ intersects two pseudo-discs c_1, c_3 , as depicted in Figure 1. We want to show it must intersect c_2 as well. Like above, c_2 divides the wedge (without it) into two connected components. By the same argument as above, c_1 cannot intersect the component below c_2 (as otherwise, it would cross c_2 four times). Similarly, c_3 cannot intersect the component above c_2 . Thus, either ℓ intersects at least one of c_1, c_3 inside c_2 , or ℓ contains a point above c_2 and a point below c_2 . In both cases, ℓ must intersect c_2 .

Finally, by passing over all elements of $\mathcal{F}'(\ell_1, \ell_2)$ in each wedge, from the smallest to the largest, according to the order \prec , the number of times that the hyperedge defined by the current pseudo-disc is changed is linear in $|\mathcal{L}|$. Indeed, any such change is caused by appearance or disappearance of some line, and each line in \mathcal{L} appears at most once and disappears at most once, along the process. Therefore, in each wedge, $|\mathcal{E}(H(\mathcal{L}, \mathcal{F}'(\ell_1, \ell_2)))| = O(n)$, and summing over all pairs $\{\ell_1, \ell_2\} \in \mathcal{L}$, we get $|\mathcal{E}(H)| = O(n^3)$.

5 Open Problems

We conclude this note with a few open problems.

Hypergraph of lines and inscribed pseudo-discs. A natural question is whether the arguments of Aronov et al. [5] can be extended from discs to pseudo-discs. We have found that all their arguments would go through if we knew that every triangle has an inscribed pseudo-disc. More precisely, we would need that for any triangle formed by three sides a, b, c, there is a pseudo-disc $d \in \mathcal{F}$, contained in the closed triangle, that intersects every side in exactly one point, or if there is no such $d \in \mathcal{F}$, then we can add such a new

Figure 1: Illustration for the proof of Proposition 2 - c_1, c_2, c_3 are tangent to the lines ℓ_1, ℓ_2 , and $c_1 \prec c_2 \prec c_3$.

pseudo-disc d to \mathcal{F} such that $\mathcal{F} \cup \{d\}$ still forms a pseudo-disc family. Unfortunately, it seems that such a theory has not been developed yet, not even for \mathcal{F} all whose elements are convex.

We note that for the related problem regarding circumscribed pseudo-discs, even a stronger result is known. Specifically, it was shown in [16, Thm. 5.1] that for any three points a, b, c, there is a pseudo-disc $d \in \mathcal{F}$ such that $a, b, c \in \partial d$, or if there is no such $d \in \mathcal{F}$, then we can add such a new pseudo-disc d to \mathcal{F} such that $\mathcal{F} \cup \{d\}$ still forms a pseudo-disc family.

Dependence on t in Theorem 1. While we showed the quadratic dependence on n in Theorem 1 to be tight, the dependence on t is not clear. It seems plausible that

$$|\{e \in \mathcal{E}(H(\mathcal{L},\mathcal{F})) : |e| = t\}| = O(tn^2),$$

but we have not been able to prove this. On the other hand, even the stronger upper bound $O(n^2)$ for any fixed t, that would immediately imply Proposition 2 might hold.

Analogue of Lemma 8 for 3-sized hyperedges. It seems plausible that one can prove the following analogue of Lemma 8 for 3-sized hyperedges: If in some hypergraph on n vertices, for any induced hypergraph, the number of 3-sized hyperedges is quadratic in the number of vertices, then for any fixed t, the number of t-sized hyperedges is $O_t(n^2)$. Such a strong leveraging lemma would allow an easier proof of Theorem 1.

Acknowledgements

The authors are grateful to Rom Pinchasi for inspiring and helpful suggestions, to Stefan Felsner for suggesting to use Lemma 6 and for other valuable suggestions, and to Manfred Scheucher for useful discussions on arrangements of pseudo-discs.

References

- [1] Eyal Ackerman, Balázs Keszegh, and Dömötör Pálvölgyi. Coloring hypergraphs defined by stabbed pseudo-disks and ABAB-free hypergraphs. *SIAM J. Discrete Math.*, 34(4):2250–2269, 2020.
- [2] Eyal Ackerman, Balázs Keszegh, and Dömötör Pálvölgyi. On tangencies among planar curves with an application to coloring L-shapes, Proceedings of EuroComb 2021, Trends in Mathematics Research Perspectives CRM Barcelona Vol.14 (2021), 123-128.
- [3] Noga Alon and Ervin Győri. The number of small semispaces of a finite set of points in the plane. J. Comb. Theory, Ser. A, 41(1):154–157, 1986.
- [4] Boris Aronov, Anirudh Donakonda, Esther Ezra, and Rom Pinchasi. On pseudo-disk hypergraphs. *Computational Geometry*, 92:101687, 2021.
- [5] Boris Aronov, Daniel Q. Naiman, János Pach, and Micha Sharir. An invariant property of balls in arrangements of hyperplanes. *Discret. Comput. Geom.*, 10:421–425, 1993.
- [6] Maria Axenovich and Torsten Ueckerdt. Density of range capturing hypergraphs. *J. Comput. Geom.*, 7(1):1–21, 2016.
- [7] Sarit Buzaglo, Rom Pinchasi, and Günter Rote. Topological Hypergraphs, Thirty Essays on Geometric Graph Theory, pages 71–81. Springer New York, 2013.
- [8] Bernard Chazelle, Leo J. Guibas, and D. T. Lee. The power of geometric duality. *BIT*, 25:76–90, 1985.
- [9] Nicolas Chevallier, Augustin Fruchard, Dominique Schmitt, and Jean-Claude Spehner. Separation by convex pseudo-circles. In Siu-Wing Cheng and Olivier Devillers, editors, 30th Annual Symposium on Computational Geometry, SoCG'14, pages 444–453. ACM, 2014.
- [10] Stefan Felsner and Manfred Scheucher. Arrangements of pseudocircles: On circularizability. *Discret. Comput. Geom.*, 64(3):776–813, 2020.
- [11] Balázs Keszegh. Coloring intersection hypergraphs of pseudo-disks. *Discrete Comput. Geom.*, 64(3):942–964, 2020.
- [12] Jiri Matousek. Lectures on Discrete Geometry. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2002.
- [13] Jiří Matoušek, Raimund Seidel, and Emo Welzl. How to net a lot with little: Small epsilon-nets for disks and halfspaces. In Raimund Seidel, editor, *Proceedings of the*

- Sixth Annual Symposium on Computational Geometry, SoCG'90, pages 16–22. ACM, 1990.
- [14] Rom Pinchasi. The zone theorem revisited. Manuscript, 2011.
- [15] Rom Pinchasi. A finite family of pseudodiscs must include a "small" pseudodisc. SIAM J. Discrete Math., 28(4):1930–1934, 2014.
- [16] Jack Snoeyink and John Hershberger. Sweeping arrangements of curves. In Discrete and computational geometry (New Brunswick, NJ, 1989/1990), volume 6 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 309–349. Amer. Math. Soc., Providence, RI, 1991.
- [17] Raphael Steiner, Manfred Scheucher, Stefan Felsner, Pavel Valtr, Man-Kwun Chiu, and Patrick Schnider. On the average complexity of the k-level. *J. Comput. Geom.*, 11(1):493–506, 2020.