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Abstract

Consider a hypergraph whose vertex set is a family of n lines in general position
in the plane, and whose hyperedges are induced by intersections with a family of
pseudo-discs. We prove that the number of t-hyperedges is bounded by Ot(n

2) and
that the total number of hyperedges is bounded by O(n3). Both bounds are tight.
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1 Introduction

A family F of simple Jordan regions in R2 is called a family of pseudo-discs if for any
c1, c2 ∈ F , |∂(c1) ∩ ∂(c2)| ! 2, where ∂(c) is the boundary of c. Given a set P of points
in R2 and a family F of pseudo-discs, define the geometric hypergraph H(P,F) whose
vertices are the points of P , and any pseudo-disc c ∈ F defines a hyperedge of all points
contained in c.

The family of hypergraphs H(P,F) – for a general F and in the special case where
all elements of F are convex – have been studied extensively (see, e.g., [1, 3, 6, 9, 13]). In
particular, it was proved in [7] that for any P,F , the Delaunay graph of H(P,F) (namely,
the restriction of H to hyperedges of size 2) is planar, and that for any fixed t, the number
of hyperedges of H(P,F) of size t is bounded by O(t2|P |). This result was generalized in
[11] (see also [4]) to the case where P is a family of pseudo-discs instead of points, and the
hyperedges are defined by non-empty intersections of any element in F with the elements
of P .

In this note we consider hypergraphs H = H(L,F) whose vertex set V(H) = L is a
family of lines in the plane, and whose hyperedges are induced by intersections with a
family F of pseudo-discs. Namely, any c ∈ F defines the hyperedge

ec = {ℓ ∈ L : ℓ ∩ c ∕= ∅} ∈ E(H).

We assume that the geometric objects are in general position, in the sense that no 3
lines pass through a common point, no line passes through an intersection point of two
boundaries of pseudo-discs.

Unlike the hypergraphs of points w.r.t. pseudo-discs, H(P,F), the number of hyper-
edges in a hypergraph H(L,F), of lines w.r.t. pseudo-discs, of any fixed size, may be
quadratic in the number of vertices. Such a hypergraph was demonstrated in a beautiful
paper of Aronov et al. [5]. They showed that for any family L of lines, if F consists of
the inscribed circles of the triangles formed by any triple of lines, then for any t " 3, the
number of t-hyperedges (i.e., hyperedges of size t) in H(L,F) is exactly

!
n−t+2

2

"
.

For any fixed t, there exist hypergraphs H(L,F) in which the number of t-hyperedges
is larger than in the construction of Aronov et al. [5], even when F is allowed to contain
only discs (as some of those discs might not be inscribed in a triangle formed by the
lines). We prove that the number of t-hyperedges cannot be significantly larger for any
hypergraph H(L,F) of lines with respect to pseudo-discs.1 Specifically, we prove:

Theorem 1. Let L be a family of n lines in the plane, let F be a family of pseudo-discs,
and assume both families are in general position. Then

|{e ∈ E(H(L,F)) : |e| = t}| = Ot(n
2).

Our techniques combine probabilistic and planarity arguments, together with exploit-
ing properties of arrangements of lines, in particular the zone theorem.

1For the difference between hypergraphs induced by pseudo-discs and hypergraphs induced by discs,
see [10] and the references therein.
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In addition, we show that for any choice of L and F , the total number of hyperedges
in H(L,F) does not exceed O(n3). This upper bound is tight, since the total number of
hyperedges in the hypergraph presented by Aronov et al. [5] is

!
n
3

"
.

Proposition 2. Let L be a family of n lines in the plane, let F be a family of pseudo-discs,
and assume both families are in general position. Then |E(H(L,F))| = O(n3).

2 Preliminaries

In this section we present previous results and simple lemmata that will be used in our
proofs.

2.1 Pseudo-discs

The two following lemmata are standard useful tools when handling families of pseudo-
discs:

Lemma 3 (Lemma 1 in [15], based on [16]). Let F be a family of pseudo-discs, D ∈
F , x ∈ D. Then D can be continuously shrunk to the point x, such that at each moment
during the shrinking process, the family obtained from F remains a family of pseudo-discs.

Lemma 4 (Lemma 2 in [15]). Let B be a family of pairwise disjoint closed connected sets
in R2. Let F be a family of pseudo-discs. Define a graph G whose vertices correspond to
the sets in B and connect two sets B,B′ ∈ B if there is a set D ∈ F such that D intersects
B and B′ but not any other set from B. Then G is planar, hence |E(G)| < 3|V (G)|.

2.2 Arrangements and zones

A finite set L of lines in R2 determines an arrangement A. The 0-dimensional faces of
A (namely, the intersections of two distinct lines from L), are called the vertices of A,
the 1-dimensional faces are called the edges of A, and the 2-dimensional faces are the
cells of A. Clearly, all cells are convex. The cell complexity of a cell f in A, denoted
by comp(f), is the number of lines incident with the cell. The zone of an additional line
ℓ, is the set of faces of A intersected by ℓ. The complexity of a zone is the sum of the
cell complexities of the faces in the zone of ℓ, i.e., total number of edges of these faces,
counted with multiplicities.

Theorem 5 (Zone Theorem [8]). In an arrangement of n lines, the complexity of the
zone of a line is O(n).

The best possible upper bound in the theorem is ⌊9.5(n − 1)⌋ − 3, obtained by Pin-
chasi [14].

We shall use a generalization of the theorem, for which an extra definition is needed.
Given an arrangement A and a line ℓ, the 1-zone of ℓ is defined as the zone of ℓ, and for
t > 1 the t-zone of ℓ is defined as the set of all faces adjacent to the (t− 1)-zone, that do
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not belong to any i-zone for i < t. The (! t)-zone of ℓ is the union of the i-zones of ℓ for
all 1 ! i ! t.

The following generalization of the zone theorem was given as Exercise 6.4.2 in [12].
Its proof can be found in [17, Prop. 1].

Lemma 6 ([17]). Let A be an arrangement of n lines. Then for any t, the ! t-zone of
any additional line ℓ contains at most O(tn) vertices.

By planarity, this implies:

Corollary 7. Let A be an arrangement of n lines. Then for any t, the ! t-zone of any
additional line ℓ has complexity C!t(ℓ) = O(tn).

2.3 Leveraging from 2-hyperedges to t-hyperedges

The following lemma allows bounding the number of t-hyperedges in a hypergraph H =
(V , E) in terms of the number of its 2-hyperedges (i.e., the size of its Delaunay sub-
hypergraph) and its VC-dimension.

Let us recall the classical definition of VC-dimension. A subset V ′ ⊆ V is shattered
if all its subsets are realized by hyperedges, meaning {V ′ ∩ e : e ∈ E} = 2V

′
. The VC-

dimension of H, denoted by V C(H), is the cardinality of a largest shattered subset of V ,
or +∞ if arbitrarily large subsets are shattered.

Lemma 8 (Theorem 6 (ii),(iii) in [2]). Let H = (V , E) be an n-vertex hypergraph. Suppose
that there exists an absolute constant c such that for every V ′ ⊂ V, the Delaunay graph
of the sub-hypergraph induced by V ′ has at most c|V ′| edges. Then the VC-dimension d of
H is at most 2c+ 1, and the number of hyperedges of size at most t in H, is O(td−1n).

The lemma generalizes similar results proved in [4, 7] for hypergraphs of pseudo-
discs with respect to pseudo-discs. The assertion regarding the VC-dimension is a simple
observation. (Indeed, if a set of d vertices is shattered, then we have

!
d
2

"
! cd, and thus,

d−1 ! 2c, or equivalently, d ! 2c+1.) The assertion regarding the number of hyperedges
is more involved.

3 The number of t-hyperedges in H(L,F)

In this section we prove Theorem 1. We prove the following stronger statement:

Proposition 9. Let L be a family of n lines in the plane, let F be a family of pseudo-discs,
and assume both families are in general position. Then for each ℓ ∈ L,

|{e ∈ E(H(L,F)) : |e| = t, ℓ ∈ e}| = Ot(n).

Consequently, |{e ∈ E(H(L,F)) : |e| = t}| = Ot(n
2).

Proof of Proposition 9. First we prove the statement for hyperedges of size 3, and then
we leverage the result to general hyperedges.

the electronic journal of combinatorics 29(3) (2022), #P3.25 4



3-hyperedges. Fix a line ℓ. We observe that for a pseudo-disc c that defines a 3-
hyperedge {ℓ, ℓ′, ℓ′′} there exists a cell of A(L \ {ℓ}) which is in the ! 2-zone of ℓ in
A(L \ {ℓ}) such that c intersects two edges of this cell where one of these edges is on ℓ′

and the second is on ℓ′′. With every such pseudo-disk c we associate one such cell fc and
one such pair of edges of this cell, and denote this pair by ec.

Define a graph G = (V,E) whose vertices are all edges in the (! 2)-zone of ℓ in
A(L\ {ℓ}), and whose edges are the pairs ec associated with the pseudo-disks that define
a 3-hyperedge. Note that for any hyperedge e = {ℓ, ℓ′, ℓ′′} we choose exactly one pair of
edges of A(L \ {ℓ}) - one is on ℓ′ and one is on ℓ′′ - that form a corresponding edge of G.
Thus by construction, |E| is equal to the number of 3-hyperedges containing ℓ, and so,
we want to prove that |E| = O(n).

Consider a single cell f ofA(L\{ℓ}). For each pseudo-disk c that defines a 3-hyperedge
containing l and has fc = f , c does not intersect any other edge of f besides the two edges
in ec (as otherwise, c would intersect at least 4 lines of L). Hence, the restriction of G
to the edges of the cell f (after removing their endpoints), satisfies the assumptions of
Lemma 4. Thus, by Lemma 4, the subgraph of G induced by the edges of f is planar,
and hence, its number of edges is at most 3 times the complexity of f . Summing over all
cells in the (! 2)-zone of ℓ, we obtain |E| ! 3

#
f comp(f) = O(n) by Corollary 7, and

therefore, |E| = O(n), as asserted.

t-hyperedges. Fix a line ℓ, and consider the hypergraph H ′ whose vertex set is L\{ℓ}
and whose edge set is {e \ {ℓ} : e ∈ E(H), ℓ ∈ e}. The 2-hyperedges of H ′ correspond
to 3-hyperedges of H containing ℓ, and thus, by the first step, their number is O(n).
Furthermore, for any L′ ⊂ L\ {ℓ}, the number of 2-hyperedges in the restriction of H ′ to
L′ is O(|L′|), by the same argument. Therefore, H ′ satisfies the assumptions of Lemma 8,
which implies that the VC-dimension d of H ′ is constant, and that the number Ct−1 of
(t− 1)-hyperedges of H ′ is O(td−1n).

Finally, the number of t-hyperedges of H that contain ℓ is equal to Ct−1. This com-
pletes the proof.

4 The total number of hyperedges in H(L,F)

In this section we prove Proposition 2.

Proof of Proposition 2. By Lemma 3 we can shrink the pseudo-discs one by one, such
that the shrinking of each pseudo-disc c ∈ F is stopped when it becomes tangent to two
lines. (Formally, first c is shrunk until the first time it is tangent to some line in L, and
then it is shrunk towards the tangency point until the next time it is tangent to some line
in L.) By the general position assumption, we can perform the shrinking process in such
a way that the obtained geometric objects (i.e., lines and shrinked pseudo-discs) are also
in general position. We replace each c ∈ F by its shrunk copy. Let F ′ be the obtained
family. Then H(L,F) = H(L,F ′), and by a tiny perturbation we can assume that all
tangencies are in a point.
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For any two lines ℓ1, ℓ2 ∈ L, denote by F ′(ℓ1, ℓ2) the set of all pseudo-discs in F ′ that
are tangent to both ℓ1 and ℓ2. We claim that for any ℓ1, ℓ2 ∈ L, |E(H(L,F ′(ℓ1, ℓ2)))| =
O(n), and this implies |E(H)| = O(n3), the assertion of Proposition 2.

To show this, for any c ∈ F ′(ℓ1, ℓ2), we define xℓ1,ℓ2(c) = c ∩ ℓ1 ∈ R2 and yℓ1,ℓ2(c) =
c ∩ ℓ2 ∈ R2 (see Figure 1). In each of the four wedges that ℓ1, ℓ2 form, we define a linear
order relation on the elements of F ′(ℓ1, ℓ2): c ≺ c′ if the segment [xℓ1,ℓ2(c), yℓ1,ℓ2(c)] is
completely above the segment [xℓ1,ℓ2(c

′), yℓ1,ℓ2(c
′)] (that is, if the points xℓ1,ℓ2(c), yℓ1,ℓ2(c)

are closer to the intersection point within the wedge than the points xℓ1,ℓ2(c
′), yℓ1,ℓ2(c

′),
respectively).

First, we claim that this relation is well defined, since for c ∕= c′ two such segments
never intersect. Indeed, assume to the contrary they intersect, so that yℓ1,ℓ2(c

′) is above
yℓ1,ℓ2(c), while xℓ1,ℓ2(c

′) is below xℓ1,ℓ2(c). The pseudo-disc c divides the remainder of the
wedge into two connected components – the part ‘above’ it and the part ‘below’ it. Now,
consider the points xℓ1,ℓ2(c

′), yℓ1,ℓ2(c
′). In the boundary of c′, these points are connected

by two curves. As these points are in different connected components w.r.t. c, each of
these curves intersects c at least twice, which means that c, c′ intersect at least 4 times, a
contradiction.

Second, we claim that in each wedge, every line in L intersects a subset of consecutive
elements of F ′(ℓ1, ℓ2) under the order ≺. Indeed, assume that some line ℓ intersects two
pseudo-discs c1, c3, as depicted in Figure 1. We want to show it must intersect c2 as well.
Like above, c2 divides the wedge (without it) into two connected components. By the
same argument as above, c1 cannot intersect the component below c2 (as otherwise, it
would cross c2 four times). Similarly, c3 cannot intersect the component above c2. Thus,
either ℓ intersects at least one of c1, c3 inside c2, or ℓ contains a point above c2 and a point
below c2. In both cases, ℓ must intersect c2.

Finally, by passing over all elements of F ′(ℓ1, ℓ2) in each wedge, from the smallest
to the largest, according to the order ≺, the number of times that the hyperedge de-
fined by the current pseudo-disc is changed is linear in |L|. Indeed, any such change
is caused by appearance or disappearance of some line, and each line in L appears
at most once and disappears at most once, along the proccess. Therefore, in each
wedge, |E(H(L,F ′(ℓ1, ℓ2)))| = O(n), and summing over all pairs {ℓ1, ℓ2} ∈ L, we get
|E(H)| = O(n3).

5 Open Problems

We conclude this note with a few open problems.

Hypergraph of lines and inscribed pseudo-discs. A natural question is whether
the arguments of Aronov et al. [5] can be extended from discs to pseudo-discs. We have
found that all their arguments would go through if we knew that every triangle has an
inscribed pseudo-disc. More precisely, we would need that for any triangle formed by three
sides a, b, c, there is a pseudo-disc d ∈ F , contained in the closed triangle, that intersects
every side in exactly one point, or if there is no such d ∈ F , then we can add such a new
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`2
`1

c1

c2

c3

x`1,`2(c1)

x`1,`2(c2)

x`1,`2(c3)

y`1,`2(c1)

y`1,`2(c2)

y`1,`2(c3)

`

Figure 1: Illustration for the proof of Proposition 2 - c1, c2, c3 are tangent to the lines
ℓ1, ℓ2, and c1 ≺ c2 ≺ c3.

pseudo-disc d to F such that F ∪ {d} still forms a pseudo-disc family. Unfortunately, it
seems that such a theory has not been developed yet, not even for F all whose elements
are convex.

We note that for the related problem regarding circumscribed pseudo-discs, even a
stronger result is known. Specifically, it was shown in [16, Thm. 5.1] that for any three
points a, b, c, there is a pseudo-disc d ∈ F such that a, b, c ∈ ∂d, or if there is no such
d ∈ F , then we can add such a new pseudo-disc d to F such that F ∪ {d} still forms a
pseudo-disc family.

Dependence on t in Theorem 1. While we showed the quadratic dependence on n
in Theorem 1 to be tight, the dependence on t is not clear. It seems plausible that

|{e ∈ E(H(L,F)) : |e| = t}| = O(tn2),

but we have not been able to prove this. On the other hand, even the stronger upper
bound O(n2) for any fixed t, that would immediately imply Proposition 2 might hold.

Analogue of Lemma 8 for 3-sized hyperedges. It seems plausible that one can
prove the following analogue of Lemma 8 for 3-sized hyperedges: If in some hypergraph
on n vertices, for any induced hypergraph, the number of 3-sized hyperedges is quadratic
in the number of vertices, then for any fixed t, the number of t-sized hyperedges is Ot(n

2).
Such a strong leveraging lemma would allow an easier proof of Theorem 1.
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[13] Jǐŕı Matoušek, Raimund Seidel, and Emo Welzl. How to net a lot with little: Small
epsilon-nets for disks and halfspaces. In Raimund Seidel, editor, Proceedings of the

the electronic journal of combinatorics 29(3) (2022), #P3.25 8



Sixth Annual Symposium on Computational Geometry, SoCG’90, pages 16–22. ACM,
1990.

[14] Rom Pinchasi. The zone theorem revisited. Manuscript, 2011.

[15] Rom Pinchasi. A finite family of pseudodiscs must include a “small” pseudodisc.
SIAM J. Discrete Math., 28(4):1930–1934, 2014.

[16] Jack Snoeyink and John Hershberger. Sweeping arrangements of curves. In Dis-
crete and computational geometry (New Brunswick, NJ, 1989/1990), volume 6 of
DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 309–349. Amer. Math.
Soc., Providence, RI, 1991.

[17] Raphael Steiner, Manfred Scheucher, Stefan Felsner, Pavel Valtr, Man-Kwun Chiu,
and Patrick Schnider. On the average complexity of the k-level. J. Comput. Geom.,
11(1):493–506, 2020.

the electronic journal of combinatorics 29(3) (2022), #P3.25 9


