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Abstract

In this paper, we study the root distributions of Ehrhart polynomials of free sums
of certain reflexive polytopes. We investigate cases where the roots of the Ehrhart
polynomials of the free sums of A}’s or Ag’s lie on the canonical line Re(z) = —% on
the complex plane C, where A, denotes the root polytope of type A of dimension
d and A(\i/ denotes its polar dual. For example, it is proved that AY, & A, with
min{m,n} <1lorm+n <7, AY & (AY)®" and AY ¢ (A})®" for any n satisfy this
property. We also perform computational experiments for other types of free sums
of A)’s or Ay’s.

Mathematics Subject Classifications: 52B20,26C10
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1 Introduction

A polytope Q C R? is called integral if all the vertices are on Z?. For an integral polytope
Q C R? of dimension d and a positive integer k, Fg(k) = #(kQ N Z?) is known to be
a polynomial of degree d, where k@) = {kx : = € @Q}. This polynomial is called the
Ehrhart polynomial of Q). Its generating function Ehrg(t), called the Ehrhart series, can

be written as ;
d So + 01t + -+ + Iyt
_ kY0 1 d

Ehro(t) = ) | Eq(k)t* = a-nF

k=0

where the numerator is the 0-polynomial of @, denoted by dg(t), and the sequence of
the coefficients 0(Q) = (do,d1,...,04) is the d-vector of Q. (They are also known as
h*-polynomial and h*-vector, respectively.) The d-vector fully encodes the Ehrhart poly-
nomial and Eg(k) can be recovered from §(Q) as follows:

Bt =30, 77 ) = e,

j=

We refer the reader to [4] for the introduction to the Ehrhart polynomials and o-
polynomials of integral polytopes.
For a polytope Q C RY, the polar dual of @Q is defined by

Q" ={zeR: (z,y) > —1 for any y € Q},

where (-,-) denotes the usual inner product of R% Note that (Q¥)¥ = @ holds for
polytopes containing the origin. An integral polytope containing the origin in its interior
is reflezive if its polar dual is also an integral polytope ([3, 8]). Note that if @ is reflexive,
then so is V. It is known that an integral polytope is reflexive if and only if its -
vector is palindromic, and correspondingly, the roots of the Ehrhart polynomial distribute
symmetrically with respect to the line Re(z) = —% on the complex plane C. (See, e.g., [9,
Proposition 2.1].) Naturally, it is of interest when the roots of the Ehrhart polynomials
all lie on the line Re(z) = —3. Such reflexive polytopes are called “CL-polytopes” ([7])
and studied in several papers (e.g. [7, 9, 10, 11]). (In what follows, we call a reflexive
polytope CL if it is a CL-polytope.)

For two integral polytopes Q; C R1™@1 and @, C R4 %2 hoth containing the origins,
the free sum Q1 @ Q)2 is defined by

Q1 D Q2 = conv((Q1 X 0g,) U (0g, X Q2)) C RAMQ1 5 RAmMQ:

where 0g, and Og, are the origins of R1m®@1 and RUI™@2 | respectively. The operation of
the free sum has importance since it is the polar dual of the Cartesian product in such a
way that

(@ x Q)" =Qf ®Qy.
Note that @)1 @ Q)2 is reflexive if and only if both @); and @), are reflexive.
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The §-polynomial of the free sum has the following simple formula [5]:

01202 (1) = 0g, (1), (1) (1)

On the other hand, the Ehrhart polynomial of Q1 & @2 can be given (see [5, 16]) but not
so simple, and the root distribution of the Ehrhart polynomial of ()1 & ()5 is not clear.
Especially, as we will see later, Q1 & ()5 is not always CL even if both ); and ()5 are CL.
In this paper, we are interested in when )1 @ Q2 becomes CL for CL polytopes )7 and
Qo

A typical example of CL-polytopes is the following special case. For a reflexive poly-
tope @, when all the roots z of the §-polynomial of @ satisfy |z| = 1, it follows from [14]
that all the roots of the Ehrhart polynomial of @) are on the line Re(z) = —%, ie., @Q is
CL. For example, the following polytopes can be shown to be CL by this reasoning:

e A cross polytope Cry = conv({ey, ..., eq,—€1,...,—eq}), where dcy,(t) = (1 +t)<.
o A simplex Ty = conv({ey,...,eq, —(e1 + -+ +e4)}), where or,(t) = 1+t + - - + %

Here, e; denotes the i-th unit vector of R%. If @Q,’s are such polytopes, then we have

Q1D - D Q, is CL since the roots of the J-polynomial of Q1 @ --- B @, also satisfy

|z] =1 by (1). (Notice that Cry is unimodularly equivalent to T} & - - - & T}.)
—_——

d
In this paper, we mainly discuss the case ();’s are the dual of the classical root polytopes
of type A. Here, the classical root polytope of type A is defined as

Ag=conv({x(e; +---+e¢;): 1 <i<j<d}),
and we consider its dual A). The Ehrhart polynomial of A is known to be
EA;{ (k‘) _ (/€ + 1)d+1 o k’d+1

in [9, Lemma 5.3]. Reflexive polytopes A, and A} are shown to be CL in [9], but we
see the roots z of their d-polynomials do not satisfy |z| = 1. The reason we consider
this free sum of A}’s is that it appears as the equatorial spheres of the complete graded
posets. This will be discussed in Section 2. After that, we investigate the CL-ness of
Ay DA, D--- @A) in the following sections.

We collect the results which show the CL-ness for the free sums of Ay’s or A;’s in
what follows:

o Ay & A with min{m,n} <1 or m+n <7 (Theorem 5);

o AV @ (AY)®" for any n > 1 with m = 1,2, 3 (Proposition 6, Theorems 8 and 9);

o A& A, for any n > 1 (Theorem 12);

o A, ®AY™ for any n > 1 with m = 1,2,3 (Proposition 13 and Theorem 14).

We also perform other types of free sums of A’s or A,,’s and describe the computational
results.
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2 Ehrhart polynomials of equatorial spheres of graded posets

Let (P, =) be a finite partially ordered set, or a poset, with |P| = d. The order polytope
Op of P is given by

Op={rc0,1]%:2,<m for b<a(a,beP)},

where the coordinates of R? are indexed by the elements of P. This is an integral polytope
whose vertices correspond to the order ideals of P ([15]).

As another polytope arising from posets closely related to the order polytope, the
chain polytope of P is defined by

C’p:{xERd: 2o 20(a€P), g+ +2, <1 for a9 <--- < ay (a; € P) }.

This is an integral polytope whose vertices correspond to the antichains of P, and it is
shown in [15] that the Ehrhart polynomials of Op and Cp coincide: Ep, (k) = Ec¢,(k),
so we also have 0o, (t) = ¢, (t).

For the poset P on [n] ={1,2,...,n}, the P-Eulerian polynomial is
W(P) _ Z mdes(w)—l—l?

TeL(P)

where L£(P) is the set of all linear extensions of P and des(7) is the size of the descent
set of w with respect to P. That is, L(P) is the set of permutations w = (wy, ws, ..., wy,)
of [n] such that w; < w; implies ¢ < j, and des(w) = #{i € [n — 1] : w; > w;;1}. This
polynomial is equal to the d-polynomial of Op, i.e., W(P) = dp,(t).

When the poset P is graded of rank r, the result of [13] shows that the d-vector can
be written as

3(Op) = h(Aeq(P) x0"),

where ¢” is the r-dimensional standard simplex and A, (P) is the equatorial sphere of
P, which will be explained below. Here, the operator * is the simplicial join of simplicial
complexes and h(Aeq(P)*0") represents the h-vector of the simplicial complex Aeq(P)*0".

For a poset P, a P-partition is a function f : P — R such that f(a) > 0 for all @ € P
and f(a) > f(b) for all a < b. When P is a graded poset of rank r, let P%) denote the set
of the elements of P of rank i. We say that a P-partition is equatorial if min,ep f(a) =0
and for every 2 < j < r there exists a;_; < a; with a;_; € PU™Y a; € PY and
flaj—1) = f(aj). An order ideal I of P is equatorial if its characteristic vector x; is
equatorial. A chain of order ideals I C Iy C --- C I is equatorial if x5, + --- + Xy, is
equatorial. The equatorial complex Aqq(P) of P is the simplicial complex whose vertex
set is the equatorial ideals of P and faces are equatorial chains of order ideals of P. The
result of [13] shows that A, (P) is a (polytopal) simplicial sphere and it is called the
equatorial sphere of P. Since the h-vector of a simplicial sphere is palindromic by the
Dehn-Sommerville equations, this implies that the d-vector of Op for a graded poset P is
palindromic followed by r 0’s as follows:

5(0]3) - (h(),hl, ce ,hl,ho,0,0, ce ,0)
N——

r
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The palindromic part (hg, by, ..., hi, ho) = h(Aeq) of 6(Op) corresponds to the equatorial
sphere Aqq(P), so it will make sense to consider the corresponding polynomial as follows.

E;q(k) = fEhr(h'<AeQ>> = fEhr((h‘O? hi, ..., M, ho))

We call this ER'(k) the equatorial Ehrhart polynomial of the graded poset P. In [13],
the equatorial sphere is constructed as a quotient polytope from the order polytope,
that is, as a quotient polytope O%' = Op/V™, where V' is the rank-constant subspace,
the subspace consisting of partition functions that are rank-constant (i.e., f(x) = f(y)
whenever z and y are of the same rank in P). The polynomial E3}(k) corresponds to the
Ehrhart polynomial of this polytope.

Since h(Aeq) is palindromic, the roots of E5'(k) distribute symmetrically with respect

1

to the line Re(z) = —35. It is of our interest for which graded poset P all the roots of

E3'(k) lie on the line Re(z) = —3. We call such E}'(k) to be CL analogously to the

CL-polytopes among reflexive polytopes.

A complete graded poset P, ,,... n, stands for a graded poset of rank r such that the set
PY of the elements of rank i consists of n; elements for every i and a; < a; holds for every
a; € P and a; € PU) with i < j. For complete graded posets, we can easily calculate
the J-polynomials as follows. Since the antichains of P, ,,, ., are subsets X C PO for
some 7, we have
=[0,1]" @ [0,1]? & - [0,1]™.

The d-polynomial of [0,1]" is given by the Eulerian polynomial S, (t) = Z;:Ol <7;> t7,

where <;L> is the Eulerian number, and hence we have

There is another explanation for this. For the complete graded poset P, n, . n,., an
equatorial ideal is a proper subset of P® for some 0 < i < r together with all PU)’s
with j < ¢, hence we observe that Aeq(Pp, ny,..n,) 1S isomorphic to the order complex of
B, \§---4 B,,, where B, is the poset removing the top element from the boolean lattice
of order n (= the ordered set consisting of all the strict subsets of {1,...,n} ordered by
inclusion), and |4 is the operator of the ordinal sum of the posets (i.e., PlH P’ is the
poset over P U P" with an order relation <pyp such that v <pyp v if u,v € P and
u =p v, u,v € P and u <p v, or u € P and v € P’). This shows that the equatorial
sphere of Py, ,... 5, is isomorphic to sd(A,, ) *- - -xsd(A,, ), where sd(A) is the barycentric
subdivision of A. Since the h-polynomial of sd(A,) is given by the Eulerian polynomial
(see, e.g., [12, Sec. 9.2]), we have the same conclusion.

The equatorial Ehrhart polynomial for P,, which is just an antichain with n elements,

can be calculated as follows. Since we have §; = 7;> for 0 <i <n—1, where §(Op,) =
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(09,01, --,0n_1,0), we obtain that

s =3 () (A ) =§<n_7—j> )

Jj=0 J

S (D) v

SO v

Here, the last equality is derived from Worpitzky’s identity (e.g. [6, Sec. 6.2]): 2" =

n—1 .

Z <?> (m * ‘7). This polynomial (k+ 1)" — k™ equals the Ehrhart polynomial of A)_,
n

=0

as shown in [9]. That is, we have Ep! (k) = E,v_ (k). In fact, more strongly, we observe

that the equatorial polytope O‘;}L is unimodularly equivalent to A;/_; as follows.

Proposition 1. O%' = Op, /V' is unimodularly equivalent to Ay_,.

Proof. The subspace V' is the space of rank-constant partitions, and in this case, it is a
one-dimensional space V' = span{zie[n] ei}. Let m be the projection map from Op, to

n—1

OF. . By letting f = Zie[n] e;, for any v € R", we can uniquely write v =) 7" rie; +5sf €
V (r;, s € R), then we have (v) = 31" 7¢;. The vertex set of Op, is {3 ,cqei: S C [n]},
and they are mapped to the following:

() fEen, s
P — Y igs€i ifneS.

From this, we observe that the vertex set of Op' is {£) ., ge; : S C [n — 1]}. Hence

(OF)Y = {xeR”l : <:|:Zel-,a:> <1, SC [n—l]}.

On the one hand, it is easy to see that A,,_; is unimodularly equivalent to
conv({fe; : 1 <i<n—1}U{e;—e; 1 1 <i#j<n—1}).
Since we have

+1 ifjes
Z@i,iej = 1 ]_G " and Zei,ej — €k
0 ifjds,

€S i€S

1 ifjeSkes,

> 1 ifjeSk¢gs,
0 ifjkeSorjkéegls,

we see that A,_; C (Op')Y. On the other hand, let w = (w1, ..., wn_1) € 7! satisfying
that (w,v) < 1 for any v € A, 1. If there is ¢ with |w;| > 2, then [(w,e;)| > 2, a
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contradiction. Thus, w € {0,4+1}""'. Moreover, if there are i and 7 with w; = 1 and

wy = —1, then (w, e; — ey) = 2, a contradiction. Hence, w € {0,1}" ! or w € {0, —1}""1.
This means that w is always of the form w = 3, ¢ e;. This implies that (Op')" C A,_1,
as required. O

Corollary 2. We have

By i ny (k) = EAvl—l@szq@'"@Av (k)

n ne—1

Proof. Since we have dpea (t) = day_ (t) from Proposition 1,

does (t) =00p,, ., (1) =]Is.t)=]] doea (t) =11 Oay (1) = 0ay _ emaay (1)
=1 =1 =1

., = dim An 1 @A, @ @A . 0

,,,,,

The statement follows from dim Oepfil .

By this, the CL-ness of Ep
P AY

ny—1°

.. (k) is equivalent to the CL-ness of Ay _; & Ay, &

,,,,,

Remark 3. The discussion of this section gives that the d-polynomial of AY equals to

day(t) :Xd:<d;1>ti.

=0

\Y% \Y%
3 CL-nessof A’ © A}
For the case of the free sum A} @ A/, we have the following.

Proposition 4. We have
Eayoay (k) = (k+1)" + k",

and A} @ A} is a CL-polytope.

Proof. Since d4y(t) =1+t and day = Y1, <n j L t', we have

)
5i(Ay@Ax):<”jl>+<”“> (0<i<n+1)

1—1

using the convention that <7Z> = (0 when 7 < 0 or ¢ > n. Thus,

Baon(h) = S (G ()

J=0
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" 41\ (n+14+k—j +§ nt1\ m+1+k—j
« J n+1 Jg—1 n+1

Jj=1
n <
=0

I\ [1+k+(n—7) +§ n+1 k4+(n—j+1)
j J n+1 = n—j+1 n+1
n+1\ (1+k+7 ~ /n+1\ (k+3"\ (G =n-j
< J >( n+1 >+Z< J" >(n+1 Jr=n—j+1)

0 j”=0
+ l)n—i—l + kn—&—l‘

I
.
I
S S
I+

I
NE

’

=N

J
= (
Here, the last equality is derived by Worpitzky’s identity.

This polynomial (k + 1)"* + k™! equals the Ehrhart polynomial of the polar dual
Cy., of the classical root polytope of type C and it is shown to be CL in [10]. O

This theorem shows AY @ Ay = (A; x A,)" and C}/ | have the same Ehrhart poly-
nomial, though A; x A, and C,,;; are not unimodularly equivalent since C,,; does not
have the structure of the product of two polytopes.

The CL-ness of AY @AY with small m and n are calculated by computer using Pari/GP.
See appendix for the detail. The results are summarized as shown in Table 1. From the
table, we have the following theorem.

Table 1: CL-ness of A}, ® A with m,n < 20

m \ n |0 1 2 3 4 5 6 T~20 | 221
0 CL | CL | CL CL CL CL CL CL CL
1 CL | CL | CL CL CL CL CL CL CL
2 CL | CL | CL CL CL CL not CL | not CL

3 CL | CL | CL CL CL not CL | not CL | not CL

4 CL | CL | CL CL not CL | not CL | not CL | not CL

5 CL | CL | CL not CL | not CL | not CL | not CL | not CL

6 CL | CL | not CL | not CL | not CL | not CL | not CL | not CL

7~ 20| CL | CL | not CL | not CL | not CL | not CL | not CL | not CL

> 21 CL | CL

Theorem 5. A @& AY is CL if min{m,n} <1 orm+n <T.

It is not yet shown whether all the cases m > 2 and n > 8 (or vice versa) are not
CL, though it is plausible that Theorem 5 is also necessary for AY, @ AY to be CL. By
our computer calculation up to n, m < 20, no other CL parameters are found other than
shown above.
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4 CL-messof A ®A/ ©---D A

In the following theorems, we have families of AY © AY @---@® A/ that are CL. In what
follows, we denote A} ® Ay @ --- @ A as (A))“"™.

g
n

Proposition 6 ([9, Example 3.3]). (AY)®" is CL for any n.

Proof. This AY " is the n-dimensional cross polytope Cr,, and is shown to be CL in [9,
Example 3.3]. O

We can further show that Ay @ (AY)®™ and AY @ (AY)®" are also CL. For these, we
use the following lemma. Here, R is the canonical line Re(z) = —1/2, and two functions
f(x) and g(x) with deg f = deg g+ 1 are R-interlacing if all the zeros of f(x) and g(x) are
on R and they appear alternatingly on R. That is, the zeros of f are —1/2+ 21, —1/2+
20y ...,—1/2 4 z4i and those of g are —1/2 + wyi, —1/2 + wai, ..., —1/2 + wy_14, with
21 <wy < 29 < Wy < vk < wWeo1 < 2Zg, Where d = deg f.

Lemma 7 (]9, Lemma 2.5]). Let fi, fo, and f3 be real monic polynomials such that

deg fi = deg fo + 1 = deg f3 + 2 and fi(z) = fo(x) - (¢ + 3) + Bfs(x) for some § > 0.
Then f; and fs are R-interlacing if and only if fo and f3 are R-interlacing.

Note that, when we use this lemma for three Ehrhart polynomials F;, F5, and Ej3, the
relation in the lemma should be

Ey(k) = aFy(k) - (2k+1)+ (1 — a)E3(k) for some 0 < a < 1.
See [9, Section 3.
Theorem 8. Ay @ (AY)®" is CL for any n.

Proof. We have the following equality:

3 2n +1
- E Vv n+1 k . 2k 1
o+ 4 (A1)®(+)< ) - (2k + )+2n+4

EA¥€B(AY)@"(I€) E(Alv)éBn(k?). (2)

This follows from the relation of the Ehrhart series:

2n+1
2n +4

Ehr(Ai/)éBn (t) .
(3)

The equation (2) is derived by comparing the coefficients of ¢* in (3). The equation (3) can

3 d
EhFAg@(Ay)eBn (t) = on T 1 <2taEhr(A1V)@(n+1> (t) + Ehr(A}/)e)(n+1) (t)) +

. . 2 n n
be verified using Ehr 4y g ay)en (t) = % and Ehr(ayyen(t) = (l(i)ﬂﬂ as follows:
3 d(1+0)™" 140"\ 2n+1 (141)"
RHS of (3) = pd A+ (1+1) ntl (1+9)
2n+4\  dt (1 —¢)n+2 (1 —¢t)nt? 2n +4 (1 —t)nt!
(1+1t)"
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3(1+6)(1—1t) (2n+1)(1—1)?
2n +4 * 2n +4 )
(14 6)™(1 4 4t + t?)

= (1 — t)"+3 = EhI‘A%/@(A¥)€Bn (t)

Since the Ehrhart polynomials of (AY)®™*D and (AY)®" (i.e., the cross polytopes
Crpy1 and Cr,) are R-interlacing as shown in [9, Corollary 5.4], Ay & (AY)®" and
(AY)®(+D) are R-interlacing by Lemma 7. Hence, we conclude that AY @ (AY)®" is
CL.

U
Theorem 9. Ay @ (AY)®" is CL for any n.
Proof. We have the following equality:
Eavounon(k) = — B (k) - 2k + 1)+ — Eapon®). (&)
n+3 1 n+3 1

This equation follows from

3 d n
EhrAg@(AY)GBn (t) = n—_’_3 (2t%Ehr(AlV)®(n+2) (t) + Ehl“(Ai/)@(n-‘-z) (t)> + n——f—i))Ehr(AY)®(n+l) (t)
(5)

as in Theorem 8, and then the statement follows from Lemma 7.
The equation (5) is verified as follows:

3 Qti (1 +t)n+2 N (1 +t)n+2 N n (1 +t>n+1
nt3\ @1 -t (-3 ) T n Al — )2

RHS of (5) =

:Efg; <2tn—3|—3((”+ (1= + (1 +1)(n+3)

N 3(1+t)(1—1¢) N n(l — t)2>

n+3 n+3

(1+ )" (1 + 10t + %) (1+6)™(1+ 11t + 112 + £3)
- (1 —t)m+e - (1—t)nta = Ehrayg(ayjen (t).
O

Remark 10. Other than Proposition 6, Theorems 8 and 9, Ay @ (AY)®" and AY @ (AY)®"
also seem to be CL by computer calculations for small n’s. On the other hand, also from
observation by computer calculation for small n’s, AY, @& (AY)®" is not CL for m > 7 and
n > 2. The behavior of A @ (AY)®" is somewhat strange so that it is CL for odd n’s and
not CL for even n’s.

Remark 11. In the proof of Theorems 8 and 9, the keys are the equations (2) and (4).
Analogously, there are other relations among Ehrhart polynomials of AY’s. We have found
the following equations, though we do not currently find any application.
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2 2n+1

EAg@(Ag)@"(k) == mE(AE/)@(nJrl)(k) . <2k + 1) + 2n+3EAY@(A§/)€Bn(]€)
2 2n+1
Enyoayen (k) = ———=Eayoayjen (k) - (25 +1) + ——=Eayjomy (k)
n
— n+ 3E(AY)€B(7171) (k)
5 5(4n +2)
Eyvaavion (k) = Eivaavyen (k) - (2k + 1 ———Favgavyen(k
ayoayen (k) = 5= Bayo(ayen (k) - (2k + )+3(2n+8) aye(ay)on (k)
14n +1
— ———Favyen(k
3(2n +8) “H)° (k)
3 2n+3
Eayyz2aayen (k) = 5—— n 8EA§®(A1V)®(”+1)(/{7> (k1) 4o - 8EA5@(AY)@"(7€)
2
2
Enyoayjen (k) = ———=Eayeayen (k) - (2k +1)
n+1l/2n+1 n
n+3 ( nt1 (A1V)ea(n+1)(k?) - n+ 1E(A:\l/)@(n—l)(k>>
2n+1 n 2n+1
w1 Dayeen (k) = 2o Bapee—n (k) = mEmn@"(@ 2k +1)
n?
+ (n+ 1 2E(A1/)€B(n71)(k)
)
Eaygayyen (k) = T 8EA3Y@9(A1V)®" (k) - (2k+1)
2n+3 (5(4n + 2) 14n +1
vaavien (k) — ——F n(k
2n + 8 (3(2n+3) ayocyen (k) 3(2n +3) A7 ( )>
5(4n +2) l4n+1
7E Vv Vy@dn k - 7E Vydn k
3(2n + 3) ABADT (k) 3(2n+3) “A° (k)
5(2n+1) (n—1)(2n—-1)
- E Y n+1 k . 2]{3 1 E Vy®n k
(2n + 3)(n+2) A en(k) - (2k+1) + 2n+3)(n+2) W7 (k)
! 15 2
) Earacapen(h) = (2n +8)(n + S)E(Alv)@(n+2)(k) 2R+ 1)
15(n? +3n + 1) (2n—1)(n—1)
E avemsn (k) - (2k+ 1 Eavyon (k
Tt 2t 3 1 1) Deaneren (k) - Gk 1)+ oo ey Eapen (k)
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5 Free sums of Ay’s

In the previous sections, we have studied the root distributions of the Ehrhart polynomials
of the free sums of AY’s. It is also of interest in studying the free sums of other reflexive
polytopes. For example, how about the free sums of the classical root polytopes A;’s?
Note that since A; = AY, the CL-ness and the R-interlacing property for AP" = Cr,, also
hold.

For the root polytope of type A, the Ehrhart polynomial and the J-polynomial known
to be as follows ([2, Theorem 1], [1, Theorem 2]):

-5 (57) g (e

d

We have the following several analogous results.
Theorem 12. A; & A,, is CL for anyn > 1.

Proof. We have the following equality:

1
EAl@An(k) = n+ 1

z14n(k)-(2k:+—1)«+-E73511;An_1(k). (6)

This relation follows from the following relation of the Ehrhart series:

n

EhrAl@An (t) = L (QiEhl"An (t) + EhI“An (t)) + Ehl"An,l(t), (7)

n+1 dt n+1

which is verified as follows. Since we have

S (1) (1+6) ", (M)
Ehr,, = =2~ Ehrg,ga, = = Z),sz ;

T

the equation (7) is equivalent to

A+, ()F 1 (212;;0 ()¢ Ei () tﬂ>+ n i (5 )F

(1 — t)n+2 Con+1\Tdt (1 —t)nt! (1 —t)nt! n+1 (1—tn
and we have

n 2 n 2 n 2

n : 2t n . n .

1+¢ )= 1—t§ 1 t3‘1+2t§ <) 1
(1+9) 0(]) n+1( ) ‘7<J> o \J

- =1

J
1 " /n\2 n i —1\2
1—t E t 1—1¢)? .
+n+1( ) (]) +n+1( ) ,0< J )

Jj=0 Jj=
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By comparing the coefficients of ¢!, what we have to show is
n\’ n \? 2 n\> n \? n \?
= ' —(i—1 2
(2) +(i—1) n+1(z<i) ( )<¢—1) )+ (@'—1)
1 n\ > n \’ n n—1\° n—1\" n—1\°
_ -2
cr() e () (o) () e
where (?) is assumed to be 0 when ¢ < 0 or ¢ > n. This is verified by
n 2+ n 2_ n 2+ i2 n 2_n2—2m+2n+2i2—2i—|—1 n\?
i i—1)  \i (n—i+1)2\i) (n—i+1)2 i
and
ris of 8) (") —G-n(." Ve ") (") ("))
0 = i — (i — —
n+1"\1 i—1 i—1 n—+1"\i 1—1
L ((n—i)2 n\> 2(n—i+1)2 n 2+(i—1)2 n 2)
n+1" n? ) n? i—1 n? i—1
-’ 4n i n2+2m’—n—i2+2i—1 n \?
onn+1) \i n(n+1) i—1

n?—2in+2n+22 —2i+1(n)\’
B (n—1i+1)2 '

i
Since the Ehrhart polynomials of A4, and A,_; are R-interlacing as shown in [9], the
statement follows from Lemma 7 and (6). O

Proposition 13. A, ® AY" are CL for any n > 1.

Proof. This follows from Theorem 8, since we have E4, (k) = Eay(k) and Eq,(k) =
Eay (k). ]

Theorem 14. A3 & A" is CL for anyn > 1.

Proof. We have the following relation:

5 2n+1

EA;;EBA?"UC) = mECrnJrz(k) ' (Qk + 1) + mECrnH(k)' (9)

This follows from the relation of the Ehrhart series:

) d 2n+1
EhrA3€BA?n = m (2t%EhrCrn+2 (t) -+ E)hrcrn_’_2 (t)) —+ mEhrCrn_H (t) (10)
The equation (9) is derived by comparing the coefficients of ¢* in (10). The equation (10)
can be verified using Ehr ¢ 4en (t) = (1+9t+(ft_2t;rﬁ)4(l+t)n and Ehre, (t) = (1(1;211 as follows:
5 d (1+t)"2  (1+¢)"* 2n+1 (1 +4¢)"*!
RHS of (10) = d A (L+0) ntl {1+
2(n+3)\ dt(1—t)»*+3 (1 —¢)n+3 2(n+3) (1 —t)nt?
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_ (e <2t2(n5+3)((n+2)(1+t)(1—t)+(1+t)2(n+3))

(1 —¢)ntd
5(1 —t)(1 +¢)? (2n+1)(1+t)(1—t)2)
2(n+3) 2(n+3)

(14 6)™(1 + 9t + 9t% + %)

The R-interlacing property follows from Lemma 7, since the Ehrhart polynomials of
the cross polytopes Cr,,; and Cr, are R-interlacing. O

Table 2 shows the CL-ness of A,, ® A,, calculated by computer using Pari/GP. Com-
paring with that of AY @& AY, the behavior is somewhat complex. (Here, “C” means CL,
and “n” means not CL.) Similar to the case of A,, ® A,, it is CL for small m and n. On
the other hand, the behavior looks different when m and n are large. Those around the
diagonal tend to be CL and it is plausible that A, & A, are CL for all n, for example,
but we currently do not have any proof. By a computation using Pari/GP, A, & A, and
A, ® A, 1 are CL for all n up to 100, while A,, & A,, 2 are CL up to n = 54 but are not
CL from n = 55 up to 100.

Table 2: CL-ness of A, ® A,, with m,n < 20

3
El
—_
o
—
—
[
[N}
—
w
—
S
—
ot
[
()
—
oo
[
Ne)

OO | N[O =W~ O

—_
—_

—_
[\

—
w

—_
=

—_
(@3

—
(=]

—
EN|

—
e 2]

—
Ne]

BIE|R B |RIE P |QOQ|QQ|QQ|a|Q|a|Qla|ala|al»
Qe |B B BB |IB B BB B |IB|IOQOQIOQIOIQIOQIOIQ|w
SR QlaQQlaQlR B R BE B R |QIQlalaa|lalalalal-
BB R B |QIQIOQ|R |B|R (B P |QlQQaQ|Qla|ala|lale
QB |P B |QlQIQ|R B R (P |QQ|lajQla|ala|ala|lale
B lQlR P |QQIQ|R B R |QlajQ|lajala|ala|lala|lalY
SR BB QQlQ|R P |QlQlalQlalala|alalalalal®e
SR B lQIQQ|R B P |QlQlalQlalalB B R |Qlalal®e
QI P QlaQlQIQ|Q|R |F B |QjQlajQla|Ql= [P |a|la
BlElQQIQQIQ|R B |aQlalajalalalalal=E |BP|ala
PlalQaQ|QiR B 1QQQ|Q|P |B PR QR P Qg
QQQBBQQBEEESUSQSSQSQQB

=)
QlajQlalajalalalalaialala|alalalalajalalale
Qaa|alalajajala|ala|lalalala|ala|ajajalal-
BB P |QIQIR|P P |QlQlQ|laQlaaQlR PR P Q|lQlQ
BlR QIR [P lQlalalalalalr BB |R R |alala
BlQlaQlalr [P |QlalalalalR (R IR|R|IFP R |IPIQIQIQ
slalals = lalalalalalesl=l=l=|=|8l2 2 alala
QAR [P QlaQlaQlalalr [P Ir|alalalalR R |R|ala
Qlajalalal” |BP||alalalR |R PP |R|IPIOQIF P |QIQ
alalalals s lalalalslsl=l=lals|slel=s=2|ala

DO
ja)
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Appendix: Some results by computer calculation

As mentioned in Section 3, we investigated the CL-ness for A, @& AY with m,n > 2 by
computer calculations. The d-vectors, Ehrhart polynomials, and the CL-ness are listed
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in Table 3. The computation is done by using Pari/GP. The results are summarized in
Theorem 5.

We also calculated the case of the free sums of three or four A’s with small parameters
(up to 20) by using Pari/GP. For the case of the free sums of three AY, our computer
calculations are as follows.

Al AY® AY . CLforn=1,...,5 not CL for n =6,...,20

Al @ Ay AY - CLforn=2,...,4, not CL forn =5,...,20
AV Ay ® A)Y . CL for n = 3,4, not CL forn =5,...,20

AY @ A) @ A : not CL for n = 4, CL for n = 5, not CL for n =6,...,20
Ay & Ay & A : CL for n=2,3, not CL for n =4,...,20

Ay AYy® AY . CLforn=3,...,6,not CL forn=7,...,20

Other parameters (each from 1 to 20) not listed here are not CL, up to permutation of
the parameters.

Similarly to the case of two parameters, roughly speaking, we can observe that CL-ness
hods for small parameters and CL-ness does not hold for large parameters. However, the
boundary is sometimes complexified such that the CL/nonCL is not monotone: Ay ® A} ®
AY is CL for small n < 3, not CL for n = 4, CL for n = 5, and not CL for n =6, ..., 20.
The same can be observed for AY @& AY, @ AY. Tt is not CL for m = 2,3, CL for m = 4,
and not CL for m > 5.

For the case of four A}’s, our computer calculations are shown as follows.

AV @ Ay @ AY @ A : CL for n =1,...,4, not CL for n = 5, CL for n = 6, not CL for
n="7,...,20

Al Al Ay AY . CLforn=2,...,5 not CL for n =6,...,20
Ao Ao Ay A : CLforn=3,...,5 not CL forn =6,...,20
Ao A ® A ® A : CL for n =4, not CL for n =5,...,20

Ao Ao AY® A : CLforn=2,...,6,not CL forn=7,...,20
Ao Ay Ay AY . CLforn=3,...,5 not CL for n =6,...,20

A @ AY @ A] @ A} : CL for n = 4, not CL for n = 5, CL for n = 6, not CL for
n="71,...,20

Al Ay ® AY ® A) : not CL for n = 3, CL for n = 4, not CL for n =5,...,20

A ® Ay ® A) @ A) : not CL for n = 4, CL for n = 5, not CL for n =6,...,20

Ay Ay @AY @ A - CL for n = 3, not CL for n =4,...,20

Ay @ Ay @ AY ® A : not CL for n = 3, CL for n =4, not CL for n =5,...,20

Other parameters (each from 1 to 20) not listed here are not CL, up to permutation of
the parameters.
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Table 3: d-vectors, Ehrhart polynomials, and CL-ness of AY & AY with 2 < m,n <7

min| §(Ay, ©AY), Eayeay(k)
(1 8 18,8 1)
212 2x +3x+ 243z +1 CL
(1 15,56,56,15,1)
213 5x +3x4+6m3+6x2+15—9x+1 CL
o | 4| (L30,171,316,171,30,1) oL
20 +32° + Lot + 1023 + Pa? + 50+ 1
o | 5| (1,61,531,1567,1567,531,61,1) oL
Sx7 + 325 4 92° + 152 4 192° + 1522 4+ B + 1
not
5 16 1 124 1672,7300,12046,7300,1672,124,1
328 + 327 +21m6+21x +1334+35x + B2t +Tr+1 CL
not
N 1 ,251,5282,33038,82388,82388,33038,5282,251,1
% + 328 + 1227 + 282° +2665+70x +1723+28x + 38z +1 CL
(1,22,143,244,143,22,1)
3|3 %w —|—12 5+6x + 8z +36:c2+ Tr+1 CL
3 | 4| (1,37,363,1039,1039,363,37,1) oL
227 + 225 + 62° + 102 + 122° + 927 + o + 1
3 | 5] (1,68,940,4252,6758,4252,940,68,1) not
328 +127+6x +122° + 18z* + 182° + Pa? + Hx + 1 CL
3 |g| (131, 2522 16838,40988,40988,16838,2522,131,1) not
127 4 328 4 627 + 142° +126x5+634+95 342207+ P +1 CL
] ) ) ) ) ) ) not
3 |7] (1,258, 7021 ,65560,234898,352204,234898,65560,7021,258,1
1451:10+ 9+ 628 + 1627 + 1820 4 225 4 18054 4 10,3 4 13402 4 3y 4 CL
4 | 4| (1,52.808,3484,5710,3484,808,52,1) not
Za® + 2027 4 525 4 1025 4 1504 4 152° 4+ 138522 + By +1 CL
4 | 5| (1,83,1850,11942,29324,29324,11942,1850,83,1) not
2o + 1828 + 3027 4 1026 + 182° + Pt + 4223 4+ 82 4 By 41 CL
AP (1,146,4377 41328,145734,221628,145734,41328,4377,146,1) not
gz'0+ 2z +145x8+10$ + 2125 + $a 5+%x4+%x3+3—;m2+9x+1 CL
4 | 7| (1,273,10781,143565,711474,1553106,1553106,711474,143565,10781,273,1) not
32" + 3 210 1 5 29 + 1025 + 2407 + 4205 + a0 + 180" + 102% + 352 + a4+ 1 CL
, , not
5|5 | (1114 3853 35032 125746,188908,125746,35032 3853 114,1
%x10+ +45x8+60$7+18$ +27$ +41245.I'4+ 170w3+7721.2+ $+1 CL
5 || (1,177,8333,106845,534882,1164162,1164162,534882,106845,8333,177,1) not
11_11.11_'_1 10+5$9+15 8+181‘+63 6+855 85 4+28(E +11$+ .’E—|—1 CL
s || (1304, 18674 335216,2277039,6922080,9923772, 6922080 2277039,335216, 18674 304,1) not
22+ 4 :1711 2010 4 D29 +182% + 3627 + 11025 4 682° + 552 + B2 82 2%+ 28% + 282 +1 | CL
6 6] (1,240, 16782 290672, 2000703 6040992,8702820,6040992,2000703,290672, 16782 240,1) not
éx12+ x11+7x10+35x9+63 8+63 7+595:L'6—|— 119 5-1—5693 +119 3+63 2 119.’E+1 CL
(1 367,35124,827372,7600805,31146987,61995744, 61995744 31146987,7600805,827372,35124,36T,1)|
617 429 13_~_33 12+14 11+14 10 1 1449 +63 s+170 7+238z6+441 5+455 4+357 3 IéOL
a2 - Uy
(1,494,69595 2151980,26176873,141829106,380179131,524888040,380179131,141829106,26176873,
2151980, 69595 494,1) not
T\ im14 + 1‘13 + 28 12 + 112 112 11 + 56 10 + 281' + 170 8 + &x’? + 17361.6 + 17361.5 + 1260 4 CL
_4,’_%1)120 3 _ d?%g4m2 6%215g6m + 1
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