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Abstract

In this paper, we study the root distributions of Ehrhart polynomials of free sums
of certain reflexive polytopes. We investigate cases where the roots of the Ehrhart
polynomials of the free sums of A∨

d ’s or Ad’s lie on the canonical line Re(z) = −1
2 on

the complex plane C, where Ad denotes the root polytope of type A of dimension
d and A∨

d denotes its polar dual. For example, it is proved that A∨
m ⊕ A∨

n with
min{m,n} ! 1 or m+ n ! 7, A∨

2 ⊕ (A∨
1 )

⊕n and A∨
3 ⊕ (A∨

1 )
⊕n for any n satisfy this

property. We also perform computational experiments for other types of free sums
of A∨

n ’s or An’s.
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1 Introduction

A polytope Q ⊆ Rd is called integral if all the vertices are on Zd. For an integral polytope
Q ⊂ Rd of dimension d and a positive integer k, EQ(k) = #(kQ ∩ Zd) is known to be
a polynomial of degree d, where kQ = {kx : x ∈ Q}. This polynomial is called the
Ehrhart polynomial of Q. Its generating function EhrQ(t), called the Ehrhart series, can
be written as

EhrQ(t) =
∞!

k=0

EQ(k)t
k =

δ0 + δ1t+ · · ·+ δdt
d

(1− t)d+1
,

where the numerator is the δ-polynomial of Q, denoted by δQ(t), and the sequence of
the coefficients δ(Q) = (δ0, δ1, . . . , δd) is the δ-vector of Q. (They are also known as
h∗-polynomial and h∗-vector, respectively.) The δ-vector fully encodes the Ehrhart poly-
nomial and EQ(k) can be recovered from δ(Q) as follows:

EQ(k) =
d!

j=0

δj

"
d+ k − j

d

#
=: fEhr(δ(Q)).

We refer the reader to [4] for the introduction to the Ehrhart polynomials and δ-
polynomials of integral polytopes.

For a polytope Q ⊂ Rd, the polar dual of Q is defined by

Q∨ = {x ∈ Rd : 〈x, y〉 ! −1 for any y ∈ Q},

where 〈·, ·〉 denotes the usual inner product of Rd. Note that (Q∨)∨ = Q holds for
polytopes containing the origin. An integral polytope containing the origin in its interior
is reflexive if its polar dual is also an integral polytope ([3, 8]). Note that if Q is reflexive,
then so is Q∨. It is known that an integral polytope is reflexive if and only if its δ-
vector is palindromic, and correspondingly, the roots of the Ehrhart polynomial distribute
symmetrically with respect to the line Re(z) = −1

2
on the complex plane C. (See, e.g., [9,

Proposition 2.1].) Naturally, it is of interest when the roots of the Ehrhart polynomials
all lie on the line Re(z) = −1

2
. Such reflexive polytopes are called “CL-polytopes” ([7])

and studied in several papers (e.g. [7, 9, 10, 11]). (In what follows, we call a reflexive
polytope CL if it is a CL-polytope.)

For two integral polytopes Q1 ⊂ RdimQ1 and Q2 ⊂ RdimQ2 , both containing the origins,
the free sum Q1 ⊕Q2 is defined by

Q1 ⊕Q2 = conv((Q1 × 0Q2) ∪ (0Q1 ×Q2)) ⊂ RdimQ1 × RdimQ2 ,

where 0Q1 and 0Q2 are the origins of RdimQ1 and RdimQ2 , respectively. The operation of
the free sum has importance since it is the polar dual of the Cartesian product in such a
way that

(Q1 ×Q2)
∨ = Q∨

1 ⊕Q∨
2 .

Note that Q1 ⊕Q2 is reflexive if and only if both Q1 and Q2 are reflexive.

the electronic journal of combinatorics 29(3) (2022), #P3.26 2



The δ-polynomial of the free sum has the following simple formula [5]:

δQ1⊕Q2(t) = δQ1(t)δQ2(t). (1)

On the other hand, the Ehrhart polynomial of Q1 ⊕Q2 can be given (see [5, 16]) but not
so simple, and the root distribution of the Ehrhart polynomial of Q1 ⊕ Q2 is not clear.
Especially, as we will see later, Q1 ⊕Q2 is not always CL even if both Q1 and Q2 are CL.
In this paper, we are interested in when Q1 ⊕ Q2 becomes CL for CL polytopes Q1 and
Q2.

A typical example of CL-polytopes is the following special case. For a reflexive poly-
tope Q, when all the roots z of the δ-polynomial of Q satisfy |z| = 1, it follows from [14]
that all the roots of the Ehrhart polynomial of Q are on the line Re(z) = −1

2
, i.e., Q is

CL. For example, the following polytopes can be shown to be CL by this reasoning:

• A cross polytope Crd = conv({e1, . . . , ed,−e1, . . . ,−ed}), where δCrd(t) = (1 + t)d.

• A simplex Td = conv({e1, . . . , ed,−(e1 + · · ·+ ed)}), where δTd
(t) = 1 + t+ · · ·+ td.

Here, ei denotes the i-th unit vector of Rd. If Qi’s are such polytopes, then we have
Q1 ⊕ · · · ⊕ Qn is CL since the roots of the δ-polynomial of Q1 ⊕ · · · ⊕ Qn also satisfy
|z| = 1 by (1). (Notice that Crd is unimodularly equivalent to T1 ⊕ · · ·⊕ T1$ %& '

d

.)

In this paper, we mainly discuss the caseQi’s are the dual of the classical root polytopes
of type A. Here, the classical root polytope of type A is defined as

Ad = conv({±(ei + · · ·+ ej) : 1 " i " j " d}),

and we consider its dual A∨
d . The Ehrhart polynomial of A∨

d is known to be

EA∨
d
(k) = (k + 1)d+1 − kd+1

in [9, Lemma 5.3]. Reflexive polytopes Ad and A∨
d are shown to be CL in [9], but we

see the roots z of their δ-polynomials do not satisfy |z| = 1. The reason we consider
this free sum of A∨

d ’s is that it appears as the equatorial spheres of the complete graded
posets. This will be discussed in Section 2. After that, we investigate the CL-ness of
A∨

p1
⊕ A∨

p2
⊕ · · ·⊕ A∨

pk
in the following sections.

We collect the results which show the CL-ness for the free sums of A∨
d ’s or Ad’s in

what follows:

• A∨
m ⊕ A∨

n with min{m,n} " 1 or m+ n " 7 (Theorem 5);

• A∨
m ⊕ (A∨

1 )
⊕n for any n ! 1 with m = 1, 2, 3 (Proposition 6, Theorems 8 and 9);

• A1 ⊕ An for any n ! 1 (Theorem 12);

• Am ⊕ A⊕n
1 for any n ! 1 with m = 1, 2, 3 (Proposition 13 and Theorem 14).

We also perform other types of free sums of A∨
n ’s or An’s and describe the computational

results.
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2 Ehrhart polynomials of equatorial spheres of graded posets

Let (P,≼) be a finite partially ordered set, or a poset, with |P | = d. The order polytope
OP of P is given by

OP = {x ∈ [0, 1]d : xa " xb for b ≺ a (a, b ∈ P ) },

where the coordinates of Rd are indexed by the elements of P . This is an integral polytope
whose vertices correspond to the order ideals of P ([15]).

As another polytope arising from posets closely related to the order polytope, the
chain polytope of P is defined by

CP = {x ∈ Rd : xa ! 0 (a ∈ P ), xa1 + · · ·+ xak " 1 for a1 ≺ · · · ≺ ak (ai ∈ P ) }.

This is an integral polytope whose vertices correspond to the antichains of P , and it is
shown in [15] that the Ehrhart polynomials of OP and CP coincide: EOP

(k) = ECP
(k),

so we also have δOP
(t) = δCP

(t).

For the poset P on [n] = {1, 2, . . . , n}, the P -Eulerian polynomial is

W (P ) =
!

π∈L(P )

xdes(π)+1,

where L(P ) is the set of all linear extensions of P and des(π) is the size of the descent
set of w with respect to P . That is, L(P ) is the set of permutations w = (w1, w2, . . . , wn)
of [n] such that wi ≺ wj implies i < j, and des(w) = #{i ∈ [n − 1] : wi > wi+1}. This
polynomial is equal to the δ-polynomial of OP , i.e., W (P ) = δOP

(t).
When the poset P is graded of rank r, the result of [13] shows that the δ-vector can

be written as
δ(OP ) = h(∆eq(P ) ∗ σr),

where σr is the r-dimensional standard simplex and ∆eq(P ) is the equatorial sphere of
P , which will be explained below. Here, the operator ∗ is the simplicial join of simplicial
complexes and h(∆eq(P )∗σr) represents the h-vector of the simplicial complex∆eq(P )∗σr.

For a poset P , a P -partition is a function f : P → R such that f(a) ! 0 for all a ∈ P
and f(a) ! f(b) for all a ≺ b. When P is a graded poset of rank r, let P (i) denote the set
of the elements of P of rank i. We say that a P -partition is equatorial if mina∈P f(a) = 0
and for every 2 " j " r there exists aj−1 ≺ aj with aj−1 ∈ P (j−1), aj ∈ P (j) and
f(aj−1) = f(aj). An order ideal I of P is equatorial if its characteristic vector χI is
equatorial. A chain of order ideals I1 ⊂ I2 ⊂ · · · ⊂ It is equatorial if χIi + · · · + χIt is
equatorial. The equatorial complex ∆eq(P ) of P is the simplicial complex whose vertex
set is the equatorial ideals of P and faces are equatorial chains of order ideals of P . The
result of [13] shows that ∆eq(P ) is a (polytopal) simplicial sphere and it is called the
equatorial sphere of P . Since the h-vector of a simplicial sphere is palindromic by the
Dehn-Sommerville equations, this implies that the δ-vector of OP for a graded poset P is
palindromic followed by r 0’s as follows:

δ(OP ) = (h0, h1, . . . , h1, h0, 0, 0, . . . , 0$ %& '
r

).
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The palindromic part (h0, h1, . . . , h1, h0) = h(∆eq) of δ(OP ) corresponds to the equatorial
sphere ∆eq(P ), so it will make sense to consider the corresponding polynomial as follows.

Eeq
P (k) = fEhr(h(∆eq)) = fEhr((h0, h1, . . . , h1, h0)).

We call this Eeq
P (k) the equatorial Ehrhart polynomial of the graded poset P . In [13],

the equatorial sphere is constructed as a quotient polytope from the order polytope,
that is, as a quotient polytope Oeq

P = OP/V
rc, where V rc is the rank-constant subspace,

the subspace consisting of partition functions that are rank-constant (i.e., f(x) = f(y)
whenever x and y are of the same rank in P ). The polynomial Eeq

P (k) corresponds to the
Ehrhart polynomial of this polytope.

Since h(∆eq) is palindromic, the roots of Eeq
P (k) distribute symmetrically with respect

to the line Re(z) = −1
2
. It is of our interest for which graded poset P all the roots of

Eeq
P (k) lie on the line Re(z) = −1

2
. We call such Eeq

P (k) to be CL analogously to the
CL-polytopes among reflexive polytopes.

A complete graded poset Pn1,n2,...,nr stands for a graded poset of rank r such that the set
P (i) of the elements of rank i consists of ni elements for every i and ai ≺ aj holds for every
ai ∈ P (i) and aj ∈ P (j) with i < j. For complete graded posets, we can easily calculate
the δ-polynomials as follows. Since the antichains of Pn1,n2,...,nr are subsets X ⊂ P (i) for
some i, we have

CPn1,n2,...,nr
= [0, 1]n1 ⊕ [0, 1]n2 ⊕ · · ·⊕ [0, 1]nr .

The δ-polynomial of [0, 1]n is given by the Eulerian polynomial Sn(t) =
(n−1

j=0

)
n
j

*
tj,

where

)
n
j

*
is the Eulerian number, and hence we have

δOPn1,n2,...,nr
(t) = δCPn1,n2,...,nr

(t) =
r+

i=1

Sni
(t).

There is another explanation for this. For the complete graded poset Pn1,n2,...,nr , an
equatorial ideal is a proper subset of P (i) for some 0 " i " r together with all P (j)’s
with j < i, hence we observe that ∆eq(Pn1,n2,...,nr) is isomorphic to the order complex of
B̌n1

,
· · ·

,
B̌nr , where B̌n is the poset removing the top element from the boolean lattice

of order n (= the ordered set consisting of all the strict subsets of {1, . . . , n} ordered by
inclusion), and

,
is the operator of the ordinal sum of the posets (i.e., P

,
P ′ is the

poset over P ∪ P ′ with an order relation ≼P
!

P ′ such that u ≼P
!

P ′ v if u, v ∈ P and
u ≼P v, u, v ∈ P ′ and u ≼P ′ v, or u ∈ P and v ∈ P ′). This shows that the equatorial
sphere of Pn1,n2,...,nr is isomorphic to sd(∆n1)∗· · ·∗sd(∆nr), where sd(∆) is the barycentric
subdivision of ∆. Since the h-polynomial of sd(∆n) is given by the Eulerian polynomial
(see, e.g., [12, Sec. 9.2]), we have the same conclusion.

The equatorial Ehrhart polynomial for Pn, which is just an antichain with n elements,

can be calculated as follows. Since we have δi =

)
n
i

*
for 0 " i " n− 1, where δ(OPn) =
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(δ0, δ1, . . . , δn−1, 0), we obtain that

Eeq
Pn
(k) =

n−1!

j=0

)
n
j

*"
n− 1 + k − j

n− 1

#
=

n−1!

j=0

)
n

n− 1− j

*"
k + (n− 1− j)

n− 1

#

=
n−1!

j′=0

)
n
j′

*"
k + j′

n− 1

#
(j′ = n− 1− j)

=
n−1!

j′=0

)
n
j′

*""
k + j′ + 1

n

#
−

"
k + j′

n

##
= (k + 1)n − kn.

Here, the last equality is derived from Worpitzky’s identity (e.g. [6, Sec. 6.2]): xn =
n−1!

j=0

)
n
j

*"
x+ j

n

#
. This polynomial (k+1)n − kn equals the Ehrhart polynomial of A∨

n−1

as shown in [9]. That is, we have Eeq
Pn
(k) = EA∨

n−1
(k). In fact, more strongly, we observe

that the equatorial polytope Oeq
Pn

is unimodularly equivalent to A∨
n−1 as follows.

Proposition 1. Oeq
Pn

= OPn/V
rc is unimodularly equivalent to A∨

n−1.

Proof. The subspace V rc is the space of rank-constant partitions, and in this case, it is a
one-dimensional space V rc = span{

(
i∈[n] ei}. Let π be the projection map from OPn to

Oeq
Pn
. By letting f =

(
i∈[n] ei, for any v ∈ Rn, we can uniquely write v =

(n−1
i=1 riei+sf ∈

V (ri, s ∈ R), then we have π(v) =
(n−1

i=1 riei. The vertex set of OPn is {
(

i∈S ei : S ⊆ [n]},
and they are mapped to the following:

π

-
!

i∈S

ei

.
=

/(
i∈S ei if n ∕∈ S,

−
(

i ∕∈S ei if n ∈ S.

From this, we observe that the vertex set of Oeq
Pn

is {±
(

i∈S ei : S ⊆ [n− 1]}. Hence

(Oeq
Pn
)∨ =

/
x ∈ Rn−1 :

0
±
!

i∈S

ei, x

1
" 1, S ⊆ [n− 1]

2
.

On the one hand, it is easy to see that An−1 is unimodularly equivalent to

conv({±ei : 1 " i " n− 1} ∪ {ei − ej : 1 " i ∕= j " n− 1}).

Since we have

0
!

i∈S

ei,±ej

1
=

/
±1 if j ∈ S,

0 if j ∕∈ S,
and

0
!

i∈S

ei, ej − ek

1
=

3
45

46

1 if j ∈ S, k ∕∈ S,

−1 if j ∕∈ S, k ∈ S,

0 if j, k ∈ S or j, k ∕∈ S,

we see that An−1 ⊆ (Oeq
Pn
)∨. On the other hand, let w = (w1, . . . , wn−1) ∈ Zn−1 satisfying

that 〈w, v〉 " 1 for any v ∈ An−1. If there is i with |wi| ! 2, then |〈w, ei〉| ! 2, a
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contradiction. Thus, w ∈ {0,±1}n−1. Moreover, if there are i and i′ with wi = 1 and
wi′ = −1, then 〈w, ei− ei′〉 = 2, a contradiction. Hence, w ∈ {0, 1}n−1 or w ∈ {0,−1}n−1.
This means that w is always of the form w = ±

(
i∈S ei. This implies that (Oeq

Pn
)∨ ⊂ An−1,

as required.

Corollary 2. We have

Eeq
Pn1,n2,...,nr

(k) = EA∨
n1−1⊕A∨

n2−1⊕···⊕A∨
nr−1

(k).

Proof. Since we have δOeq
Pn
(t) = δA∨

n−1
(t) from Proposition 1,

δOeq
Pn1,n2,...,nr

(t) = δOPn1,n2,...,nr
(t) =

r+

i=1

Sni
(t)=

r+

i=1

δOeq
Pni

(t)=
r+

i=1

δA∨
ni−1

(t) = δA∨
n1−1⊕···⊕A∨

nr−1
(t).

The statement follows from dimOeq
Pn1,n2,...,nr

= dimA∨
n1−1 ⊕ A∨

n2−1 ⊕ · · ·⊕ A∨
nr−1.

By this, the CL-ness of Eeq
Pn1,n2,...,nr

(k) is equivalent to the CL-ness of A∨
n1−1 ⊕A∨

n2−1 ⊕
· · ·⊕ A∨

nr−1.

Remark 3. The discussion of this section gives that the δ-polynomial of A∨
d equals to

δA∨
d
(t) =

d!

j=0

)
d+ 1
j

*
tj .

3 CL-ness of A∨
m ⊕ A∨

n

For the case of the free sum A∨
1 ⊕ A∨

n , we have the following.

Proposition 4. We have

EA∨
1 ⊕A∨

n
(k) = (k + 1)n + kn,

and A∨
1 ⊕ A∨

n is a CL-polytope.

Proof. Since δA∨
1
(t) = 1 + t and δA∨

n
=

(n
i=1

)
n+ 1
i

*
ti, we have

δi(A
∨
1 ⊕ A∨

n) =

)
n+ 1
i

*
+

)
n+ 1
i− 1

*
(0 " i " n+ 1)

using the convention that

)
n
i

*
= 0 when i < 0 or i ! n. Thus,

EA∨
1 ⊕A∨

n
(k) =

n+1!

j=0

")
n+ 1
j

*
+

)
n+ 1
j − 1

*#"
n+ 1 + k − j

n+ 1

#
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=
n!

j=0

)
n+ 1
j

*"
n+ 1 + k − j

n+ 1

#
+

n+1!

j=1

)
n+ 1
j − 1

*"
n+ 1 + k − j

n+ 1

#

=
n!

j=0

)
n+ 1
n− j

*"
1 + k + (n− j)

n+ 1

#
+

n+1!

j=1

)
n+ 1

n− j + 1

*"
k + (n− j + 1)

n+ 1

#

=
n!

j′=0

)
n+ 1
j′

*"
1 + k + j′

n+ 1

#
+

n!

j′′=0

)
n+ 1
j′′

*"
k + j′′

n+ 1

#
(j′ = n− j,
j′′ = n− j + 1)

= (k + 1)n+1 + kn+1.

Here, the last equality is derived by Worpitzky’s identity.
This polynomial (k + 1)n+1 + kn+1 equals the Ehrhart polynomial of the polar dual

C∨
n+1 of the classical root polytope of type C and it is shown to be CL in [10].

This theorem shows A∨
1 ⊕ A∨

n = (A1 × An)
∨ and C∨

n+1 have the same Ehrhart poly-
nomial, though A1 × An and Cn+1 are not unimodularly equivalent since Cn+1 does not
have the structure of the product of two polytopes.

The CL-ness of A∨
m⊕A∨

n with smallm and n are calculated by computer using Pari/GP.
See appendix for the detail. The results are summarized as shown in Table 1. From the
table, we have the following theorem.

Table 1: CL-ness of A∨
m ⊕ A∨

n with m,n " 20

m \ n 0 1 2 3 4 5 6 7 ∼ 20 ! 21
0 CL CL CL CL CL CL CL CL CL
1 CL CL CL CL CL CL CL CL CL
2 CL CL CL CL CL CL not CL not CL
3 CL CL CL CL CL not CL not CL not CL
4 CL CL CL CL not CL not CL not CL not CL
5 CL CL CL not CL not CL not CL not CL not CL
6 CL CL not CL not CL not CL not CL not CL not CL
7 ∼ 20 CL CL not CL not CL not CL not CL not CL not CL
! 21 CL CL

Theorem 5. A∨
m ⊕ A∨

n is CL if min{m,n} " 1 or m+ n " 7.

It is not yet shown whether all the cases m ! 2 and n ! 8 (or vice versa) are not
CL, though it is plausible that Theorem 5 is also necessary for A∨

m ⊕ A∨
n to be CL. By

our computer calculation up to n,m " 20, no other CL parameters are found other than
shown above.
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4 CL-ness of A∨
n1

⊕ A∨
n2

⊕ · · · ⊕ A∨
nr

In the following theorems, we have families of A∨
p1
⊕A∨

p2
⊕ · · ·⊕A∨

pr that are CL. In what
follows, we denote A∨

p ⊕ A∨
p ⊕ · · ·⊕ A∨

p$ %& '
n

as (A∨
p )

⊕n.

Proposition 6 ([9, Example 3.3]). (A∨
1 )

⊕n is CL for any n.

Proof. This A∨
1

⊕n is the n-dimensional cross polytope Crn, and is shown to be CL in [9,
Example 3.3].

We can further show that A∨
2 ⊕ (A∨

1 )
⊕n and A∨

3 ⊕ (A∨
1 )

⊕n are also CL. For these, we
use the following lemma. Here, R is the canonical line Re(z) = −1/2, and two functions
f(x) and g(x) with deg f = deg g+1 are R-interlacing if all the zeros of f(x) and g(x) are
on R and they appear alternatingly on R. That is, the zeros of f are −1/2 + z1i,−1/2 +
z2i, . . . ,−1/2 + zdi and those of g are −1/2 + w1i,−1/2 + w2i, . . . ,−1/2 + wd−1i, with
z1 < w1 < z2 < w2 < · · · < wd−1 < zd, where d = deg f .

Lemma 7 ([9, Lemma 2.5]). Let f1, f2, and f3 be real monic polynomials such that
deg f1 = deg f2 + 1 = deg f3 + 2 and f1(x) = f2(x) · (x + 1

2
) + βf3(x) for some β > 0.

Then f1 and f2 are R-interlacing if and only if f2 and f3 are R-interlacing.

Note that, when we use this lemma for three Ehrhart polynomials E1, E2, and E3, the
relation in the lemma should be

E1(k) = αE2(k) · (2k + 1) + (1− α)E3(k) for some 0 " α " 1.

See [9, Section 3].

Theorem 8. A∨
2 ⊕ (A∨

1 )
⊕n is CL for any n.

Proof. We have the following equality:

EA∨
2 ⊕(A∨

1 )
⊕n(k) =

3

2n+ 4
E(A∨

1 )
⊕(n+1)(k) · (2k + 1) +

2n+ 1

2n+ 4
E(A∨

1 )
⊕n(k). (2)

This follows from the relation of the Ehrhart series:

EhrA∨
2 ⊕(A∨

1 )
⊕n(t) =

3

2n+ 4

"
2t

d

dt
Ehr(A∨

1 )
⊕(n+1)(t) + Ehr(A∨

1 )
⊕(n+1)(t)

#
+
2n+ 1

2n+ 4
Ehr(A∨

1 )
⊕n(t).

(3)
The equation (2) is derived by comparing the coefficients of tk in (3). The equation (3) can

be verified using EhrA∨
2 ⊕(A∨

1 )
⊕n(t) = (1+4t+t2)(t+1)n

(1−t)n+3 and Ehr(A∨
1 )

⊕n(t) = (1+t)n

(1−t)n+1 as follows:

RHS of (3) =
3

2n+ 4

"
2t

d

dt

(1 + t)n+1

(1− t)n+2
+

(1 + t)n+1

(1− t)n+2

#
+

2n+ 1

2n+ 4

(1 + t)n

(1− t)n+1

=
(1 + t)n

(1− t)n+3

"
2t

3

2n+ 4

7
(n+ 1)(1− t) + (1 + t)(n+ 2)

8
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+
3(1 + t)(1− t)

2n+ 4
+

(2n+ 1)(1− t)2

2n+ 4

#

=
(1 + t)n(1 + 4t+ t2)

(1− t)n+3
= EhrA∨

2 ⊕(A∨
1 )

⊕n(t).

Since the Ehrhart polynomials of (A∨
1 )

⊕(n+1) and (A∨
1 )

⊕n (i.e., the cross polytopes
Crn+1 and Crn) are R-interlacing as shown in [9, Corollary 5.4], A∨

2 ⊕ (A∨
1 )

⊕n and
(A∨

1 )
⊕(n+1) are R-interlacing by Lemma 7. Hence, we conclude that A∨

2 ⊕ (A∨
1 )

⊕n is
CL.

Theorem 9. A∨
3 ⊕ (A∨

1 )
⊕n is CL for any n.

Proof. We have the following equality:

EA∨
3 ⊕(A∨

1 )
⊕n(k) =

3

n+ 3
E(A∨

1 )
⊕(n+2)(k) · (2k + 1) +

n

n+ 3
E(A∨

1 )
⊕(n+1)(k). (4)

This equation follows from

EhrA∨
3 ⊕(A∨

1 )
⊕n(t)=

3

n+ 3

"
2t

d

dt
Ehr(A∨

1 )
⊕(n+2)(t) + Ehr(A∨

1 )
⊕(n+2)(t)

#
+

n

n+ 3
Ehr(A∨

1 )
⊕(n+1)(t).

(5)
as in Theorem 8, and then the statement follows from Lemma 7.

The equation (5) is verified as follows:

RHS of (5) =
3

n+ 3

"
2t

d

dt

(1 + t)n+2

(1− t)n+3
+

(1 + t)n+2

(1− t)n+3

#
+

n

n+ 4

(1 + t)n+1

(1− t)n+2

=
(1 + t)n+1

(1− t)n+3

"
2t

3

n+ 3

7
(n+ 2)(1− t) + (1 + t)(n+ 3)

8

+
3(1 + t)(1− t)

n+ 3
+

n(1− t)2

n+ 3

#

=
(1 + t)n+1(1 + 10t+ t2)

(1− t)n+4
=

(1 + t)n(1 + 11t+ 11t2 + t3)

(1− t)n+4
= EhrA∨

3 ⊕(A∨
1 )

⊕n(t).

Remark 10. Other than Proposition 6, Theorems 8 and 9, A∨
4 ⊕ (A∨

1 )
⊕n and A∨

5 ⊕ (A∨
1 )

⊕n

also seem to be CL by computer calculations for small n’s. On the other hand, also from
observation by computer calculation for small n’s, A∨

m ⊕ (A∨
1 )

⊕n is not CL for m ! 7 and
n ! 2. The behavior of A∨

6 ⊕ (A∨
1 )

⊕n is somewhat strange so that it is CL for odd n’s and
not CL for even n’s.

Remark 11. In the proof of Theorems 8 and 9, the keys are the equations (2) and (4).
Analogously, there are other relations among Ehrhart polynomials of A∨

d ’s. We have found
the following equations, though we do not currently find any application.
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(a) EA∨
3 ⊕(A∨

2 )
⊕n(k) =

2

2n+ 3
E(A∨

2 )
⊕(n+1)(k) · (2k + 1) +

2n+ 1

2n+ 3
EA∨

1 ⊕(A∨
2 )

⊕n(k)

(b) EA∨
3 ⊕(A∨

1 )
⊕n(k) =

2

n+ 3
EA∨

2 ⊕(A∨
1 )

⊕n(k) · (2k + 1) +
2n+ 1

n+ 3
E(A∨

1 )
⊕(n+1)(k)

− n

n+ 3
E(A∨

1 )
⊕(n−1)(k)

(c) EA∨
4 ⊕(A∨

1 )
⊕n(k) =

5

2n+ 8
EA∨

3 ⊕(A∨
1 )

⊕n(k) · (2k + 1) +
5(4n+ 2)

3(2n+ 8)
EA∨

2 ⊕(A∨
1 )

⊕n(k)

− 14n+ 1

3(2n+ 8)
E(A∨

1 )
⊕n(k)

(d) E(A∨
2 )

⊕2⊕(A∨
1 )

⊕n(k) =
3

2n+ 8
EA∨

2 ⊕(A∨
1 )

⊕(n+1)(k) · (2k + 1) +
2n+ 3

2n+ 8
EA∨

2 ⊕(A∨
1 )

⊕n(k)

+
2

2n+ 8
E(A∨

1 )
⊕n(k)

(e) EA∨
3 ⊕(A∨

1 )
⊕n(k) =

2

n+ 3
EA∨

2 ⊕(A∨
1 )

⊕n(k) · (2k + 1)

+
n+ 1

n+ 3

"
2n+ 1

n+ 1
E(A∨

1 )
⊕(n+1)(k)−

n

n+ 1
E(A∨

1 )
⊕(n−1)(k)

#

2n+ 1

n+ 1
E(A∨

1 )
⊕(n+1)(k)−

n

n+ 1
E(A∨

1 )
⊕(n−1)(k) =

2n+ 1

(n+ 1)2
E(A∨

1 )
⊕n(k) · (2k + 1)

+
n2

(n+ 1)2
E(A∨

1 )
⊕(n−1)(k)

(f) EA∨
4 ⊕(A∨

1 )
⊕n(k) =

5

2n+ 8
EA∨

3 ⊕(A∨
1 )

⊕n(k) · (2k + 1)

+
2n+ 3

2n+ 8

"
5(4n+ 2)

3(2n+ 3)
EA∨

2 ⊕(A∨
1 )

⊕n(k)− 14n+ 1

3(2n+ 3)
E(A∨

1 )
⊕n(k)

#

5(4n+ 2)

3(2n+ 3)
E(A∨

2 )⊕(A∨
1 )

⊕n(k)− 14n+ 1

3(2n+ 3)
E(A∨

1 )
⊕n(k)

=
5(2n+ 1)

(2n+ 3)(n+ 2)
E(A∨

1 )
⊕(n+1)(k) · (2k + 1) +

(n− 1)(2n− 1)

(2n+ 3)(n+ 2)
E(A∨

1 )
⊕n(k)

(f ′) EA∨
4 ⊕(A∨

1 )
⊕n(k) =

15

(2n+ 8)(n+ 3)
E(A∨

1 )
⊕(n+2)(k) · (2k + 1)2

+
15(n2 + 3n+ 1)

2(n+ 2)(n+ 3)(n+ 4)
E(A∨

1 )
⊕(n+1)(k) · (2k + 1) +

(2n− 1)(n− 1)

2(n+ 2)(n+ 4)
E(A∨

1 )
⊕n(k)
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5 Free sums of Ad’s

In the previous sections, we have studied the root distributions of the Ehrhart polynomials
of the free sums of A∨

d ’s. It is also of interest in studying the free sums of other reflexive
polytopes. For example, how about the free sums of the classical root polytopes Ad’s?
Note that since A1 = A∨

1 , the CL-ness and the R-interlacing property for A⊕n
1 = Crn also

hold.
For the root polytope of type A, the Ehrhart polynomial and the δ-polynomial known

to be as follows ([2, Theorem 1], [1, Theorem 2]):

EAd
(k) =

d!

j=0

"
d

j

#2"
k + d− j

d

#
, δAd

(t) =
d!

j=0

"
d

j

#2

tj.

We have the following several analogous results.

Theorem 12. A1 ⊕ An is CL for any n ! 1.

Proof. We have the following equality:

EA1⊕An(k) =
1

n+ 1
EAn(k) · (2k + 1) +

n

n+ 1
EAn−1(k). (6)

This relation follows from the following relation of the Ehrhart series:

EhrA1⊕An(t) =
1

n+ 1

"
2
d

dt
EhrAn(t) + EhrAn(t)

#
+

n

n+ 1
EhrAn−1(t), (7)

which is verified as follows. Since we have

EhrAn =

(n
j=0

7
n
j

82
tj

(1− t)n+1
, EhrA1⊕An =

(1 + t)
(n

j=0

7
n
j

82
tj

(1− t)n+2
,

the equation (7) is equivalent to

(1 + t)
(n

j=0

7
n
j

82
tj

(1− t)n+2
=

1

n+ 1

-
2
d

dt

(n
j=0

7
n
j

82
tj

(1− t)n+1
+

(n
j=0

7
n
j

82
tj

(1− t)n+1

.
+

n

n+ 1

(n−1
j=0

7
n−1
j

82
tj

(1− t)n
,

and we have

(1 + t)
n!

j=0

"
n

j

#2

tj =
2t

n+ 1
(1− t)

n!

j=1

j

"
n

j

#2

tj−1 + 2t
n!

j=0

"
n

j

#2

tj

+
1

n+ 1
(1− t)

n!

j=0

"
n

j

#2

tj +
n

n+ 1
(1− t)2

n−1!

j=0

"
n− 1

j

#2

tj.
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By comparing the coefficients of ti, what we have to show is
"
n

i

#2

+

"
n

i− 1

#2

=
2

n+ 1
(i

"
n

i

#2

− (i− 1)

"
n

i− 1

#2

) + 2

"
n

i− 1

#2

+
1

n+ 1
(

"
n

i

#2

−
"

n

i− 1

#2

) +
n

n+ 1
(

"
n− 1

i

#2

− 2

"
n− 1

i− 1

#2

+

"
n− 1

i− 2

#2

), (8)

where
7
n
i

8
is assumed to be 0 when i < 0 or i > n. This is verified by

"
n

i

#2

+

"
n

i− 1

#2

=

"
n

i

#2

+
i2

(n− i+ 1)2

"
n

i

#2

=
n2 − 2in+ 2n+ 2i2 − 2i+ 1

(n− i+ 1)2

"
n

i

#2

and

RHS of (8) =
2

n+ 1
(i

"
n

i

#2

− (i− 1)

"
n

i− 1

#2

) + 2

"
n

i− 1

#2

+
1

n+ 1
(

"
n

i

#2

−
"

n

i− 1

#2

)

+
n

n+ 1
(
(n− i)2

n2

"
n

i

#2

− 2
(n− i+ 1)2

n2

"
n

i− 1

#2

+
(i− 1)2

n2

"
n

i− 1

#2

)

=
n2 + n+ i2

n(n+ 1)

"
n

i

#2

+
2ni− n− i2 + 2i− 1

n(n+ 1)

"
n

i− 1

#2

=
n2 − 2in+ 2n+ 2i2 − 2i+ 1

(n− i+ 1)2

"
n

i

#2

.

Since the Ehrhart polynomials of An and An−1 are R-interlacing as shown in [9], the
statement follows from Lemma 7 and (6).

Proposition 13. A2 ⊕ A⊕n
1 are CL for any n ! 1.

Proof. This follows from Theorem 8, since we have EA1(k) = EA∨
1
(k) and EA2(k) =

EA∨
2
(k).

Theorem 14. A3 ⊕ A⊕n
1 is CL for any n ! 1.

Proof. We have the following relation:

EA3⊕A⊕n
1
(k) =

5

2(n+ 3)
ECrn+2(k) · (2k + 1) +

2n+ 1

2(n+ 3)
ECrn+1(k). (9)

This follows from the relation of the Ehrhart series:

EhrA3⊕A⊕n
1

=
5

2(n+ 3)

"
2t

d

dt
EhrCrn+2(t) + EhrCrn+2(t)

#
+

2n+ 1

2(n+ 3)
EhrCrn+1(t). (10)

The equation (9) is derived by comparing the coefficients of tk in (10). The equation (10)

can be verified using EhrA3⊕A⊕n
1
(t) = (1+9t+9t2+t3)(1+t)n

(1−t)n+4 and EhrCrn(t) =
(1+t)n

(1−t)n+1 as follows:

RHS of (10) =
5

2(n+ 3)

"
2t

d

dt

(1 + t)n+2

(1− t)n+3
+

(1 + t)n+2

(1− t)n+3

#
+

2n+ 1

2(n+ 3)

(1 + t)n+1

(1− t)n+2
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=
(1 + t)n

(1− t)n+4

"
2t

5

2(n+ 3)

7
(n+ 2)(1 + t)(1− t) + (1 + t)2(n+ 3)

8

+
5(1− t)(1 + t)2

2(n+ 3)
+

(2n+ 1)(1 + t)(1− t)2

2(n+ 3)

#

=
(1 + t)n(1 + 9t+ 9t2 + t3)

(1− t)n+4
= EhrA3⊕A⊕n

1
(t).

The R-interlacing property follows from Lemma 7, since the Ehrhart polynomials of
the cross polytopes Crn+1 and Crn are R-interlacing.

Table 2 shows the CL-ness of Am ⊕An, calculated by computer using Pari/GP. Com-
paring with that of A∨

m ⊕A∨
n , the behavior is somewhat complex. (Here, “C” means CL,

and “n” means not CL.) Similar to the case of Am ⊕An, it is CL for small m and n. On
the other hand, the behavior looks different when m and n are large. Those around the
diagonal tend to be CL and it is plausible that An ⊕ An are CL for all n, for example,
but we currently do not have any proof. By a computation using Pari/GP, An ⊕ An and
An ⊕ An+1 are CL for all n up to 100, while An ⊕ An+2 are CL up to n = 54 but are not
CL from n = 55 up to 100.

Table 2: CL-ness of Am ⊕ An with m,n " 20

n\m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 C C C C C C C C C C C C C C C C C C C C C

1 C C C C C C C C C C C C C C C C C C C C C

2 C C C C C C C C C C C C C C n n n n n n n

3 C C C C C C C C C n n n n n n n n n n n C

4 C C C C C C C C C n n n n n n C C C C n n

5 C C C C C C C C C n n n n n C C C n n n n

6 C C C C C C C C C C n n n n C C C n n n C

7 C C C C C C C C C C C n n n C C C n n C n

8 C C C C C C C C C C C C n n C C C n n n n

9 C C C n n n C C C C C C n n n C C C n n n

10 C C C n n n n C C C C C C n n n C C n n n

11 C C C n n n n n C C C C C C n n C C C n n

12 C C C n n n n n n n C C C C C n n C C C n

13 C C C n n n n n n n n C C C C C n n C C n

14 C C n n n C C C C n n n C C C C C n n C C

15 C C n n C C C C C C n n n C C C C C n n C

16 C C n n C C C C C C C C n n C C C C C n n

17 C C n n C n n n n C C C C n n C C C C C n

18 C C n n C n n n n n n C C C n n C C C C C

19 C C n n n n n C n n n n C C C n n C C C C

20 C C n C n n C n n n n n n n C C n n C C C
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Appendix: Some results by computer calculation

As mentioned in Section 3, we investigated the CL-ness for A∨
m ⊕ A∨

n with m,n ! 2 by
computer calculations. The δ-vectors, Ehrhart polynomials, and the CL-ness are listed
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in Table 3. The computation is done by using Pari/GP. The results are summarized in
Theorem 5.

We also calculated the case of the free sums of three or four A∨
d ’s with small parameters

(up to 20) by using Pari/GP. For the case of the free sums of three A∨
d , our computer

calculations are as follows.
A∨

1 ⊕ A∨
1 ⊕ A∨

n : CL for n = 1, . . . , 5, not CL for n = 6, . . . , 20
A∨

1 ⊕ A∨
2 ⊕ A∨

n : CL for n = 2, . . . , 4, not CL for n = 5, . . . , 20
A∨

1 ⊕ A∨
3 ⊕ A∨

n : CL for n = 3, 4, not CL for n = 5, . . . , 20
A∨

1 ⊕ A∨
4 ⊕ A∨

n : not CL for n = 4, CL for n = 5, not CL for n = 6, . . . , 20
A∨

2 ⊕ A∨
2 ⊕ A∨

n : CL for n = 2, 3, not CL for n = 4, . . . , 20
A∨

2 ⊕ A∨
3 ⊕ A∨

n : CL for n = 3, . . . , 6, not CL for n = 7, . . . , 20

Other parameters (each from 1 to 20) not listed here are not CL, up to permutation of
the parameters.

Similarly to the case of two parameters, roughly speaking, we can observe that CL-ness
hods for small parameters and CL-ness does not hold for large parameters. However, the
boundary is sometimes complexified such that the CL/nonCL is not monotone: A∨

1 ⊕A∨
4 ⊕

A∨
n is CL for small n " 3, not CL for n = 4, CL for n = 5, and not CL for n = 6, . . . , 20.

The same can be observed for A∨
1 ⊕ A∨

m ⊕ A∨
5 . It is not CL for m = 2, 3, CL for m = 4,

and not CL for m ! 5.
For the case of four A∨

d ’s, our computer calculations are shown as follows.
A∨

1 ⊕ A∨
1 ⊕ A∨

1 ⊕ A∨
n : CL for n = 1, . . . , 4, not CL for n = 5, CL for n = 6, not CL for

n = 7, . . . , 20
A∨

1 ⊕ A∨
1 ⊕ A∨

2 ⊕ A∨
n : CL for n = 2, . . . , 5, not CL for n = 6, . . . , 20

A∨
1 ⊕ A∨

1 ⊕ A∨
3 ⊕ A∨

n : CL for n = 3, . . . , 5, not CL for n = 6, . . . , 20
A∨

1 ⊕ A∨
1 ⊕ A∨

4 ⊕ A∨
n : CL for n = 4, not CL for n = 5, . . . , 20

A∨
1 ⊕ A∨

2 ⊕ A∨
2 ⊕ A∨

n : CL for n = 2, . . . , 6, not CL for n = 7, . . . , 20
A∨

1 ⊕ A∨
2 ⊕ A∨

3 ⊕ A∨
n : CL for n = 3, . . . , 5, not CL for n = 6, . . . , 20

A∨
1 ⊕ A∨

2 ⊕ A∨
4 ⊕ A∨

n : CL for n = 4, not CL for n = 5, CL for n = 6, not CL for
n = 7, . . . , 20
A∨

1 ⊕ A∨
3 ⊕ A∨

3 ⊕ A∨
n : not CL for n = 3, CL for n = 4, not CL for n = 5, . . . , 20

A∨
1 ⊕ A∨

3 ⊕ A∨
4 ⊕ A∨

n : not CL for n = 4, CL for n = 5, not CL for n = 6, . . . , 20
A∨

2 ⊕ A∨
2 ⊕ A∨

3 ⊕ A∨
n : CL for n = 3, not CL for n = 4, . . . , 20

A∨
2 ⊕ A∨

3 ⊕ A∨
3 ⊕ A∨

n : not CL for n = 3, CL for n = 4, not CL for n = 5, . . . , 20

Other parameters (each from 1 to 20) not listed here are not CL, up to permutation of
the parameters.
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Table 3: δ-vectors, Ehrhart polynomials, and CL-ness of A∨
m ⊕ A∨

n with 2 " m,n " 7

m n δ(A∨
m ⊕A∨

n), EA∨
m⊕A∨

n
(k)

2 2
(1,8,18,8,1)
3
2x

4 + 3x3 + 9
2x

2 + 3x+ 1
CL

2 3
(1,15,56,56,15,1)
6
5x

5 + 3x4 + 6x3 + 6x2 + 19
5 x+ 1

CL

2 4
(1,30,171,316,171,30,1)
x6 + 3x5 + 15

2 x4 + 10x3 + 19
2 x2 + 5x+ 1

CL

2 5
(1,61,531,1567,1567,531,61,1)
6
7x

7 + 3x6 + 9x5 + 15x4 + 19x3 + 15x2 + 43
7 x+ 1

CL

2 6
(1,124,1672,7300,12046,7300,1672,124,1)
3
4x

8 + 3x7 + 21
2 x6 + 21x5 + 133

4 x4 + 35x3 + 43
2 x2 + 7x+ 1

not
CL

2 7
(1,251,5282,33038,82388,82388,33038,5282,251,1)
2
3x

9 + 3x8 + 12x7 + 28x6 + 266
5 x5 + 70x4 + 172

3 x3 + 28x2 + 39
5 x+ 1

not
CL

3 3
(1,22,143,244,143,22,1)
4
5x

6 + 12
5 x5 + 6x4 + 8x3 + 36

5 x2 + 18
5 x+ 1

CL

3 4
(1,37,363,1039,1039,363,37,1)
4
7x

7 + 2x6 + 6x5 + 10x4 + 12x3 + 9x2 + 31
7 x+ 1

CL

3 5
(1,68,940,4252,6758,4252,940,68,1)
3
7x

8 + 12
7 x7 + 6x6 + 12x5 + 18x4 + 18x3 + 95

7 x2 + 44
7 x+ 1

not
CL

3 6
(1,131,2522,16838,40988,40988,16838,2522,131,1)
1
3x

9 + 3
2x

8 + 6x7 + 14x6 + 126
5 x5 + 63

2 x4 + 95
3 x3 + 22x2 + 39

5 x+ 1
not
CL

3 7
(1,258,7021,65560,234898,352204,234898,65560,7021,258,1)
4
15x

10 + 4
3x

9 + 6x8 + 16x7 + 168
5 x6 + 252

5 x5 + 190
3 x4 + 176

3 x3 + 154
5 x2 + 38

5 x+ 1
not
CL

4 4
(1,52,808,3484,5710,3484,808,52,1)
5
14x

8 + 10
7 x7 + 5x6 + 10x5 + 15x4 + 15x3 + 135

14 x2 + 25
7 x+ 1

not
CL

4 5
(1,83,1850,11942,29324,29324,11942,1850,83,1)
5
21x

9 + 15
14x

8 + 30
7 x7 + 10x6 + 18x5 + 45

2 x4 + 415
21 x3 + 80

7 x2 + 33
7 x+ 1

not
CL

4 6
(1,146,4377,41328,145734,221628,145734,41328,4377,146,1)
1
6x

10 + 5
6x

9 + 15
4 x8 + 10x7 + 21x6 + 63

2 x5 + 415
12 x4 + 80

3 x3 + 37
2 x2 + 9x+ 1

not
CL

4 7
(1,273,10781,143565,711474,1553106,1553106,711474,143565,10781,273,1)
4
33x

11 + 2
3x

10 + 10
3 x9 + 10x8 + 24x7 + 42x6 + 166

3 x5 + 160
3 x4 + 146

3 x3 + 35x2 + 127
11 x+ 1

not
CL

5 5
(1,114,3853,35032,125746,188908,125746,35032,3853,114,1)
1
7x

10 + 5
7x

9 + 45
14x

8 + 60
7 x7 + 18x6 + 27x5 + 425

14 x4 + 170
7 x3 + 72

7 x2 + 10
7 x+ 1

not
CL

5 6
(1,177,8333,106845,534882,1164162,1164162,534882,106845,8333,177,1)
1
11x

11 + 1
2x

10 + 5
2x

9 + 15
2 x8 + 18x7 + 63

2 x6 + 85
2 x5 + 85

2 x4 + 28x3 + 11x2 + 43
11x+ 1

not
CL

5 7
(1,304,18674,335216,2277039,6922080,9923772,6922080,2277039,335216,18674,304,1)
2
33x

12 + 4
11x

11 + 2x10 + 20
3 x9 + 18x8 + 36x7 + 170

3 x6 + 68x5 + 55x4 + 82
3 x3 + 289

11 x2 + 216
11 x+ 1

not
CL

6 6
(1,240,16782,290672,2000703,6040992,8702820,6040992,2000703,290672,16782,240,1)
7

132x
12 + 7

22x
11 + 7

4x
10 + 35

6 x9 + 63
4 x8 + 63

2 x7 + 595
12 x6 + 119

2 x5 + 56x4 + 119
3 x3 + 63

22x
2 − 119

11 x+ 1
not
CL

6 7

(1,367,35124,827372,7600805,31146987,61995744,61995744,31146987,7600805,827372,35124,367,1)
14
429x

13 + 7
33x

12 + 14
11x

11 + 14
3 x10 + 14x9 + 63

2 x8 + 170
3 x7 + 238

3 x6 + 441
5 x5 + 455

6 x4 + 357
11 x3

− 28
11x

2 − 1163
715 x+ 1

not
CL

7 7

(1,494,69595,2151980,26176873,141829106,380179131,524888040,380179131,141829106,26176873,
2151980,69595,494,1)
8

429x
14 + 56

429x
13 + 28

33x
12 + 112

33 x11 + 56
5 x10 + 28x9 + 170

3 x8 + 272
3 x7 + 1736

15 x6 + 1736
15 x5 + 1260

11 x4

+ 1120
11 x3 − 32184

715 x2 − 61306
715 x+ 1

not
CL
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