The root distributions of Ehrhart polynomials of free sums of reflexive polytopes

Masahiro Hachimori
Faculty of Engineering, Information and Systems
University of Tsukuba
Tsukuba, Ibaraki, Japan
hachi@sk.tsukuba.ac.jp
Akihiro Higashitani*
Department of Pure and Applied Mathematics
Graduate School of Information Science and Technology
Osaka University
Osaka, Japan
higashitani@ist.osaka-u.ac.jp
Yumi Yamada
Department of Policy and Planning Sciences
Graduate School of Systems and Information Engineering University of Tsukuba
Tsukuba, Ibaraki, Japan
s1830124@s.tsukuba.ac.jp

Submitted: Oct 12, 2021; Accepted: Jul 7, 2022; Published: Jul 29, 2022
(C) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

In this paper, we study the root distributions of Ehrhart polynomials of free sums of certain reflexive polytopes. We investigate cases where the roots of the Ehrhart polynomials of the free sums of A_{d}^{\vee} 's or A_{d} 's lie on the canonical line $\operatorname{Re}(z)=-\frac{1}{2}$ on the complex plane \mathbb{C}, where A_{d} denotes the root polytope of type A of dimension d and A_{d}^{\vee} denotes its polar dual. For example, it is proved that $A_{m}^{\vee} \oplus A_{n}^{\vee}$ with $\min \{m, n\} \leqslant 1$ or $m+n \leqslant 7, A_{2}^{\vee} \oplus\left(A_{1}^{\vee}\right)^{\oplus n}$ and $A_{3}^{\vee} \oplus\left(A_{1}^{\vee}\right)^{\oplus n}$ for any n satisfy this property. We also perform computational experiments for other types of free sums of A_{n}^{\vee} 's or A_{n} 's. Mathematics Subject Classifications: 52B20,26C10

[^0]
1 Introduction

A polytope $Q \subseteq \mathbb{R}^{d}$ is called integral if all the vertices are on \mathbb{Z}^{d}. For an integral polytope $Q \subset \mathbb{R}^{d}$ of dimension d and a positive integer $k, E_{Q}(k)=\#\left(k Q \cap \mathbb{Z}^{d}\right)$ is known to be a polynomial of degree d, where $k Q=\{k x: x \in Q\}$. This polynomial is called the Ehrhart polynomial of Q. Its generating function $\operatorname{Ehr}_{Q}(t)$, called the Ehrhart series, can be written as

$$
\operatorname{Ehr}_{Q}(t)=\sum_{k=0}^{\infty} E_{Q}(k) t^{k}=\frac{\delta_{0}+\delta_{1} t+\cdots+\delta_{d} t^{d}}{(1-t)^{d+1}}
$$

where the numerator is the δ-polynomial of Q, denoted by $\delta_{Q}(t)$, and the sequence of the coefficients $\delta(Q)=\left(\delta_{0}, \delta_{1}, \ldots, \delta_{d}\right)$ is the δ-vector of Q. (They are also known as h^{*}-polynomial and h^{*}-vector, respectively.) The δ-vector fully encodes the Ehrhart polynomial and $E_{Q}(k)$ can be recovered from $\delta(Q)$ as follows:

$$
E_{Q}(k)=\sum_{j=0}^{d} \delta_{j}\binom{d+k-j}{d}=: f^{\mathrm{Ehr}}(\delta(Q)) .
$$

We refer the reader to [4] for the introduction to the Ehrhart polynomials and δ polynomials of integral polytopes.

For a polytope $Q \subset \mathbb{R}^{d}$, the polar dual of Q is defined by

$$
Q^{\vee}=\left\{x \in \mathbb{R}^{d}:\langle x, y\rangle \geqslant-1 \text { for any } y \in Q\right\},
$$

where $\langle\cdot, \cdot\rangle$ denotes the usual inner product of \mathbb{R}^{d}. Note that $\left(Q^{\vee}\right)^{\vee}=Q$ holds for polytopes containing the origin. An integral polytope containing the origin in its interior is reflexive if its polar dual is also an integral polytope ([3, 8]). Note that if Q is reflexive, then so is Q^{\vee}. It is known that an integral polytope is reflexive if and only if its δ vector is palindromic, and correspondingly, the roots of the Ehrhart polynomial distribute symmetrically with respect to the line $\operatorname{Re}(z)=-\frac{1}{2}$ on the complex plane \mathbb{C}. (See, e.g., [9, Proposition 2.1].) Naturally, it is of interest when the roots of the Ehrhart polynomials all lie on the line $\operatorname{Re}(z)=-\frac{1}{2}$. Such reflexive polytopes are called "CL-polytopes" ([7]) and studied in several papers (e.g. [7, 9, 10, 11]). (In what follows, we call a reflexive polytope $C L$ if it is a CL-polytope.)

For two integral polytopes $Q_{1} \subset \mathbb{R}^{\operatorname{dim} Q_{1}}$ and $Q_{2} \subset \mathbb{R}^{\operatorname{dim} Q_{2}}$, both containing the origins, the free sum $Q_{1} \oplus Q_{2}$ is defined by

$$
Q_{1} \oplus Q_{2}=\operatorname{conv}\left(\left(Q_{1} \times 0_{Q_{2}}\right) \cup\left(0_{Q_{1}} \times Q_{2}\right)\right) \subset \mathbb{R}^{\operatorname{dim} Q_{1}} \times \mathbb{R}^{\operatorname{dim} Q_{2}}
$$

where $0_{Q_{1}}$ and $0_{Q_{2}}$ are the origins of $\mathbb{R}^{\operatorname{dim} Q_{1}}$ and $\mathbb{R}^{\operatorname{dim} Q_{2}}$, respectively. The operation of the free sum has importance since it is the polar dual of the Cartesian product in such a way that

$$
\left(Q_{1} \times Q_{2}\right)^{\vee}=Q_{1}^{\vee} \oplus Q_{2}^{\vee}
$$

Note that $Q_{1} \oplus Q_{2}$ is reflexive if and only if both Q_{1} and Q_{2} are reflexive.

The δ-polynomial of the free sum has the following simple formula [5]:

$$
\begin{equation*}
\delta_{Q_{1} \oplus Q_{2}}(t)=\delta_{Q_{1}}(t) \delta_{Q_{2}}(t) . \tag{1}
\end{equation*}
$$

On the other hand, the Ehrhart polynomial of $Q_{1} \oplus Q_{2}$ can be given (see [5, 16]) but not so simple, and the root distribution of the Ehrhart polynomial of $Q_{1} \oplus Q_{2}$ is not clear. Especially, as we will see later, $Q_{1} \oplus Q_{2}$ is not always CL even if both Q_{1} and Q_{2} are CL. In this paper, we are interested in when $Q_{1} \oplus Q_{2}$ becomes CL for CL polytopes Q_{1} and Q_{2}.

A typical example of CL-polytopes is the following special case. For a reflexive polytope Q, when all the roots z of the δ-polynomial of Q satisfy $|z|=1$, it follows from [14] that all the roots of the Ehrhart polynomial of Q are on the line $\operatorname{Re}(z)=-\frac{1}{2}$, i.e., Q is CL. For example, the following polytopes can be shown to be CL by this reasoning:

- A cross polytope $\mathrm{Cr}_{d}=\operatorname{conv}\left(\left\{e_{1}, \ldots, e_{d},-e_{1}, \ldots,-e_{d}\right\}\right)$, where $\delta_{\mathrm{Cr}_{d}}(t)=(1+t)^{d}$.
- A simplex $T_{d}=\operatorname{conv}\left(\left\{e_{1}, \ldots, e_{d},-\left(e_{1}+\cdots+e_{d}\right)\right\}\right)$, where $\delta_{T_{d}}(t)=1+t+\cdots+t^{d}$. Here, e_{i} denotes the i-th unit vector of \mathbb{R}^{d}. If Q_{i} 's are such polytopes, then we have $Q_{1} \oplus \cdots \oplus Q_{n}$ is CL since the roots of the δ-polynomial of $Q_{1} \oplus \cdots \oplus Q_{n}$ also satisfy $|z|=1$ by (1). (Notice that Cr_{d} is unimodularly equivalent to $\underbrace{T_{1} \oplus \cdots \oplus T_{1}}_{d}$.)

In this paper, we mainly discuss the case Q_{i} 's are the dual of the classical root polytopes of type A. Here, the classical root polytope of type A is defined as

$$
A_{d}=\operatorname{conv}\left(\left\{ \pm\left(e_{i}+\cdots+e_{j}\right): 1 \leqslant i \leqslant j \leqslant d\right\}\right)
$$

and we consider its dual A_{d}^{\vee}. The Ehrhart polynomial of A_{d}^{\vee} is known to be

$$
E_{A_{d}^{\vee}}(k)=(k+1)^{d+1}-k^{d+1}
$$

in [9, Lemma 5.3]. Reflexive polytopes A_{d} and A_{d}^{\vee} are shown to be CL in [9], but we see the roots z of their δ-polynomials do not satisfy $|z|=1$. The reason we consider this free sum of A_{d}^{\vee} 's is that it appears as the equatorial spheres of the complete graded posets. This will be discussed in Section 2. After that, we investigate the CL-ness of $A_{p_{1}}^{\vee} \oplus A_{p_{2}}^{\vee} \oplus \cdots \oplus A_{p_{k}}^{\vee}$ in the following sections.

We collect the results which show the CL-ness for the free sums of A_{d}^{\vee} 's or A_{d} 's in what follows:

- $A_{m}^{\vee} \oplus A_{n}^{\vee}$ with $\min \{m, n\} \leqslant 1$ or $m+n \leqslant 7$ (Theorem 5);
- $A_{m}^{\vee} \oplus\left(A_{1}^{\vee}\right)^{\oplus n}$ for any $n \geqslant 1$ with $m=1,2,3$ (Proposition 6 , Theorems 8 and 9);
- $A_{1} \oplus A_{n}$ for any $n \geqslant 1$ (Theorem 12);
- $A_{m} \oplus A_{1}^{\oplus n}$ for any $n \geqslant 1$ with $m=1,2,3$ (Proposition 13 and Theorem 14).

We also perform other types of free sums of A_{n}^{\vee} 's or A_{n} 's and describe the computational results.

2 Ehrhart polynomials of equatorial spheres of graded posets

Let (P, \preceq) be a finite partially ordered set, or a poset, with $|P|=d$. The order polytope O_{P} of P is given by

$$
O_{P}=\left\{x \in[0,1]^{d}: x_{a} \leqslant x_{b} \text { for } b \prec a(a, b \in P)\right\},
$$

where the coordinates of \mathbb{R}^{d} are indexed by the elements of P. This is an integral polytope whose vertices correspond to the order ideals of $P([15])$.

As another polytope arising from posets closely related to the order polytope, the chain polytope of P is defined by

$$
C_{P}=\left\{x \in \mathbb{R}^{d}: x_{a} \geqslant 0(a \in P), x_{a_{1}}+\cdots+x_{a_{k}} \leqslant 1 \text { for } a_{1} \prec \cdots \prec a_{k}\left(a_{i} \in P\right)\right\} .
$$

This is an integral polytope whose vertices correspond to the antichains of P, and it is shown in [15] that the Ehrhart polynomials of O_{P} and C_{P} coincide: $E_{O_{P}}(k)=E_{C_{P}}(k)$, so we also have $\delta_{O_{P}}(t)=\delta_{C_{P}}(t)$.

For the poset P on $[n]=\{1,2, \ldots, n\}$, the P-Eulerian polynomial is

$$
W(P)=\sum_{\pi \in \mathcal{L}(P)} x^{\operatorname{des}(\pi)+1}
$$

where $\mathcal{L}(P)$ is the set of all linear extensions of P and $\operatorname{des}(\pi)$ is the size of the descent set of w with respect to P. That is, $\mathcal{L}(P)$ is the set of permutations $w=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ of $[n]$ such that $w_{i} \prec w_{j}$ implies $i<j$, and $\operatorname{des}(w)=\#\left\{i \in[n-1]: w_{i}>w_{i+1}\right\}$. This polynomial is equal to the δ-polynomial of O_{P}, i.e., $W(P)=\delta_{O_{P}}(t)$.

When the poset P is graded of rank r, the result of [13] shows that the δ-vector can be written as

$$
\delta\left(O_{P}\right)=h\left(\Delta_{\mathrm{eq}}(P) * \sigma^{r}\right),
$$

where σ^{r} is the r-dimensional standard simplex and $\Delta_{\text {eq }}(P)$ is the equatorial sphere of P, which will be explained below. Here, the operator $*$ is the simplicial join of simplicial complexes and $h\left(\Delta_{\text {eq }}(P) * \sigma^{r}\right)$ represents the h-vector of the simplicial complex $\Delta_{\text {eq }}(P) * \sigma^{r}$.

For a poset P, a P-partition is a function $f: P \rightarrow \mathbb{R}$ such that $f(a) \geqslant 0$ for all $a \in P$ and $f(a) \geqslant f(b)$ for all $a \prec b$. When P is a graded poset of rank r, let $P^{(i)}$ denote the set of the elements of P of rank i. We say that a P-partition is equatorial if $\min _{a \in P} f(a)=0$ and for every $2 \leqslant j \leqslant r$ there exists $a_{j-1} \prec a_{j}$ with $a_{j-1} \in P^{(j-1)}, a_{j} \in P^{(j)}$ and $f\left(a_{j-1}\right)=f\left(a_{j}\right)$. An order ideal I of P is equatorial if its characteristic vector χ_{I} is equatorial. A chain of order ideals $I_{1} \subset I_{2} \subset \cdots \subset I_{t}$ is equatorial if $\chi_{I_{i}}+\cdots+\chi_{I_{t}}$ is equatorial. The equatorial complex $\Delta_{\mathrm{eq}}(P)$ of P is the simplicial complex whose vertex set is the equatorial ideals of P and faces are equatorial chains of order ideals of P. The result of [13] shows that $\Delta_{\text {eq }}(P)$ is a (polytopal) simplicial sphere and it is called the equatorial sphere of P. Since the h-vector of a simplicial sphere is palindromic by the Dehn-Sommerville equations, this implies that the δ-vector of O_{P} for a graded poset P is palindromic followed by $r 0$'s as follows:

$$
\delta\left(O_{P}\right)=(h_{0}, h_{1}, \ldots, h_{1}, h_{0}, \underbrace{0,0, \ldots, 0}_{r}) .
$$

The palindromic part $\left(h_{0}, h_{1}, \ldots, h_{1}, h_{0}\right)=h\left(\Delta_{\text {eq }}\right)$ of $\delta\left(O_{P}\right)$ corresponds to the equatorial sphere $\Delta_{\text {eq }}(P)$, so it will make sense to consider the corresponding polynomial as follows.

$$
E_{P}^{\mathrm{eq}}(k)=f^{\mathrm{Ehr}}\left(h\left(\Delta_{\mathrm{eq}}\right)\right)=f^{\operatorname{Ehr}}\left(\left(h_{0}, h_{1}, \ldots, h_{1}, h_{0}\right)\right) .
$$

We call this $E_{P}^{\mathrm{eq}}(k)$ the equatorial Ehrhart polynomial of the graded poset P. In [13], the equatorial sphere is constructed as a quotient polytope from the order polytope, that is, as a quotient polytope $O_{P}^{\mathrm{eq}}=O_{P} / V^{\mathrm{rc}}$, where V^{rc} is the rank-constant subspace, the subspace consisting of partition functions that are rank-constant (i.e., $f(x)=f(y)$ whenever x and y are of the same rank in $P)$. The polynomial $E_{P}^{\text {eq }}(k)$ corresponds to the Ehrhart polynomial of this polytope.

Since $h\left(\Delta_{\text {eq }}\right)$ is palindromic, the roots of $E_{P}^{\text {eq }}(k)$ distribute symmetrically with respect to the line $\operatorname{Re}(z)=-\frac{1}{2}$. It is of our interest for which graded poset P all the roots of $E_{P}^{\mathrm{eq}}(k)$ lie on the line $\operatorname{Re}(z)=-\frac{1}{2}$. We call such $E_{P}^{\mathrm{eq}}(k)$ to be CL analogously to the CL-polytopes among reflexive polytopes.

A complete graded poset $P_{n_{1}, n_{2}, \ldots, n_{r}}$ stands for a graded poset of rank r such that the set $P^{(i)}$ of the elements of rank i consists of n_{i} elements for every i and $a_{i} \prec a_{j}$ holds for every $a_{i} \in P^{(i)}$ and $a_{j} \in P^{(j)}$ with $i<j$. For complete graded posets, we can easily calculate the δ-polynomials as follows. Since the antichains of $P_{n_{1}, n_{2}, \ldots, n_{r}}$ are subsets $X \subset P^{(i)}$ for some i, we have

$$
C_{P_{n_{1}, n_{2}, \ldots, n_{r}}}=[0,1]^{n_{1}} \oplus[0,1]^{n_{2}} \oplus \cdots \oplus[0,1]^{n_{r}} .
$$

The δ-polynomial of $[0,1]^{n}$ is given by the Eulerian polynomial $S_{n}(t)=\sum_{j=0}^{n-1}\left\langle\begin{array}{c}n \\ j\end{array}\right\rangle t^{j}$, where $\left\langle\begin{array}{c}n \\ j\end{array}\right\rangle$ is the Eulerian number, and hence we have

$$
\delta_{O_{P_{n_{1}}, n_{2}, \ldots, n_{r}}}(t)=\delta_{C_{P_{n_{1}}, n_{2}, \ldots, n_{r}}}(t)=\prod_{i=1}^{r} S_{n_{i}}(t) .
$$

There is another explanation for this. For the complete graded poset $P_{n_{1}, n_{2}, \ldots, n_{r}}$, an equatorial ideal is a proper subset of $P^{(i)}$ for some $0 \leqslant i \leqslant r$ together with all $P^{(j)}$'s with $j<i$, hence we observe that $\Delta_{\mathrm{eq}}\left(P_{n_{1}, n_{2}, \ldots, n_{r}}\right)$ is isomorphic to the order complex of $\check{B}_{n_{1}} \biguplus \cdots \biguplus \check{B}_{n_{r}}$, where \check{B}_{n} is the poset removing the top element from the boolean lattice of order n ($=$ the ordered set consisting of all the strict subsets of $\{1, \ldots, n\}$ ordered by inclusion), and \biguplus is the operator of the ordinal sum of the posets (i.e., $P \biguplus P^{\prime}$ is the poset over $P \cup P^{\prime}$ with an order relation $\preceq_{P \uplus P^{\prime}}$ such that $u \preceq_{P \uplus P^{\prime}} v$ if $u, v \in P$ and $u \preceq_{P} v, u, v \in P^{\prime}$ and $u \preceq_{P^{\prime}} v$, or $u \in P$ and $\left.v \in P^{\prime}\right)$. This shows that the equatorial sphere of $P_{n_{1}, n_{2}, \ldots, n_{r}}$ is isomorphic to $\operatorname{sd}\left(\Delta_{n_{1}}\right) * \cdots * \operatorname{sd}\left(\Delta_{n_{r}}\right)$, where $\operatorname{sd}(\Delta)$ is the barycentric subdivision of Δ. Since the h-polynomial of $\operatorname{sd}\left(\Delta_{n}\right)$ is given by the Eulerian polynomial (see, e.g., [12, Sec. 9.2]), we have the same conclusion.

The equatorial Ehrhart polynomial for P_{n}, which is just an antichain with n elements, can be calculated as follows. Since we have $\delta_{i}=\left\langle\begin{array}{c}n \\ i\end{array}\right\rangle$ for $0 \leqslant i \leqslant n-1$, where $\delta\left(O_{P_{n}}\right)=$
$\left(\delta_{0}, \delta_{1}, \ldots, \delta_{n-1}, 0\right)$, we obtain that

$$
\begin{aligned}
E_{P_{n}}^{\mathrm{eq}}(k) & =\sum_{j=0}^{n-1}\left\langle\begin{array}{c}
n \\
j
\end{array}\right\rangle\binom{ n-1+k-j}{n-1}=\sum_{j=0}^{n-1}\left\langle\begin{array}{c}
n \\
n-1-j
\end{array}\right\rangle\binom{ k+(n-1-j)}{n-1} \\
& =\sum_{j^{\prime}=0}^{n-1}\left\langle\begin{array}{c}
n \\
j^{\prime}
\end{array}\right\rangle\binom{ k+j^{\prime}}{n-1} \quad\left(j^{\prime}=n-1-j\right) \\
& =\sum_{j^{\prime}=0}^{n-1}\left\langle\begin{array}{c}
n \\
j^{\prime}
\end{array}\right\rangle\left(\binom{k+j^{\prime}+1}{n}-\binom{k+j^{\prime}}{n}\right)=(k+1)^{n}-k^{n} .
\end{aligned}
$$

Here, the last equality is derived from Worpitzky's identity (e.g. [6, Sec. 6.2]): $x^{n}=$ $\sum_{j=0}^{n-1}\left\langle\begin{array}{c}n \\ j\end{array}\right\rangle\binom{ x+j}{n}$. This polynomial $(k+1)^{n}-k^{n}$ equals the Ehrhart polynomial of A_{n-1}^{\vee} as shown in [9]. That is, we have $E_{P_{n}}^{\text {eq }}(k)=E_{A_{n-1}^{\vee}}(k)$. In fact, more strongly, we observe that the equatorial polytope $O_{P_{n}}^{\mathrm{eq}}$ is unimodularly equivalent to A_{n-1}^{\vee} as follows.

Proposition 1. $O_{P_{n}}^{\mathrm{eq}}=O_{P_{n}} / V^{r c}$ is unimodularly equivalent to A_{n-1}^{\vee}.
Proof. The subspace V^{rc} is the space of rank-constant partitions, and in this case, it is a one-dimensional space $V^{\text {rc }}=\operatorname{span}\left\{\sum_{i \in[n]} e_{i}\right\}$. Let π be the projection map from $O_{P_{n}}$ to $O_{P_{n}}^{\text {eq }}$. By letting $f=\sum_{i \in[n]} e_{i}$, for any $v \in \mathbb{R}^{n}$, we can uniquely write $v=\sum_{i=1}^{n-1} r_{i} e_{i}+s f \in$ $V\left(r_{i}, s \in \mathbb{R}\right)$, then we have $\pi(v)=\sum_{i=1}^{n-1} r_{i} e_{i}$. The vertex set of $O_{P_{n}}$ is $\left\{\sum_{i \in S} e_{i}: S \subseteq[n]\right\}$, and they are mapped to the following:

$$
\pi\left(\sum_{i \in S} e_{i}\right)= \begin{cases}\sum_{i \in S} e_{i} & \text { if } n \notin S \\ -\sum_{i \notin S} e_{i} & \text { if } n \in S\end{cases}
$$

From this, we observe that the vertex set of $O_{P_{n}}^{\mathrm{eq}}$ is $\left\{ \pm \sum_{i \in S} e_{i}: S \subseteq[n-1]\right\}$. Hence

$$
\left(O_{P_{n}}^{\mathrm{eq}}\right)^{\vee}=\left\{x \in \mathbb{R}^{n-1}:\left\langle \pm \sum_{i \in S} e_{i}, x\right\rangle \leqslant 1, S \subseteq[n-1]\right\}
$$

On the one hand, it is easy to see that A_{n-1} is unimodularly equivalent to

$$
\operatorname{conv}\left(\left\{ \pm e_{i}: 1 \leqslant i \leqslant n-1\right\} \cup\left\{e_{i}-e_{j}: 1 \leqslant i \neq j \leqslant n-1\right\}\right)
$$

Since we have

$$
\left\langle\sum_{i \in S} e_{i}, \pm e_{j}\right\rangle=\left\{\begin{array}{ll}
\pm 1 & \text { if } j \in S, \\
0 & \text { if } j \notin S,
\end{array} \text { and }\left\langle\sum_{i \in S} e_{i}, e_{j}-e_{k}\right\rangle= \begin{cases}1 & \text { if } j \in S, k \notin S, \\
-1 & \text { if } j \notin S, k \in S \\
0 & \text { if } j, k \in S \text { or } j, k \notin S,\end{cases}\right.
$$

we see that $A_{n-1} \subseteq\left(O_{P_{n}}^{\text {eq }}\right)^{\vee}$. On the other hand, let $w=\left(w_{1}, \ldots, w_{n-1}\right) \in \mathbb{Z}^{n-1}$ satisfying that $\langle w, v\rangle \leqslant 1$ for any $v \in A_{n-1}$. If there is i with $\left|w_{i}\right| \geqslant 2$, then $\left|\left\langle w, e_{i}\right\rangle\right| \geqslant 2$, a
contradiction. Thus, $w \in\{0, \pm 1\}^{n-1}$. Moreover, if there are i and i^{\prime} with $w_{i}=1$ and $w_{i^{\prime}}=-1$, then $\left\langle w, e_{i}-e_{i^{\prime}}\right\rangle=2$, a contradiction. Hence, $w \in\{0,1\}^{n-1}$ or $w \in\{0,-1\}^{n-1}$. This means that w is always of the form $w= \pm \sum_{i \in S} e_{i}$. This implies that $\left(O_{P_{n}}^{\text {eq }}\right)^{\vee} \subset A_{n-1}$, as required.

Corollary 2. We have

$$
E_{P_{n_{1}, n_{2}, \ldots, n_{r}}^{\mathrm{eq}}}(k)=E_{A_{n_{1}-1}^{\vee} \oplus A_{n_{2}-1}^{\vee} \oplus \cdots \oplus A_{n_{r}-1}^{\vee}}^{\vee}(k) .
$$

Proof. Since we have $\delta_{O_{P_{n}}^{\text {eq }}}(t)=\delta_{A_{n-1}^{\vee}}(t)$ from Proposition 1,

$$
\delta_{O_{P_{1}, n_{2}, \ldots, n_{r}}^{\mathrm{eq}}}(t)=\delta_{O_{P_{n_{1}, n_{2}, \ldots, n_{r}}}}(t)=\prod_{i=1}^{r} S_{n_{i}}(t)=\prod_{i=1}^{r} \delta_{O_{P_{n_{i}}}^{\mathrm{eq}}}(t)=\prod_{i=1}^{r} \delta_{A_{n_{i}-1}^{\vee}}(t)=\delta_{A_{n_{1}-1}^{\vee} \oplus \cdots \oplus A_{n_{r}-1}^{\vee}}(t) .
$$

The statement follows from $\operatorname{dim} O_{P_{n_{1}, n_{2}, \ldots, n_{r}}^{\mathrm{eq}}}=\operatorname{dim} A_{n_{1}-1}^{\vee} \oplus A_{n_{2}-1}^{\vee} \oplus \cdots \oplus A_{n_{r}-1}^{\vee}$.
By this, the CL-ness of $E_{P_{n_{1}, n_{2}, \ldots, n_{r}}}^{\mathrm{eq}}(k)$ is equivalent to the CL-ness of $A_{n_{1}-1}^{\vee} \oplus A_{n_{2}-1}^{\vee} \oplus$ $\cdots \oplus A_{n_{r}-1}^{\vee}$.
Remark 3. The discussion of this section gives that the δ-polynomial of A_{d}^{\vee} equals to

$$
\delta_{A_{d}^{\vee}}(t)=\sum_{j=0}^{d}\left\langle\begin{array}{c}
d+1 \\
j
\end{array}\right\rangle t^{j} .
$$

3 CL-ness of $A_{m}^{\vee} \oplus A_{n}^{\vee}$

For the case of the free sum $A_{1}^{\vee} \oplus A_{n}^{\vee}$, we have the following.
Proposition 4. We have

$$
E_{A_{1}^{\vee} \oplus A_{n}^{\vee}}(k)=(k+1)^{n}+k^{n},
$$

and $A_{1}^{\vee} \oplus A_{n}^{\vee}$ is a CL-polytope.
Proof. Since $\delta_{A_{1}^{\vee}}(t)=1+t$ and $\delta_{A_{n}^{\vee}}=\sum_{i=1}^{n}\left\langle\begin{array}{c}n+1 \\ i\end{array}\right\rangle t^{i}$, we have

$$
\delta_{i}\left(A_{1}^{\vee} \oplus A_{n}^{\vee}\right)=\left\langle\begin{array}{c}
n+1 \\
i
\end{array}\right\rangle+\left\langle\begin{array}{c}
n+1 \\
i-1
\end{array}\right\rangle \quad(0 \leqslant i \leqslant n+1)
$$

using the convention that $\left\langle\begin{array}{c}n \\ i\end{array}\right\rangle=0$ when $i<0$ or $i \geqslant n$. Thus,

$$
E_{A_{1}^{\vee} \oplus A_{n}^{\vee}}(k)=\sum_{j=0}^{n+1}\left(\left\langle\begin{array}{c}
n+1 \\
j
\end{array}\right\rangle+\left\langle\begin{array}{c}
n+1 \\
j-1
\end{array}\right\rangle\right)\binom{n+1+k-j}{n+1}
$$

$$
\begin{aligned}
& =\sum_{j=0}^{n}\left\langle\begin{array}{c}
n+1 \\
j
\end{array}\right\rangle\binom{ n+1+k-j}{n+1}+\sum_{j=1}^{n+1}\left\langle\begin{array}{c}
n+1 \\
j-1
\end{array}\right\rangle\binom{ n+1+k-j}{n+1} \\
& =\sum_{j=0}^{n}\left\langle\begin{array}{l}
n+1 \\
n-j
\end{array}\right\rangle\binom{ 1+k+(n-j)}{n+1}+\sum_{j=1}^{n+1}\left\langle\begin{array}{c}
n+1 \\
n-j+1
\end{array}\right\rangle\binom{ k+(n-j+1)}{n+1} \\
& =\sum_{j^{\prime}=0}^{n}\left\langle\begin{array}{c}
n+1 \\
j^{\prime}
\end{array}\right\rangle\binom{ 1+k+j^{\prime}}{n+1}+\sum_{j^{\prime \prime}=0}^{n}\left\langle\begin{array}{c}
n+1 \\
j^{\prime \prime}
\end{array}\right\rangle\binom{ k+j^{\prime \prime}}{n+1} \quad \begin{array}{l}
\left(j^{\prime}=n-j,\right. \\
\left.j^{\prime \prime}=n-j+1\right)
\end{array} \\
& =(k+1)^{n+1}+k^{n+1} \text {. }
\end{aligned}
$$

Here, the last equality is derived by Worpitzky's identity.
This polynomial $(k+1)^{n+1}+k^{n+1}$ equals the Ehrhart polynomial of the polar dual C_{n+1}^{\vee} of the classical root polytope of type C and it is shown to be CL in [10].

This theorem shows $A_{1}^{\vee} \oplus A_{n}^{\vee}=\left(A_{1} \times A_{n}\right)^{\vee}$ and C_{n+1}^{\vee} have the same Ehrhart polynomial, though $A_{1} \times A_{n}$ and C_{n+1} are not unimodularly equivalent since C_{n+1} does not have the structure of the product of two polytopes.

The CL-ness of $A_{m}^{\vee} \oplus A_{n}^{\vee}$ with small m and n are calculated by computer using Pari/GP. See appendix for the detail. The results are summarized as shown in Table 1. From the table, we have the following theorem.

Table 1: CL-ness of $A_{m}^{\vee} \oplus A_{n}^{\vee}$ with $m, n \leqslant 20$

$m \backslash n$	0	1	2	3	4	5	6	$7 \sim 20$	$\geqslant 21$
0	CL								
1	CL								
2	CL	CL	CL	CL	CL	CL	not CL	not CL	
3	CL	CL	CL	CL	CL	not CL	not CL	not CL	
4	CL	CL	CL	CL	not CL	not CL	not CL	not CL	
5	CL	CL	CL	not CL					
6	CL	CL	not CL						
$7 \sim 20$	CL	CL	not CL						
$\geqslant 21$	CL	CL							

Theorem 5. $A_{m}^{\vee} \oplus A_{n}^{\vee}$ is CL if $\min \{m, n\} \leqslant 1$ or $m+n \leqslant 7$.
It is not yet shown whether all the cases $m \geqslant 2$ and $n \geqslant 8$ (or vice versa) are not CL, though it is plausible that Theorem 5 is also necessary for $A_{m}^{\vee} \oplus A_{n}^{\vee}$ to be CL. By our computer calculation up to $n, m \leqslant 20$, no other CL parameters are found other than shown above.

$4 \quad$ CL-ness of $A_{n_{1}}^{\vee} \oplus A_{n_{2}}^{\vee} \oplus \cdots \oplus A_{n_{r}}^{\vee}$

In the following theorems, we have families of $A_{p_{1}}^{\vee} \oplus A_{p_{2}}^{\vee} \oplus \cdots \oplus A_{p_{r}}^{\vee}$ that are CL. In what follows, we denote $\underbrace{A_{p}^{\vee} \oplus A_{p}^{\vee} \oplus \cdots \oplus A_{p}^{\vee}}_{n}$ as $\left(A_{p}^{\vee}\right)^{\oplus n}$.

Proposition 6 ([9, Example 3.3]). $\left(A_{1}^{\vee}\right)^{\oplus n}$ is $C L$ for any n.
Proof. This $A_{1}^{\vee} \oplus n$ is the n-dimensional cross polytope Cr_{n}, and is shown to be CL in [9, Example 3.3].

We can further show that $A_{2}^{\vee} \oplus\left(A_{1}^{\vee}\right)^{\oplus n}$ and $A_{3}^{\vee} \oplus\left(A_{1}^{\vee}\right)^{\oplus n}$ are also CL. For these, we use the following lemma. Here, R is the canonical line $\operatorname{Re}(z)=-1 / 2$, and two functions $f(x)$ and $g(x)$ with $\operatorname{deg} f=\operatorname{deg} g+1$ are R-interlacing if all the zeros of $f(x)$ and $g(x)$ are on R and they appear alternatingly on R. That is, the zeros of f are $-1 / 2+z_{1} i,-1 / 2+$ $z_{2} i, \ldots,-1 / 2+z_{d} i$ and those of g are $-1 / 2+w_{1} i,-1 / 2+w_{2} i, \ldots,-1 / 2+w_{d-1} i$, with $z_{1}<w_{1}<z_{2}<w_{2}<\cdots<w_{d-1}<z_{d}$, where $d=\operatorname{deg} f$.

Lemma 7 ([9, Lemma 2.5]). Let f_{1}, f_{2}, and f_{3} be real monic polynomials such that $\operatorname{deg} f_{1}=\operatorname{deg} f_{2}+1=\operatorname{deg} f_{3}+2$ and $f_{1}(x)=f_{2}(x) \cdot\left(x+\frac{1}{2}\right)+\beta f_{3}(x)$ for some $\beta>0$. Then f_{1} and f_{2} are R-interlacing if and only if f_{2} and f_{3} are R-interlacing.

Note that, when we use this lemma for three Ehrhart polynomials E_{1}, E_{2}, and E_{3}, the relation in the lemma should be

$$
E_{1}(k)=\alpha E_{2}(k) \cdot(2 k+1)+(1-\alpha) E_{3}(k) \text { for some } 0 \leqslant \alpha \leqslant 1 .
$$

See [9, Section 3].
Theorem 8. $A_{2}^{\vee} \oplus\left(A_{1}^{\vee}\right)^{\oplus n}$ is CL for any n.
Proof. We have the following equality:

$$
\begin{equation*}
E_{A_{2}^{\vee} \oplus\left(A_{1}^{\vee}\right) \oplus^{\oplus}}(k)=\frac{3}{2 n+4} E_{\left(A_{1}^{\vee}\right)^{\oplus(n+1)}}(k) \cdot(2 k+1)+\frac{2 n+1}{2 n+4} E_{\left(A_{1}^{\vee}\right)^{\oplus n}}(k) . \tag{2}
\end{equation*}
$$

This follows from the relation of the Ehrhart series:
$\operatorname{Ehr}_{A_{2}^{\vee} \oplus\left(A_{1}^{\vee}\right)^{\oplus n}}(t)=\frac{3}{2 n+4}\left(2 t \frac{d}{d t} \operatorname{Ehr}_{\left(A_{1}^{\vee}\right) \oplus(n+1)}(t)+\operatorname{Ehr}_{\left(A_{1}^{\vee}\right)^{\oplus(n+1)}}(t)\right)+\frac{2 n+1}{2 n+4} \operatorname{Ehr}_{\left(A_{1}^{\vee}\right)^{\oplus n}}(t)$.
The equation (2) is derived by comparing the coefficients of t^{k} in (3). The equation (3) can be verified using $\operatorname{Ehr}_{A_{2}^{\vee} \oplus\left(A_{1}^{\vee}\right)^{\oplus n}}(t)=\frac{\left(1+4 t+t^{2}\right)(t+1)^{n}}{(1-t)^{n+3}}$ and $\operatorname{Ehr}_{\left(A_{1}^{\vee}\right) \oplus n}(t)=\frac{(1+t)^{n}}{(1-t)^{n+1}}$ as follows:

$$
\begin{aligned}
\operatorname{RHS} \text { of }(3) & =\frac{3}{2 n+4}\left(2 t \frac{d}{d t} \frac{(1+t)^{n+1}}{(1-t)^{n+2}}+\frac{(1+t)^{n+1}}{(1-t)^{n+2}}\right)+\frac{2 n+1}{2 n+4} \frac{(1+t)^{n}}{(1-t)^{n+1}} \\
& =\frac{(1+t)^{n}}{(1-t)^{n+3}}\left(2 t \frac{3}{2 n+4}((n+1)(1-t)+(1+t)(n+2))\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\quad+\frac{3(1+t)(1-t)}{2 n+4}+\frac{(2 n+1)(1-t)^{2}}{2 n+4}\right) \\
& =\frac{(1+t)^{n}\left(1+4 t+t^{2}\right)}{(1-t)^{n+3}}=\operatorname{Ehr}_{A_{2}^{\vee} \oplus\left(A_{1}^{\vee}\right)^{\oplus n}(t)}
\end{aligned}
$$

Since the Ehrhart polynomials of $\left(A_{1}^{\vee}\right)^{\oplus(n+1)}$ and $\left(A_{1}^{\vee}\right)^{\oplus n}$ (i.e., the cross polytopes Cr_{n+1} and Cr_{n}) are R-interlacing as shown in [9, Corollary 5.4], $A_{2}^{\vee} \oplus\left(A_{1}^{\vee}\right)^{\oplus n}$ and $\left(A_{1}^{\vee}\right)^{\oplus(n+1)}$ are R-interlacing by Lemma 7. Hence, we conclude that $A_{2}^{\vee} \oplus\left(A_{1}^{\vee}\right)^{\oplus n}$ is CL.

Theorem 9. $A_{3}^{\vee} \oplus\left(A_{1}^{\vee}\right)^{\oplus n}$ is $C L$ for any n.
Proof. We have the following equality:

$$
\begin{equation*}
E_{A_{3}^{\vee} \oplus\left(A_{1}^{\vee}\right)^{\oplus n}}(k)=\frac{3}{n+3} E_{\left(A_{1}^{\vee}\right)^{\oplus(n+2)}}(k) \cdot(2 k+1)+\frac{n}{n+3} E_{\left(A_{1}^{\vee}\right)^{\oplus(n+1)}}(k) . \tag{4}
\end{equation*}
$$

This equation follows from
$\operatorname{Ehr}_{A_{3}^{\vee} \oplus\left(A_{1}^{\vee}\right)^{\oplus n}}(t)=\frac{3}{n+3}\left(2 t \frac{d}{d t} \operatorname{Ehr}_{\left(A_{1}^{\vee}\right)^{\oplus(n+2)}}(t)+\operatorname{Ehr}_{\left(A_{1}^{\vee}\right)^{\oplus(n+2)}}(t)\right)+\frac{n}{n+3} \operatorname{Ehr}_{\left(A_{1}^{\vee}\right)^{\oplus(n+1)}}(t)$.
as in Theorem 8, and then the statement follows from Lemma 7.
The equation (5) is verified as follows:

$$
\begin{aligned}
\text { RHS of }(5)= & \frac{3}{n+3}\left(2 t \frac{d}{d t} \frac{(1+t)^{n+2}}{(1-t)^{n+3}}+\frac{(1+t)^{n+2}}{(1-t)^{n+3}}\right)+\frac{n}{n+4} \frac{(1+t)^{n+1}}{(1-t)^{n+2}} \\
= & \frac{(1+t)^{n+1}}{(1-t)^{n+3}}\left(2 t \frac{3}{n+3}((n+2)(1-t)+(1+t)(n+3))\right. \\
& \left.\quad+\frac{3(1+t)(1-t)}{n+3}+\frac{n(1-t)^{2}}{n+3}\right) \\
= & \frac{(1+t)^{n+1}\left(1+10 t+t^{2}\right)}{(1-t)^{n+4}}=\frac{(1+t)^{n}\left(1+11 t+11 t^{2}+t^{3}\right)}{(1-t)^{n+4}}=\operatorname{Ehr}_{A_{3}^{\vee} \oplus\left(A_{1}^{\vee}\right)^{\oplus n}}(t) .
\end{aligned}
$$

Remark 10. Other than Proposition 6, Theorems 8 and $9, A_{4}^{\vee} \oplus\left(A_{1}^{\vee}\right)^{\oplus n}$ and $A_{5}^{\vee} \oplus\left(A_{1}^{\vee}\right)^{\oplus n}$ also seem to be CL by computer calculations for small n 's. On the other hand, also from observation by computer calculation for small n 's, $A_{m}^{\vee} \oplus\left(A_{1}^{\vee}\right)^{\oplus n}$ is not CL for $m \geqslant 7$ and $n \geqslant 2$. The behavior of $A_{6}^{\vee} \oplus\left(A_{1}^{\vee}\right)^{\oplus n}$ is somewhat strange so that it is CL for odd n 's and not CL for even n 's.
Remark 11. In the proof of Theorems 8 and 9, the keys are the equations (2) and (4). Analogously, there are other relations among Ehrhart polynomials of A_{d}^{\vee} 's. We have found the following equations, though we do not currently find any application.
(a) $E_{A_{3}^{\vee} \oplus\left(A_{2}^{\vee}\right)^{\oplus n}}(k)=\frac{2}{2 n+3} E_{\left(A_{2}^{\vee}\right) \oplus(n+1)}(k) \cdot(2 k+1)+\frac{2 n+1}{2 n+3} E_{A_{1}^{\vee} \oplus\left(A_{2}^{\vee}\right)^{\oplus n}}(k)$
(b) $\quad E_{A_{3}^{\vee} \oplus\left(A_{1}^{\vee}\right)^{\oplus n}}(k)=\frac{2}{n+3} E_{A_{2}^{\vee} \oplus\left(A_{1}^{\vee}\right) \oplus n}(k) \cdot(2 k+1)+\frac{2 n+1}{n+3} E_{\left(A_{1}^{\vee}\right) \oplus(n+1)}(k)$ $-\frac{n}{n+3} E_{\left(A_{1}^{\vee}\right)^{\oplus(n-1)}}(k)$
(c) $E_{A_{4}^{\vee} \oplus\left(A_{1}^{\vee}\right)^{\oplus n}}(k)=\frac{5}{2 n+8} E_{A_{3}^{\vee} \oplus\left(A_{1}^{\vee}\right)^{\oplus n}}(k) \cdot(2 k+1)+\frac{5(4 n+2)}{3(2 n+8)} E_{A_{2}^{\vee} \oplus\left(A_{1}^{\vee}\right)^{\oplus n}}(k)$

$$
-\frac{14 n+1}{3(2 n+8)} E_{\left(A_{1}^{\vee}\right) \oplus n}(k)
$$

(d) $\quad E_{\left(A_{2}^{\vee}\right)^{\oplus 2} \oplus\left(A_{1}^{\vee}\right)^{\oplus n}}(k)=\frac{3}{2 n+8} E_{A_{2}^{\vee} \oplus\left(A_{1}^{\vee}\right)^{\oplus(n+1)}}(k) \cdot(2 k+1)+\frac{2 n+3}{2 n+8} E_{A_{2}^{\vee} \oplus\left(A_{1}^{\vee}\right)^{\oplus n}}(k)$

$$
+\frac{2}{2 n+8} E_{\left(A_{1}^{\vee}\right) \oplus^{n}}(k)
$$

(e) $E_{A_{3}^{\vee} \oplus\left(A_{1}^{\vee}\right)^{\oplus n}}(k)=\frac{2}{n+3} E_{A_{2}^{\vee} \oplus\left(A_{1}^{\vee}\right)^{\oplus n}}(k) \cdot(2 k+1)$ $+\frac{n+1}{n+3}\left(\frac{2 n+1}{n+1} E_{\left(A_{1}^{\vee}\right) \oplus(n+1)}(k)-\frac{n}{n+1} E_{\left(A_{1}^{\vee}\right)^{\oplus(n-1)}}(k)\right)$

$$
\begin{aligned}
\frac{2 n+1}{n+1} E_{\left(A_{1}^{\vee}\right) \oplus(n+1)}(k)-\frac{n}{n+1} E_{\left(A_{1}^{\vee}\right)^{\oplus(n-1)}}(k)=\frac{2 n+1}{(n+1)^{2}} & E_{\left(A_{1}^{\vee}\right)^{\oplus n}}(k) \cdot(2 k+1) \\
& +\frac{n^{2}}{(n+1)^{2}} E_{\left(A_{1}^{\vee}\right)^{\oplus(n-1)}}(k)
\end{aligned}
$$

(f) $\quad E_{A_{4}^{\vee} \oplus\left(A_{1}^{\vee}\right) \oplus^{n}}(k)=\frac{5}{2 n+8} E_{A_{3}^{\vee} \oplus\left(A_{1}^{\vee}\right)^{\oplus n}}(k) \cdot(2 k+1)$

$$
+\frac{2 n+3}{2 n+8}\left(\frac{5(4 n+2)}{3(2 n+3)} E_{A_{2}^{\vee} \oplus\left(A_{1}^{\vee}\right)^{\oplus n}}(k)-\frac{14 n+1}{3(2 n+3)} E_{\left(A_{1}^{\vee}\right)^{\oplus n}}(k)\right)
$$

$$
\frac{5(4 n+2)}{3(2 n+3)} E_{\left(A_{2}^{\vee}\right) \oplus\left(A_{1}^{\vee}\right)^{\oplus n}}(k)-\frac{14 n+1}{3(2 n+3)} E_{\left(A_{1}^{\vee}\right)^{\oplus n}}(k)
$$

$$
=\frac{5(2 n+1)}{(2 n+3)(n+2)} E_{\left(A_{1}^{\vee}\right)^{\oplus(n+1)}}(k) \cdot(2 k+1)+\frac{(n-1)(2 n-1)}{(2 n+3)(n+2)} E_{\left(A_{1}^{\vee}\right)^{\oplus n}}(k)
$$

$\left(f^{\prime}\right) \quad E_{A_{4}^{\curlyvee} \oplus\left(A_{1}^{\curlyvee}\right)^{\oplus n}}(k)=\frac{15}{(2 n+8)(n+3)} E_{\left(A_{1}^{\vee}\right)^{\oplus(n+2)}}(k) \cdot(2 k+1)^{2}$

$$
+\frac{15\left(n^{2}+3 n+1\right)}{2(n+2)(n+3)(n+4)} E_{\left(A_{1}^{\vee}\right) \oplus(n+1)}(k) \cdot(2 k+1)+\frac{(2 n-1)(n-1)}{2(n+2)(n+4)} E_{\left(A_{1}^{\vee}\right)^{\oplus n}}(k)
$$

5 Free sums of \boldsymbol{A}_{d} 's

In the previous sections, we have studied the root distributions of the Ehrhart polynomials of the free sums of A_{d}^{\vee} 's. It is also of interest in studying the free sums of other reflexive polytopes. For example, how about the free sums of the classical root polytopes A_{d} 's? Note that since $A_{1}=A_{1}^{\vee}$, the CL-ness and the R-interlacing property for $A_{1}^{\oplus n}=\mathrm{Cr}_{n}$ also hold.

For the root polytope of type A, the Ehrhart polynomial and the δ-polynomial known to be as follows ([2, Theorem 1], [1, Theorem 2]):

$$
E_{A_{d}}(k)=\sum_{j=0}^{d}\binom{d}{j}^{2}\binom{k+d-j}{d}, \quad \delta_{A_{d}}(t)=\sum_{j=0}^{d}\binom{d}{j}^{2} t^{j} .
$$

We have the following several analogous results.
Theorem 12. $A_{1} \oplus A_{n}$ is CL for any $n \geqslant 1$.
Proof. We have the following equality:

$$
\begin{equation*}
E_{A_{1} \oplus A_{n}}(k)=\frac{1}{n+1} E_{A_{n}}(k) \cdot(2 k+1)+\frac{n}{n+1} E_{A_{n-1}}(k) . \tag{6}
\end{equation*}
$$

This relation follows from the following relation of the Ehrhart series:

$$
\begin{equation*}
\operatorname{Ehr}_{A_{1} \oplus A_{n}}(t)=\frac{1}{n+1}\left(2 \frac{d}{d t} \operatorname{Ehr}_{A_{n}}(t)+\operatorname{Ehr}_{A_{n}}(t)\right)+\frac{n}{n+1} \operatorname{Ehr}_{A_{n-1}}(t) \tag{7}
\end{equation*}
$$

which is verified as follows. Since we have

$$
\operatorname{Ehr}_{A_{n}}=\frac{\sum_{j=0}^{n}\binom{n}{j}^{2} t^{j}}{(1-t)^{n+1}}, \quad \operatorname{Ehr}_{A_{1} \oplus A_{n}}=\frac{(1+t) \sum_{j=0}^{n}\binom{n}{j}^{2} t^{j}}{(1-t)^{n+2}}
$$

the equation (7) is equivalent to

$$
\frac{(1+t) \sum_{j=0}^{n}\binom{n}{j}^{2} t^{j}}{(1-t)^{n+2}}=\frac{1}{n+1}\left(2 \frac{d}{d t} \frac{\sum_{j=0}^{n}\binom{n}{j}^{2} t^{j}}{(1-t)^{n+1}}+\frac{\sum_{j=0}^{n}\binom{n}{j}^{2} t^{j}}{(1-t)^{n+1}}\right)+\frac{n}{n+1} \frac{\sum_{j=0}^{n-1}\binom{n-1}{j}^{2} t^{j}}{(1-t)^{n}},
$$

and we have

$$
\begin{aligned}
(1+t) \sum_{j=0}^{n}\binom{n}{j}^{2} t^{j}= & \frac{2 t}{n+1}(1-t) \sum_{j=1}^{n} j\binom{n}{j}^{2} t^{j-1}+2 t \sum_{j=0}^{n}\binom{n}{j}^{2} t^{j} \\
& +\frac{1}{n+1}(1-t) \sum_{j=0}^{n}\binom{n}{j}^{2} t^{j}+\frac{n}{n+1}(1-t)^{2} \sum_{j=0}^{n-1}\binom{n-1}{j}^{2} t^{j} .
\end{aligned}
$$

By comparing the coefficients of t^{i}, what we have to show is

$$
\begin{align*}
&\binom{n}{i}^{2}+\binom{n}{i-1}^{2}=\frac{2}{n+1}\left(i\binom{n}{i}^{2}-(i-1)\binom{n}{i-1}^{2}\right)+2\binom{n}{i-1}^{2} \\
& \quad+\frac{1}{n+1}\left(\binom{n}{i}^{2}-\binom{n}{i-1}^{2}\right)+\frac{n}{n+1}\left(\binom{n-1}{i}^{2}-2\binom{n-1}{i-1}^{2}+\binom{n-1}{i-2}^{2}\right) \tag{8}
\end{align*}
$$

where $\binom{n}{i}$ is assumed to be 0 when $i<0$ or $i>n$. This is verified by

$$
\binom{n}{i}^{2}+\binom{n}{i-1}^{2}=\binom{n}{i}^{2}+\frac{i^{2}}{(n-i+1)^{2}}\binom{n}{i}^{2}=\frac{n^{2}-2 i n+2 n+2 i^{2}-2 i+1}{(n-i+1)^{2}}\binom{n}{i}^{2}
$$

and

$$
\begin{aligned}
\text { RHS of }(8)= & \frac{2}{n+1}\left(i\binom{n}{i}^{2}-(i-1)\binom{n}{i-1}^{2}\right)+2\binom{n}{i-1}^{2}+\frac{1}{n+1}\left(\binom{n}{i}^{2}-\binom{n}{i-1}^{2}\right) \\
& +\frac{n}{n+1}\left(\frac{(n-i)^{2}}{n^{2}}\binom{n}{i}^{2}-2 \frac{(n-i+1)^{2}}{n^{2}}\binom{n}{i-1}^{2}+\frac{(i-1)^{2}}{n^{2}}\binom{n}{i-1}^{2}\right) \\
= & \frac{n^{2}+n+i^{2}}{n(n+1)}\binom{n}{i}^{2}+\frac{2 n i-n-i^{2}+2 i-1}{n(n+1)}\binom{n}{i-1}^{2} \\
= & \frac{n^{2}-2 i n+2 n+2 i^{2}-2 i+1}{(n-i+1)^{2}}\binom{n}{i}^{2} .
\end{aligned}
$$

Since the Ehrhart polynomials of A_{n} and A_{n-1} are R-interlacing as shown in [9], the statement follows from Lemma 7 and (6).

Proposition 13. $A_{2} \oplus A_{1}^{\oplus n}$ are CL for any $n \geqslant 1$.
Proof. This follows from Theorem 8, since we have $E_{A_{1}}(k)=E_{A_{1}^{\vee}}(k)$ and $E_{A_{2}}(k)=$ $E_{A_{2}^{\vee}}(k)$.

Theorem 14. $A_{3} \oplus A_{1}^{\oplus n}$ is CL for any $n \geqslant 1$.
Proof. We have the following relation:

$$
\begin{equation*}
E_{A_{3} \oplus A_{1}^{\oplus n}}(k)=\frac{5}{2(n+3)} E_{\mathrm{Cr}_{n+2}}(k) \cdot(2 k+1)+\frac{2 n+1}{2(n+3)} E_{\mathrm{Cr}_{n+1}}(k) . \tag{9}
\end{equation*}
$$

This follows from the relation of the Ehrhart series:

$$
\begin{equation*}
\operatorname{Ehr}_{A_{3} \oplus A_{1}^{\oplus n}}=\frac{5}{2(n+3)}\left(2 t \frac{d}{d t} \operatorname{Ehr}_{\operatorname{Cr}_{n+2}}(t)+\operatorname{Ehr}_{\operatorname{Cr}_{n+2}}(t)\right)+\frac{2 n+1}{2(n+3)} \operatorname{Ehr}_{\operatorname{Cr}_{n+1}}(t) \tag{10}
\end{equation*}
$$

The equation (9) is derived by comparing the coefficients of t^{k} in (10). The equation (10) can be verified using $\operatorname{Ehr}_{A_{3} \oplus A_{1}^{\oplus n}}(t)=\frac{\left(1+9 t+9 t^{2}+t^{3}\right)(1+t)^{n}}{(1-t)^{n+4}}$ and $\operatorname{Ehr}_{\mathrm{Cr}_{n}}(t)=\frac{(1+t)^{n}}{(1-t)^{n+1}}$ as follows: RHS of $(10)=\frac{5}{2(n+3)}\left(2 t \frac{d}{d t} \frac{(1+t)^{n+2}}{(1-t)^{n+3}}+\frac{(1+t)^{n+2}}{(1-t)^{n+3}}\right)+\frac{2 n+1}{2(n+3)} \frac{(1+t)^{n+1}}{(1-t)^{n+2}}$

$$
\begin{aligned}
& =\frac{(1+t)^{n}}{(1-t)^{n+4}}\left(2 t \frac{5}{2(n+3)}\left((n+2)(1+t)(1-t)+(1+t)^{2}(n+3)\right)\right. \\
& \left.\quad+\frac{5(1-t)(1+t)^{2}}{2(n+3)}+\frac{(2 n+1)(1+t)(1-t)^{2}}{2(n+3)}\right) \\
& =\frac{(1+t)^{n}\left(1+9 t+9 t^{2}+t^{3}\right)}{(1-t)^{n+4}}=\operatorname{Ehr}_{A_{3} \oplus A_{1}^{\oplus n}}(t) .
\end{aligned}
$$

The R-interlacing property follows from Lemma 7, since the Ehrhart polynomials of the cross polytopes Cr_{n+1} and Cr_{n} are R-interlacing.

Table 2 shows the CL-ness of $A_{m} \oplus A_{n}$, calculated by computer using Pari/GP. Comparing with that of $A_{m}^{\vee} \oplus A_{n}^{\vee}$, the behavior is somewhat complex. (Here, "C" means CL, and " n " means not CL.) Similar to the case of $A_{m} \oplus A_{n}$, it is CL for small m and n. On the other hand, the behavior looks different when m and n are large. Those around the diagonal tend to be CL and it is plausible that $A_{n} \oplus A_{n}$ are CL for all n, for example, but we currently do not have any proof. By a computation using Pari/GP, $A_{n} \oplus A_{n}$ and $A_{n} \oplus A_{n+1}$ are CL for all n up to 100, while $A_{n} \oplus A_{n+2}$ are CL up to $n=54$ but are not CL from $n=55$ up to 100 .

Table 2: CL-ness of $A_{m} \oplus A_{n}$ with $m, n \leqslant 20$

$n \backslash m$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
0	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
1	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
2	C	C	C	C	C	C	C	C	C	C	C	C	C	C	n	n	n	n	n	n	n
3	C	C	C	C	C	C	C	C	C	n	n	n	n	n	n	n	n	n	n	n	C
4	C	C	C	C	C	C	C	C	C	n	n	n	n	n	n	C	C	C	C	n	n
5	C	C	C	C	C	C	C	C	C	n	n	n	n	n	C	C	C	n	n	n	n
6	C	C	C	C	C	C	C	C	C	C	n	n	n	n	C	C	C	n	n	n	C
7	C	C	C	C	C	C	C	C	C	C	C	n	n	n	C	C	C	n	n	C	n
8	C	C	C	C	C	C	C	C	C	C	C	C	n	n	C	C	C	n	n	n	n
9	C	C	C	n	n	n	C	C	C	C	C	C	n	n	n	C	C	C	n	n	n
10	C	C	C	n	n	n	n	C	C	C	C	C	C	n	n	n	C	C	n	n	n
11	C	C	C	n	n	n	n	n	C	C	C	C	C	C	n	n	C	C	C	n	n
12	C	C	C	n	n	n	n	n	n	n	C	C	C	C	C	n	n	C	C	C	n
13	C	C	C	n	n	n	n	n	n	n	n	C	C	C	C	C	n	n	C	C	n
14	C	C	n	n	n	C	C	C	C	n	n	n	C	C	C	C	C	n	n	C	C
15	C	C	n	n	C	C	C	C	C	C	n	n	n	C	C	C	C	C	n	n	C
16	C	C	n	n	C	C	C	C	C	C	C	C	n	n	C	C	C	C	C	n	n
17	C	C	n	n	C	n	n	n	n	C	C	C	C	n	n	C	C	C	C	C	n
18	C	C	n	n	C	n	n	n	n	n	n	C	C	C	n	n	C	C	C	C	C
19	C	C	n	n	n	n	n	C	n	n	n	n	C	C	C	n	n	C	C	C	C
20	C	C	n	C	n	n	C	n	n	n	n	n	n	n	C	C	n	n	C	C	C

References

[1] F. Ardila, M. Beck, S. Hoşten, J. Pfeifle and K. Seashore, Root polytopes and growth series of root lattices, SIAM J. Discrete Math. 25, 360-378 (2011)
[2] R. Bacher, P. de la Harpe and B. Venkov, Séries de croissance et polynêmes d'Ehrhart associés aux réseaux de racines, Ann. Inst. Fourier 49, 727-762 (1999), Symposium a la Memoire de Francois Jaeger (Grenoble, 1998)
[3] V. V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Algebraic Geom. 3 (1994), 493-535.
[4] M. Beck and S. Robins, "Computing the Continuous Discretely", Undergraduate Texts in Mathematics, Springer, 2007.
[5] B. Braun, An Ehrhart series formula for reflexive polytopes, Electron. J. Combin. 13:\#N15 (2006).
[6] R.L. Graham, D.E. Knuth and O. Patashnik, Concrete Mathematics, Second Edition, Addison-Wesley, 1994.
[7] G. Hegedüs, A. Higashitani and A. Kasprzyk, Ehrhart Polynomial Roots of Reflexive Polytopes, Electron. J. Combin., 26:\#P1.38 (2019).
[8] T. Hibi, Dual polytopes of rational convex polytopes, Combinatorica 12 (1992), 237240.
[9] A. Higashitani, M. Kummer and M. Michałek, Interlacing Ehrhart polynomials of reflexive polytopes, Sel. Math. New. Ser., 23 (2017), 2977-2998.
[10] A. Higashitani and Y. Yamada, The distribution of roots of Ehrhart polynomials for the dual of root polytopes, arXiv:2105.11677 (2021).
[11] T. Matsui, A. Higashitani, Y. Nagazawa, H. Ohsugi and T. Hibi, Roots of Ehrhart polynomials arising from graphs, J. Algebr. Comb., 34 (2011), 721-749.
[12] K. Petersen, Eulerian Numbers, Birkhäuser (2015).
[13] V. Reiner and V. Welker, On the Charney-Davis and Neggers-Stanley conjectures, J. Combin. Theory Ser. A, 109 (2005), 247-280.
[14] F. Rodriguez-Villegas, On the zeros of certain polynomials, Proc. Amer. Math. Soc. 130 (2002), 2251-2254.
[15] R. P. Stanley, Two poset polytopes, Discrete Comput. Geom., 1 (1986), 9-23.
[16] A. Stapledon, Counting lattice points in free sums of polytopes, J. Combin. Theory Ser. A, 151 (2017), 51-60.

Appendix: Some results by computer calculation

As mentioned in Section 3, we investigated the CL-ness for $A_{m}^{\vee} \oplus A_{n}^{\vee}$ with $m, n \geqslant 2$ by computer calculations. The δ-vectors, Ehrhart polynomials, and the CL-ness are listed
in Table 3. The computation is done by using Pari/GP. The results are summarized in Theorem 5 .

We also calculated the case of the free sums of three or four A_{d}^{\vee} 's with small parameters (up to 20) by using Pari/GP. For the case of the free sums of three A_{d}^{\vee}, our computer calculations are as follows.
$A_{1}^{\vee} \oplus A_{1}^{\vee} \oplus A_{n}^{\vee}:$ CL for $n=1, \ldots, 5$, not CL for $n=6, \ldots, 20$
$A_{1}^{\vee} \oplus A_{2}^{\vee} \oplus A_{n}^{\vee}:$ CL for $n=2, \ldots, 4$, not CL for $n=5, \ldots, 20$
$A_{1}^{\vee} \oplus A_{3}^{\vee} \oplus A_{n}^{\vee}:$ CL for $n=3,4$, not CL for $n=5, \ldots, 20$
$A_{1}^{\vee} \oplus A_{4}^{\vee} \oplus A_{n}^{\vee}:$ not CL for $n=4$, CL for $n=5$, not CL for $n=6, \ldots, 20$
$A_{2}^{\vee} \oplus A_{2}^{\vee} \oplus A_{n}^{\vee}:$ CL for $n=2,3$, not CL for $n=4, \ldots, 20$
$A_{2}^{\vee} \oplus A_{3}^{\vee} \oplus A_{n}^{\vee}:$ CL for $n=3, \ldots, 6$, not CL for $n=7, \ldots, 20$
Other parameters (each from 1 to 20) not listed here are not CL, up to permutation of the parameters.

Similarly to the case of two parameters, roughly speaking, we can observe that CL-ness hods for small parameters and CL-ness does not hold for large parameters. However, the boundary is sometimes complexified such that the CL/nonCL is not monotone: $A_{1}^{\vee} \oplus A_{4}^{\vee} \oplus$ A_{n}^{\vee} is CL for small $n \leqslant 3$, not CL for $n=4$, CL for $n=5$, and not CL for $n=6, \ldots, 20$. The same can be observed for $A_{1}^{\vee} \oplus A_{m}^{\vee} \oplus A_{5}^{\vee}$. It is not CL for $m=2,3$, CL for $m=4$, and not CL for $m \geqslant 5$.

For the case of four A_{d}^{\vee} 's, our computer calculations are shown as follows.
$A_{1}^{\vee} \oplus A_{1}^{\vee} \oplus A_{1}^{\vee} \oplus A_{n}^{\vee}:$ CL for $n=1, \ldots, 4$, not CL for $n=5$, CL for $n=6$, not CL for $n=7, \ldots, 20$
$A_{1}^{\vee} \oplus A_{1}^{\vee} \oplus A_{2}^{\vee} \oplus A_{n}^{\vee}:$ CL for $n=2, \ldots, 5$, not CL for $n=6, \ldots, 20$
$A_{1}^{\vee} \oplus A_{1}^{\vee} \oplus A_{3}^{\vee} \oplus A_{n}^{\vee}:$ CL for $n=3, \ldots, 5$, not CL for $n=6, \ldots, 20$
$A_{1}^{\vee} \oplus A_{1}^{\vee} \oplus A_{4}^{\vee} \oplus A_{n}^{\vee}$: CL for $n=4$, not CL for $n=5, \ldots, 20$
$A_{1}^{\vee} \oplus A_{2}^{\vee} \oplus A_{2}^{\vee} \oplus A_{n}^{\vee}:$ CL for $n=2, \ldots, 6$, not CL for $n=7, \ldots, 20$
$A_{1}^{\vee} \oplus A_{2}^{\vee} \oplus A_{3}^{\vee} \oplus A_{n}^{\vee}:$ CL for $n=3, \ldots, 5$, not CL for $n=6, \ldots, 20$
$A_{1}^{\vee} \oplus A_{2}^{\vee} \oplus A_{4}^{\vee} \oplus A_{n}^{\vee}:$ CL for $n=4$, not CL for $n=5$, CL for $n=6$, not CL for $n=7, \ldots, 20$
$A_{1}^{\vee} \oplus A_{3}^{\vee} \oplus A_{3}^{\vee} \oplus A_{n}^{\vee}:$ not CL for $n=3$, CL for $n=4$, not CL for $n=5, \ldots, 20$
$A_{1}^{\vee} \oplus A_{3}^{\vee} \oplus A_{4}^{\vee} \oplus A_{n}^{\vee}:$ not CL for $n=4$, CL for $n=5$, not CL for $n=6, \ldots, 20$
$A_{2}^{\vee} \oplus A_{2}^{\vee} \oplus A_{3}^{\vee} \oplus A_{n}^{\vee}:$ CL for $n=3$, not CL for $n=4, \ldots, 20$
$A_{2}^{\vee} \oplus A_{3}^{\vee} \oplus A_{3}^{\vee} \oplus A_{n}^{\vee}:$ not CL for $n=3$, CL for $n=4$, not CL for $n=5, \ldots, 20$
Other parameters (each from 1 to 20) not listed here are not CL, up to permutation of the parameters.

Table 3: δ-vectors, Ehrhart polynomials, and CL-ness of $A_{m}^{\vee} \oplus A_{n}^{\vee}$ with $2 \leqslant m, n \leqslant 7$

m	n	$\delta\left(A_{m}^{\vee} \oplus A_{n}^{\vee}\right), E_{A_{m}^{\vee} \oplus A_{n}^{\vee}}(k)$	
2	2	$\begin{aligned} & (1,8,18,8,1) \\ & \frac{3}{2} x^{4}+3 x^{3}+\frac{9}{2} x^{2}+3 x+1 \end{aligned}$	CL
2	3	$\begin{aligned} & (1,15,56,56,15,1) \\ & \frac{6}{5} x^{5}+3 x^{4}+6 x^{3}+6 x^{2}+\frac{19}{5} x+1 \end{aligned}$	CL
2	4	$\begin{aligned} & (1,30,171,316,171,30,1) \\ & x^{6}+3 x^{5}+\frac{15}{2} x^{4}+10 x^{3}+\frac{19}{2} x^{2}+5 x+1 \end{aligned}$	CL
2	5	$\begin{aligned} & (1,61,531,1567,1567,531,61,1) \\ & \frac{6}{7} x^{7}+3 x^{6}+9 x^{5}+15 x^{4}+19 x^{3}+15 x^{2}+\frac{43}{7} x+1 \end{aligned}$	CL
2	6	$\begin{aligned} & (1,124,1672,7300,12046,7300,1672,124,1) \\ & \frac{3}{4} x^{8}+3 x^{7}+\frac{21}{2} x^{6}+21 x^{5}+\frac{133}{4} x^{4}+35 x^{3}+\frac{43}{2} x^{2}+7 x+1 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { not } \\ \text { CL } \end{array}$
2	7	$\begin{aligned} & (1,251,5282,33038,82388,82388,33038,5282,251,1) \\ & \frac{2}{3} x^{9}+3 x^{8}+12 x^{7}+28 x^{6}+\frac{266}{5} x^{5}+70 x^{4}+\frac{172}{3} x^{3}+28 x^{2}+\frac{39}{5} x+1 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { not } \\ \text { CL } \end{array}$
3	3	$\begin{aligned} & (1,22,143,244,143,22,1) \\ & \frac{4}{5} x^{6}+\frac{12}{5} x^{5}+6 x^{4}+8 x^{3}+\frac{36}{5} x^{2}+\frac{18}{5} x+1 \end{aligned}$	CL
3	4	$\begin{aligned} & (1,37,363,1039,1039,363,37,1) \\ & \frac{4}{7} x^{7}+2 x^{6}+6 x^{5}+10 x^{4}+12 x^{3}+9 x^{2}+\frac{31}{7} x+1 \end{aligned}$	CL
3	5	$\begin{aligned} & (1,68,940,4252,6758,4252,940,68,1) \\ & \frac{3}{7} x^{8}+\frac{12}{7} x^{7}+6 x^{6}+12 x^{5}+18 x^{4}+18 x^{3}+\frac{95}{7} x^{2}+\frac{44}{7} x+1 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { not } \\ \text { CL } \end{array}$
3	6	$\begin{aligned} & (1,131,2522,16838,40988,40988,16838,2522,131,1) \\ & \frac{1}{3} x^{9}+\frac{3}{2} x^{8}+6 x^{7}+14 x^{6}+\frac{126}{5} x^{5}+\frac{63}{2} x^{4}+\frac{95}{3} x^{3}+22 x^{2}+\frac{39}{5} x+1 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { not } \\ \text { CL } \end{array}$
3	7	$\begin{aligned} & (1,258,7021,65560,234898,352204,234898,65560,7021,258,1) \\ & \frac{4}{15} x^{10}+\frac{4}{3} x^{9}+6 x^{8}+16 x^{7}+\frac{168}{5} x^{6}+\frac{252}{5} x^{5}+\frac{190}{3} x^{4}+\frac{176}{3} x^{3}+\frac{154}{5} x^{2}+\frac{38}{5} x+1 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { not } \\ \text { CL } \end{array}$
4	4	$\begin{aligned} & (1,52,808,3484,5710,3484,808,52,1) \\ & \frac{5}{14} x^{8}+\frac{10}{7} x^{7}+5 x^{6}+10 x^{5}+15 x^{4}+15 x^{3}+\frac{135}{14} x^{2}+\frac{25}{7} x+1 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { not } \\ \text { CL } \end{array}$
4	5	$\begin{aligned} & (1,83,1850,11942,29324,29324,11942,1850,83,1) \\ & \frac{5}{21} x^{9}+\frac{15}{14} x^{8}+\frac{30}{7} x^{7}+10 x^{6}+18 x^{5}+\frac{45}{2} x^{4}+\frac{415}{21} x^{3}+\frac{80}{7} x^{2}+\frac{33}{7} x+1 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { not } \\ \text { CL } \end{array}$
4	6	$\begin{aligned} & (1,146,4377,41328,145734,221628,145734,41328,4377,146,1) \\ & \frac{1}{6} x^{10}+\frac{5}{6} x^{9}+\frac{15}{4} x^{8}+10 x^{7}+21 x^{6}+\frac{63}{2} x^{5}+\frac{415}{12} x^{4}+\frac{80}{3} x^{3}+\frac{37}{2} x^{2}+9 x+1 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { not } \\ \text { CL } \end{array}$
4	7	$\begin{aligned} & (1,273,10781,143565,711474,1553106,1553106,711474,143565,10781,273,1) \\ & \frac{4}{33} x^{11}+\frac{2}{3} x^{10}+\frac{10}{3} x^{9}+10 x^{8}+24 x^{7}+42 x^{6}+\frac{166}{3} x^{5}+\frac{160}{3} x^{4}+\frac{146}{3} x^{3}+35 x^{2}+\frac{127}{11} x+1 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { not } \\ \text { CL } \end{array}$
5	5	$\begin{aligned} & (1,114,3853,35032,125746,188908,125746,35032,3853,114,1) \\ & \frac{1}{7} x^{10}+\frac{5}{7} x^{9}+\frac{45}{14} x^{8}+\frac{60}{7} x^{7}+18 x^{6}+27 x^{5}+\frac{425}{14} x^{4}+\frac{170}{7} x^{3}+\frac{72}{7} x^{2}+\frac{10}{7} x+1 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { not } \\ \text { CL } \end{array}$
5	6	$\begin{aligned} & (1,177,8333,106845,534882,1164162,1164162,534882,106845,8333,177,1) \\ & \frac{1}{11} x^{11}+\frac{1}{2} x^{10}+\frac{5}{2} x^{9}+\frac{15}{2} x^{8}+18 x^{7}+\frac{63}{2} x^{6}+\frac{85}{2} x^{5}+\frac{85}{2} x^{4}+28 x^{3}+11 x^{2}+\frac{43}{11} x+1 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { not } \\ \text { CL } \end{array}$
5	7	$\begin{aligned} & (1,304,18674,335216,2277039,6922080,9923772,6922080,2277039,335216,18674,304,1) \\ & \frac{2}{33} x^{12}+\frac{4}{11} x^{11}+2 x^{10}+\frac{20}{3} x^{9}+18 x^{8}+36 x^{7}+\frac{170}{3} x^{6}+68 x^{5}+55 x^{4}+\frac{82}{3} x^{3}+\frac{289}{11} x^{2}+\frac{216}{11} x+1 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { not } \\ \text { CL } \end{array}$
6	6	$\begin{aligned} & \text { (1,240,16782,290672,2000703,6040992,8702820,6040992,2000703,290672,16782,240,1) } \\ & \frac{7}{132} x^{12}+\frac{7}{22} x^{11}+\frac{7}{4} x^{10}+\frac{35}{6} x^{9}+\frac{63}{4} x^{8}+\frac{63}{2} x^{7}+\frac{595}{12} x^{6}+\frac{119}{2} x^{5}+56 x^{4}+\frac{119}{3} x^{3}+\frac{63}{22} x^{2}-\frac{119}{11} x+1 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { not } \\ \text { CL } \end{array}$
6	7	$\begin{aligned} & (1,367,35124,827372,7600805,31146987,61995744,61995744,31146987,7600805,827372,35124,367,1) \\ & \frac{14}{429} x^{13}+\frac{7}{33} x^{12}+\frac{14}{11} x^{11}+\frac{14}{3} x^{10}+14 x^{9}+\frac{63}{2} x^{8}+\frac{170}{3} x^{7}+\frac{238}{3} x^{6}+\frac{441}{5} x^{5}+\frac{455}{6} x^{4}+\frac{357}{11} x^{3} \\ & -\frac{28}{11} x^{2}-\frac{1163}{715} x+1 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { not } \\ \text { CL } \end{array}$
7	7	$\begin{aligned} & \text { (1,494,69595,2151980,26176873,141829106,380179131,524888040,380179131,141829106,26176873, } \\ & 2151980,69595,494,1) \\ & \frac{8}{429} x^{14}+\frac{56}{429} x^{13}+\frac{28}{33} x^{12}+\frac{112}{33} x^{11}+\frac{56}{5} x^{10}+28 x^{9}+\frac{170}{3} x^{8}+\frac{272}{3} x^{7}+\frac{1736}{15} x^{6}+\frac{1736}{15} x^{5}+\frac{1260}{11} x^{4} \\ & +\frac{1110}{11} x^{3}-\frac{32184}{715} x^{2}-\frac{61306}{715} x+1 \end{aligned}$	not

[^0]: *Partially supported by JSPS Grant-in-Aid for Scientists Research (C) 20K03513

