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Abstract

This work focuses on higgledy-piggledy sets of k-subspaces in PG(N, q), i.e.
sets of projective subspaces that are ‘well-spread-out’. More precisely, the set of
intersection points of these k-subspaces with any (N − k)-subspace κ of PG(N, q)
spans κ itself.

We highlight three methods to construct small higgledy-piggledy sets of k-
subspaces and discuss, for k ∈ {1, N − 2}, ‘optimal’ sets that cover the smallest
possible number of points.

Furthermore, we investigate small non-trivial higgledy-piggledy sets in PG(N, q),
N ! 5. Our main result is the existence of six lines of PG(4, q) in higgledy-piggledy
arrangement, two of which intersect. Exploiting the construction methods men-
tioned above, we also show the existence of six planes of PG(4, q) in higgledy-
piggledy arrangement, two of which maximally intersect, as well as the existence of
two higgledy-piggledy sets in PG(5, q) consisting of eight planes and seven solids,
respectively.

Finally, we translate these geometrical results to a coding- and graph-theoretical
context.

Mathematics Subject Classifications: 05B25, 94B05, 51E20, 51E21

1 Introduction

The main topic of this article concerns small sets of projective subspaces that are ‘well-
spread-out’ (copying a well-put description of [15, 16]). The existence of infinite families
of such combinatorial objects implies the existence of e.g. minimal codes and covering
codes of relatively small length (see Section 5). Before going into detail concerning the
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significance of these structures and their applications, we first describe the setting in
which we will work and introduce the necessary preliminaries.
Throughout this work, we generally assume that N ∈ N and that q is a prime power.
The Galois field of order q will be denoted by Fq and the Desarguesian projective space
of (projective) dimension N over Fq will be denoted by PG(N, q). We refer to [22, 23] for
an extensive overview on the topic of finite geometry.

One type of structure that is being thoroughly investigated in the literature are blocking
sets. We adopt the definition used in [12].

Definition 1. Let k ∈ {0, 1, . . . , N − 1}. A k-blocking set of PG(N, q) is a point set
that meets every (N − k)-dimensional subspace. A 1-blocking set will simply be called a
blocking set.

A k-subspace is the easiest (and smallest) example of a k-blocking set of PG(N, q) [9]. A
natural generalisation of a k-blocking set of PG(N, q) is the concept of a t-fold k-blocking
set, t ∈ N, which is a point set of PG(N, q) that meets every (N−k)-dimensional subspace
in at least t points. Obviously, any set of t pairwise disjoint k-subspaces is a t-fold k-
blocking set.

Definition 2. Let k ∈ {0, 1, . . . , N − 1}. A strong k-blocking set is a point set that meets
every (N − k)-dimensional subspace κ in a set of points spanning κ. A strong 1-blocking
will simply be called a strong blocking set.

The concept of a strong k-blocking set was introduced in [10, Definition 3.1]. However,
these are also known as generator sets ([15, Definition 2]) and cutting blocking sets ([8,
Definition 3.4]) in case k = 1.
Note that any strong k-blocking set is necessarily an (N − k + 1)-fold k-blocking set,
although the converse is generally false. Following this line of thought, one could wonder
if a strong k-blocking set could be constructed by considering all points lying in the union
of a certain number of well-chosen k-subspaces. Although sporadic examples of such point
sets were already presented in [10], this idea was thoroughly investigated in [15, 21] for
k = 1 and later generalised in [16] to arbitrary k.

Definition 3 (Higgledy-piggledy set of k-subspaces). Let k ∈ {0, 1, . . . , N − 1} and sup-
pose that K is a set of k-subspaces in PG(N, q). If the set of all points lying in at least
one subspace of K is a strong k-blocking set, then the elements of K are said to be in
higgledy-piggledy arrangement and the set K itself is said to be a higgledy-piggledy set of
k-subspaces.

One often excludes the trivial cases k ∈ {0, N − 1}. After all, any set of N + 1 points
spanning the whole space PG(N, q) is a higgledy-piggledy point set of smallest size. Con-
versely (or by duality, see Proposition 13), any set of N+1 hyperplanes with the property
that no point lies in all of them, is a higgledy-piggledy set of hyperplanes of smallest size.

If 1 ! k ! N − 2, however, it is generally not an easy task to find small higgledy-piggledy
sets of k-subspaces. The following ‘almost-equivalent’ condition was first derived for sets
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of lines in [15] and later generalised to sets of k-subspaces in [16], and will prove to be a
great tool to ease the search for higgledy-piggledy sets.

Theorem 4 ([16, Theorem 4 and Proposition 5]). Let k ∈ {0, 1, . . . , N − 1} and suppose
that K is a set of k-subspaces in PG(N, q). If no (N −k−1)-subspace meets each element
of K, then K is a higgledy-piggledy set of k-subspaces. If |K| ! q, the converse holds as
well.

As one generally wishes to construct higgledy-piggledy sets of small size, lower bounds
on the size of such sets were determined to reveal which sizes would (theoretically) be
optimal. A lower bound on higgledy-piggledy line sets was determined in [15] for q large
enough, and very recently strengthened in [20] to all values of q.

Theorem 5 ([20, Theorem 3.12]). A higgledy-piggledy line set of PG(N, q) contains at

least N +
!
N
2

"
−

#
N−1
q

$
elements.

Based on the reasoning behind [15, Theorem 14], the authors of [16] inductively deter-
mined a lower bound on the size of general higgledy-piggledy sets of k-subspaces.

Theorem 6 ([16, Theorem 20]). Let k ∈ {0, 1, . . . , N − 1}. A higgledy-piggledy set of

k-subspaces in PG(N, q) contains at least min
%
q,
&k

i=0

!
N−k+i
i+1

"'
+ 1 elements.

The latter theorem can in fact be improved for k > N−1
2

if one takes the duality of the
projective space into account.

Theorem 7. Let k ∈ {0, 1, . . . , N − 1}. A higgledy-piggledy set of k-subspaces of PG(N, q)
contains at least

min

(
q,max

(
(k + 1) +

k+1)

i=1

*
N − k − 1

i

+
, (N − k) +

N−k)

i=1

*
k

i

+,,
+ 1

elements.

Proof. This follows immediately from Theorem 6 and Proposition 13. We have rewritten
the formula to emphasize its duality.

The main topic of this article concerns the flip side of the coin, namely the search for
tighter upper bounds on the size of the smallest possible higgledy-piggledy sets of k-
subspaces in PG(N, q). This is naturally done by constructing small higgledy-piggledy
sets, ideally with a size as close as possible to the theoretical lower bound.
A naive but interesting example of a general higgledy-piggledy line set is the tetrahedron,
first mentioned in [11, Theorem 6]. This is a set of lines obtained by simply pairwise

connecting N+1 points of PG(N, q) that span the whole space, resulting in a set of N(N+1)
2

lines in higgledy-piggledy arrangement. Several years later, smaller higgledy-piggledy line
sets were found and subsequently generalised.
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Theorem 8 ([15, Theorem 24]). If q " 2N − 1, then there exist 2N − 1 pairwise disjoint
lines of PG(N, q) in higgledy-piggledy arrangement.

Theorem 9. [16, Proposition 10 and Subsection 3.4] Let k ∈ {0, 1, . . . , N − 1}. If q >
N + 1, then there exist (N − k)(k + 1) + 1 distinct k-subspaces of PG(N, q) in higgledy-
piggledy arrangement.

Although the theorems above present very strong upper bounds on the size of the smallest
possible higgledy-piggledy sets of k-subspaces, the case of q small is neglected. Using a
probabilistic approach, the authors of [20, Theorems 4.1 and 6.5] very recently obtained
new upper bounds for all values of q; one can check that their upper bounds improve the
results above if and only if q ! N + 1. Especially their thorough investigation of the
binary case deserves to be mentioned.

Besides these general results, sporadic examples of higgledy-piggledy sets can be found in
the literature.

Theorem 10.

1. [10, 15, Theorem 3.7, Example 9] There exist four pairwise disjoint lines of PG(3, q)
in higgledy-piggledy arrangement.

2. [7, Proposition 12] If q > 36086 is no power of 2 or 3, then there exist six pairwise
disjoint lines of PG(4, q) in higgledy-piggledy arrangement.

3. [6, Theorem 3.15] There exist seven pairwise disjoint lines of PG(5, q) in higgledy-
piggledy arrangement.

The authors of [10] also prove the existence of nine planes of PG(4, q) in higgledy-piggledy
arrangement. However, if q " 7, Theorem 9 improves this result, as it implies the existence
of seven planes of PG(4, q) in higgledy-piggledy arrangement.

In this work, we focus on small non-trivial higgledy-piggledy sets of PG(4, q) and PG(5, q).
The article is organised as follows. In Section 2, we first discuss three general construction
methods to obtain small higgledy-piggledy sets of PG(N, q). Secondly, we bundle some
curious observations concerning general higgledy-piggledy line sets and sets of (N − 2)-
subspaces.
Section 3 and 4 are devoted to the search for small non-trivial higgledy-piggledy sets in
PG(4, q) and PG(5, q), respectively. The following summarises all main results that will
be presented throughout this work.

Main Results. For all prime powers q, the following higgledy-piggledy sets exist.

1. six lines of PG(4, q), two of which intersect (Theorem 33),

2. six planes of PG(4, q), two of which intersect in a line (Corollary 34),

3. eight pairwise disjoint planes of PG(5, q) (Theorem 39), and
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4. seven solids of PG(5, q), q " 7, pairwise intersecting in a line (Corollary 35).

Finally, Section 5 describes some coding- and graph-theoretical results that arise due to
the existence of the above higgledy-piggledy sets.

2 Construction methods and optimal higgledy-piggledy sets

The first part of this section is dedicated to the discussion of three techniques to construct
higgledy-piggledy sets of k-subspaces: projection, dualisation and field reduction. In the
second part of this section, we present some general observations concerning higgledy-
piggledy line sets of minimal size and their duals, and state what it means for such sets
to be optimal.

2.1 Construction methods

There are several ways to construct (small) higgledy-piggledy sets of k-subspaces in
PG(N, q). Constructions via projection or dualisation make use of the existence of other
higgledy-piggledy sets to construct new ones of similar size. Construction via field reduc-
tion relies on the existing knowledge of Fq-linear sets to prove the existence of higgledy-
piggledy sets of k-subspaces contained in Desarguesian spreads.

Construction by projection

Proposition 11. Let k ∈ {0, 1, . . . , N − 1} and suppose that B is a strong k-blocking set of
PG(N, q). Take a hyperplane Σ and a point P /∈ B∪Σ. Then B′ := {〈P, S〉 ∩ Σ : S ∈ B}
is a strong k-blocking set of Σ ∼= PG(N − 1, q).

Proof. Suppose, to the contrary, that there exists an (N − k − 1)-subspace Π ⊆ Σ that
meets B′ in a point set contained in an (N − k − 2)-space Π′. By definition of B′, this
means that 〈Π, P 〉 is an (N − k)-space that meets B in a point set contained in the
(N − k − 1)-space 〈Π′, P 〉, a contradiction.

Corollary 12. Let k ∈ {0, 1, . . . , N − 1} and suppose that K is a higgledy-piggledy set
of k-subspaces in PG(N, q). Take a hyperplane Σ and a point P /∈ Σ not contained in
any of the elements of K. Then K′ := {〈P,κ〉 ∩ Σ : κ ∈ K} is a higgledy-piggledy set of
k-subspaces in Σ ∼= PG(N − 1, q) of size at most |K|.

Corollary 12 depicts the construction technique of higgledy-piggledy sets by projection,
which is a simple but potentially powerful technique (see e.g. Remark 21).

Construction by dualisation

A second construction technique arises by making use of the natural duality of PG(N, q),
and although this insight is anything but groundbreaking, we want to note that this has
also been pointed out in [16, Theorem 9, Proposition 10].
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Proposition 13. Let k ∈ {0, 1, . . . , N − 1} and suppose that K is a higgledy-piggledy set
of k-subspaces in PG(N, q) with |K| ! q. Then the set K⊥ consisting of the dual subspaces
of the elements in K is a higgledy-piggledy set of (N − k − 1)-subspaces in PG(N, q).

Proof. By Theorem 4, no (N −k−1)-subspace meets each element of K. Taking the dual
of this statement, we obtain the knowledge that no k-subspace meets each element of K⊥.
Applying Theorem 4 yet again, we conclude that K⊥ must be a higgledy-piggledy set of
(N − k − 1)-subspaces in PG(N, q).

Theorem 7 is an excellent example of the usage of this method. Moreover, as we will
observe in Section 3, this technique will imply the existence of a small higgledy-piggledy
plane set in PG(4, q) (Corollary 34).

Construction by field reduction

This particular method for constructing higgledy-piggledy sets is useful if (and only if)
N + 1 is composite.
Let N ′, k ∈ {0, 1, . . . , N − 1}. The idea behind field reduction is interpreting a pro-
jective geometry PG

-
N ′, qk+1

.
as its underlying vector space V

-
N ′ + 1, qk+1

.
, which is

known to be isomorphic to V((N ′ + 1)(k + 1), q), which in turn naturally translates to
PG((N ′ + 1)(k + 1)− 1, q). In this way, one obtains a correspondence between subspaces
of PG

-
N ′, qk+1

.
and subspaces of PG((N ′ + 1)(k + 1)− 1, q) by ‘reducing’ the underlying

field. A great survey on this topic can be found in [25].
The authors of this work formally introduce the field reduction map

FN ′+1,k+1,q : PG
-
N ′, qk+1

.
→ PG((N ′ + 1)(k + 1)− 1, q) , (1)

which maps subspaces onto subspaces by viewing these as embedded projective geometries
and applying field reduction.

Definition 14. A k-spread of PG(N, q) is a set of pairwise disjoint k-spaces covering all
points of PG(N, q).

For any point set P of PG
-
N ′, qk+1

.
, define

FN ′+1,k+1,q(P) := {FN ′+1,k+1,q(P ) : P ∈ P} .

One of the many properties of the field reduction map is the fact that if P is the set of all
points in PG

-
N ′, qk+1

.
, then FN ′+1,k+1,q(P) is a k-spread of PG((N ′ + 1)(k + 1)− 1, q).

A k-spread isomorphic to this spread is generally called Desarguesian; we will denote this
spread by DN ′+1,k+1,q.
The following definition is a generalisation of the concept of subgeometries in a projective
space.

Definition 15. Let P be a point set of PG
-
N ′, qk+1

.
. Then we will call P an Fq-linear

set of rank k′, k′ ∈ N, if there exists a (k′ − 1)-subspace κ of PG((N ′ + 1)(k + 1)− 1, q)
such that FN ′+1,k+1,q(P) is precisely the set of all elements of DN ′+1,k+1,q that intersect κ,
and k′ is minimal w.r.t. this property.
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Note that whenever an Fq-linear set in PG
-
N ′, qk+1

.
has a rank larger than N − k, it

contains all points of PG
-
N ′, qk+1

.
. With this in mind, the following theorem basically

states that any point set that is not contained in a ‘proper’ Fq-linear set gives rise to a
higgledy-piggledy set of k-spaces.

Theorem 16. Let k ∈ {0, 1, . . . , N − 1} such that N + 1 = (N ′ + 1)(k + 1) for a certain
N ′ ∈ {0, 1, . . . , N − 1}. Suppose that P is a point set of PG

-
N ′, qk+1

.
that is not contained

in any Fq-linear set of rank at most N − k. Then FN ′+1,k+1,q(P) is a higgledy-piggledy set
of pairwise disjoint k-subspaces in PG(N, q).

Proof. Suppose, to the contrary, that FN ′+1,k+1,q(P) is not a higgledy-piggledy set of k-
subspaces in PG(N, q). By Theorem 4, there exists an (N − k − 1)-subspace that meets
all elements of FN ′+1,k+1,q(P), implying that the latter is contained in an Fq-linear set of
rank at most N − k, a contradiction.

The idea behind Theorem 16 is to search for higgledy-piggledy sets as a subset of a
Desarguesian spread and was first cleverly used in [6] for the case N ′ = 2 and k = 1
to prove the existence of seven lines of PG(5, q) in higgledy-piggledy arrangement (see
Theorem 10(3.)). As a side note, using this method, one can even produce a slightly more
elegant proof for Theorem 10(1.) than the one currently available in the literature [10, 15,
Theorem 3.7, Example 9]: as a Baer subline (see Definition 36 for m = 2) is uniquely
determined by any three of its points, one can use Theorem 16 and choose four points in
PG(1, q2) not contained in a Baer subline (which is precisely an Fq-linear set of rank 2)
to obtain a higgledy-piggledy set of four pairwise disjoint lines of PG(3, q).

2.2 Optimal higgledy-piggledy line sets and sets of (N − 2)-subspaces

We now shift our focus to general higgledy-piggledy line sets of smallest theoretical size.

Lemma 17. Suppose that L is a higgledy-piggledy line set of PG(N, q) with |L| = N +!
N
2

"
! q. Then every

/
N+1
2

0
lines of L span the whole space PG(N, q).

Proof. Suppose, to the contrary, that there exists a subset L′ ⊆ L consisting of
/
N+1
2

0

lines contained in a fixed hyperplane Σ. For each ℓ ∈ L \ L′, choose a point in the non-
empty subspace Σ∩ℓ. This results in a choice of at most N+

!
N
2

"
−
/
N+1
2

0
= N−1 points

in Σ spanning a subspace Π ⊆ Σ of dimension at most N − 2. Any (N − 2)-subspace of Σ
through Π is an (N − 2)-subspace that intersects every line of L, contradicting Theorem
4.

In the propositions below, a pair of lines is meant to be an unordered pair of lines, i.e. a
set of two lines.

Proposition 18. Suppose that L is a higgledy-piggledy line set of PG(N, q) with |L| =
N +

!
N
2

"
! q. Then the following holds.

1. If N is odd, the lines of L are pairwise disjoint.
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2. If N " 4 is even, at most two lines of L intersect.

Proof. Let N be odd. The statement is trivial when N = 1, hence we can assume that
N " 3. Suppose, to the contrary, that two lines ℓ, ℓ′ ∈ L span a plane π. Consider
m := N−3

2
lines ℓ1, ℓ2, . . . , ℓm ∈ L \ {ℓ, ℓ′}. Then 〈ℓ, ℓ′, ℓ1, ℓ2, . . . , ℓm〉 = 〈π, ℓ1, ℓ2, . . . , ℓm〉

is a span of N+1
2

lines of L equal to a space of dimension at most N − 1, contradicting
Lemma 17.
LetN " 4 be even. Suppose, to the contrary, that there exist two pairs of intersecting lines
with corresponding intersection points S1 and S2; define L′ to be the set of these lines. We
distinguish two cases depending on the size of L′ and equality of the intersection points S1

and S2. If |L′| = 3 or if S1 = S2, then there exists a solid σ containing at least three lines
of L′. Consider m := N−4

2
lines ℓ1, ℓ2, . . . , ℓm ∈ L \ L′. Then 〈σ, ℓ1, ℓ2, . . . , ℓm〉 is a space

of dimension at most N − 1 that contains at least N+2
2

lines of L, contradicting Lemma
17. If |L′| = 4 and S1 ∕= S2, then the line s := 〈S1, S2〉 is well-defined and intersects all
four lines of L′. Consider m := N−2

2
lines ℓ1, ℓ2, . . . , ℓm ∈ L \ L′. As 〈s, ℓ1, ℓ2, . . . , ℓm〉

has dimension at most N − 1, we can choose a hyperplane Σ through this space. For
each ℓ ∈ L\ (L′ ∪ {ℓ1, ℓ2, . . . , ℓm}), choose a point in the non-empty subspace Σ∩ ℓ. This
results in a choice of at most N + N

2
− (4 +m) = N − 3 points in Σ spanning, together

with the line s, a subspace Π ⊆ Σ of dimension at most N−2. Any (N−2)-subspace of Σ
through Π is an (N − 2)-subspace that intersects every line of L, contradicting Theorem
4.

Proposition 19. Suppose that K is a higgledy-piggledy set of subspaces in PG(N, q) of
dimension N − 2, with |K| = N +

!
N
2

"
! q. Then every

/
N+1
2

0
elements of K have no

point in common. Moreover, the following holds.

1. If N " 3 is odd, the elements of K pairwise intersect in an (N − 4)-subspace.

2. If N " 4 is even, at most two elements of K intersect in an (N − 3)-subspace.

Proof. These results follow immediately by combining Proposition 13 with Lemma 17 and
Proposition 18, respectively.

Note that, alternatively, we could have dualised both statement and proof of Lemma 17
and Proposition 18 to obtain Proposition 19.

Propositions 18 and 19 give us an understanding of the smallest possible set-ups for
higgledy-piggledy sets of k-subspaces, k ∈ {1, N − 2}, of size at most q. Therefore, we
define the following accordingly.

Definition 20. Let N " 3 and k ∈ {1, N − 2}. Suppose that K is a higgledy-piggledy
set of k-subspaces in PG(N, q) with |K| = N +

!
N
2

"
! q. Then we will call K optimal if

1. either N is odd, or

2. N is even and two elements of K intersect in a (k − 1)-subspace.
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Remark 21. Let N " 3, k ∈ {1, N − 2}, and suppose there exists an optimal higgledy-
piggledy set of k-subspaces for each odd, respectively even, N . Then, with the aid of
projection (Corollary 12), one can prove the existence of a higgledy-piggledy set of k-
subspaces of size N +

!
N
2

"
+ 1 for each even, respectively odd, N (for N even, one

simply has to choose the point of projection within the span of the two k-subspaces
that maximally intersect). This reduces the search for small higgledy-piggledy sets of
k-subspaces, k ∈ {1, N − 2}, to one parity class of N .

3 Higgledy-piggledy sets of PG(4, q)

This section aims to prove the existence of an optimal higgledy-piggledy set of k-subspaces
in PG(4, q), k ∈ {1, 2}.

We defined a blocking set of PG(2, q) to be a point set meeting every line of the projective
plane (see Definition 1). In the literature, researchers also investigated point sets of
PG(2, q) that meet every line of a fixed line set. In particular, blocking sets w.r.t. the
external lines to an irreducible conic were considered. In 2006, Aguglia and Korchmáros
[1] managed to characterise such blocking sets of minimal size in case q is odd. One year
later, Giulietti [19] tackled the case of q even. Although a full characterisation is known,
for the purpose of this section, we only require the following result.

Theorem 22 ([1, 19, Theorem 1.1]). The minimum size of a blocking set w.r.t. external
lines to an irreducible conic of PG(2, q) is q − 1.

Throughout this section, keep the following base configuration in mind.

Configuration 23. Suppose Σ1, Σ2 and Σ3 are solids of PG(4, q) such that their inter-
section m := Σ1 ∩ Σ2 ∩ Σ3 is a line; let M1 and M2 be two distinct points on m. Define,
for every i, j ∈ {1, 2, 3}, i < j, the plane πij := Σi ∩ Σj and let Pij ∈ πij \m be a point.
Consider, for each i ∈ {1, 2}, the lines ℓi2 := 〈P12, Pi3〉 and ℓi1 in Σi through Mi not
intersecting ℓi2 and not contained in π12 or πi3. Define the line s := 〈P13, P23〉, the plane
β := 〈ℓ11, ℓ21〉 ∩ Σ3 and their intersection point S := s ∩ β. To conclude, consider the
following projections:

1. the line ℓ′11 := 〈P13, ℓ11〉 ∩ π12, and

2. the line ℓ′′i1 := 〈P12, ℓi1〉 ∩ πi3 for each i ∈ {1, 2}.

See Figure 1 for a visualisation of this configuration, where the lines ℓ11, ℓ12, ℓ21 and ℓ22
(and ℓ31, see Configuration 31) are drawn in red, while their projections as defined above
are shown in orange.

Notation 24. Denote with Π(4) the set of all planes of PG(4, q) that intersect each of
the lines ℓ11, ℓ12, ℓ21 and ℓ22.

Lemma 25. Each plane of Π(4) either
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PG(4, q)PG(4, q)

Σ1

Σ2

Σ3

ℓ11

ℓ12

π12

ℓ′11 ℓ21

ℓ22

P12

π13
ℓ′′11 π23

ℓ′′21

m

ℓ31

s

β := 〈ℓ11, ℓ21〉 ∩ Σ3

Q
S

M1

M2

M3

P13 P23

Figure 1: The set-up as described in Configuration 23 and Configuration 31.
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1. intersects Σ3 in a line of π13 through M2 not equal to m,

2. intersects Σ3 in a line of π23 through M1 not equal to m,

3. is equal to π12, or

4. intersects π12 in precisely one point not contained in 〈Mi, P12〉\{Mi, P12}, i ∈ {1, 2}.

Moreover, for every point A ∈ π12 \
-
〈M1, P12〉 ∪ 〈M2, P12〉

.
, there exists a unique plane

of Π(4) that intersects π12 in precisely the point A.

Proof. Consider a plane α ∈ Π(4) and suppose that α is contained in Σi for a certain
i ∈ {1, 2}. Then α has to contain the points M3−i and P12 to be able to intersect the lines
ℓ(3−i)1 and ℓ(3−i)2, respectively, and hence has to intersect Σ3 in a line r ⊆ πi3 through
M3−i. If r differs from m, then either property 1. or property 2. is true. If r = m, then
property 3. holds.
Now suppose that α is not contained in Σ1 or Σ2, then α intersects these solids in lines
a1 and a2, respectively. If α intersects π12 in a line, then this line has to be equal to
a1 = a2 which consequently has to contain the non-collinear points M1, M2 and P12 to be
able to intersect the lines ℓ11, ℓ21, ℓ12 and ℓ22, a contradiction. Hence, α intersects π12 in
precisely a point A = a1∩ a2 and thus α = 〈a1, a2〉. It is clear that, for i ∈ {1, 2}, the line
ai has to intersect the disjoint lines ℓi1 and ℓi2. If A /∈ {M1,M2, P12}, then there exists
a unique line through A intersecting both these lines, which hence has to be equal to ai.
This means that A cannot be contained in 〈Mi, P12〉, as else ai = 〈Mi, P12〉 ⊆ π12, and
that α is uniquely defined by its intersection point A with π12, finishing the proof.

Given the above lemma, we can now introduce the following notation.

Notation 26. For every point A ∈ π12 \
-
〈M1, P12〉 ∪ 〈M2, P12〉

.
, let α(A) be the unique

plane of Π(4) intersecting π12 in precisely the point A. For every i ∈ {1, 2, 3}, define the

line a
(A)
i := α(A) ∩ Σi.

Lemma 27. Let a be a line in π12 through P12, not equal to 〈M1, P12〉 or 〈M2, P12〉. Then%
a
(A)
3 : A ∈ a \ {P12}

'
is a set of q lines lying in a plane of Σ3 through s and going

through a fixed point of β.

Proof. For every A ∈ a \ {P12} and each i ∈ {1, 2}, the line a
(A)
i is contained in 〈a, ℓi2〉,

a plane independent of the choice of A that intersects ℓi1 necessarily in a point Qi /∈-
π12∪πi3

.
. The line a

(A)
i has to intersect ℓi1, thus it has to go through the point Qi. As a

first result, all lines of
%
a
(A)
3 : A ∈ a \ {P12}

'
lie in the plane 〈a, ℓ12, ℓ22〉 ∩Σ3 and hence

are coplanar; the corresponding plane contains both P13 and P23 and hence also the line
〈P13, P23〉 = s. As a second result, all planes of

1
α(A) : A ∈ a \ {P12}

2
go through the

line 〈Q1, Q2〉, the latter necessarily intersects Σ3 in a point Q3 /∈ {Q1, Q2}. Consequently,
all lines of

%
a
(A)
3 : A ∈ a \ {P12}

'
have to go through the point Q3. As Q1 ∈ ℓ11 and

Q2 ∈ ℓ21, the line 〈Q1, Q2〉 lies in 〈ℓ11, ℓ21〉 and, hence, Q3 lies in 〈ℓ11, ℓ21〉 ∩ Σ3 = β.
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We can now introduce yet another notation.

Notation 28. By Lemma 27, we know that for every line a in π12 through P12, not equal to

〈M1, P12〉 or 〈M2, P12〉, the q lines of
%
a
(A)
3 : A ∈ a \ {P12}

'
are coplanar and concurrent;

we will denote this unique plane by γ(a) ⊇ s and this unique point of concurrence by
A(a) ∈ β.

Lemma 29. The point set
1
A(a) : P12 ∈ a ⊆ π12, a /∈ {〈M1, P12〉 , 〈M2, P12〉}

2
∪{M1,M2}

is an irreducible conic contained in β that contains the point S.

Proof. The fact that ℓ11 and ℓ12 are disjoint implies that P12 /∈ ℓ′11, hence each point
A ∈ ℓ′11\

-
{M1}∪〈M2, P12〉

.
defines a distinct line 〈A,P12〉. As a consequence, each of the

points in
1
A(a) : P12 ∈ a ⊆ π12, a /∈ {〈M1, P12〉 , 〈M2, P12〉}

2
corresponds to at least one of

the q−1 points in ℓ′11\
-
{M1}∪〈M2, P12〉

.
. By Lemma 27, it suffices to prove the statement

for the set of intersection points of the lines in
%
a
(A)
3 : A ∈ ℓ′11 \

-
{M1} ∪ 〈M2, P12〉

.'

with the plane β.

By definition of ℓ′11, all lines of
%
a
(A)
1 : A ∈ ℓ′11 \

-
{M1} ∪ 〈M2, P12〉

.'
go through P13,

hence the lines of
%
a
(A)
3 : A ∈ ℓ′11 \

-
{M1} ∪ 〈M2, P12〉

.'
go through P13 as well. On the

other hand, the lines ℓ′11, ℓ21 and ℓ22 are pairwise disjoint and lie in the solid Σ2, hence
these define a unique regulus R corresponding to a hyperbolic quadric Q; let R′ denote

its opposite regulus. As the lines of
%
a
(A)
2 : A ∈ ℓ′11 \

-
{M1} ∪ 〈M2, P12〉

.'
each have to

intersect ℓ′11, ℓ21 and ℓ22, these lines are contained in R′.
We claim that Q∩π23 is an irreducible conic. To prove this, first observe that ℓ′11 intersects
the line 〈M2, P12〉 in a point other than M2 or P12. As M2 and P12 are contained in Q,
this implies that 〈M2, P12〉 is a generator of Q. Hence, M2 is contained in the following
two generators of Q: 〈M2, P12〉 and ℓ21, neither of which are contained in π23. As a
consequence, there does not exist a generator of Q in π23 through M2 ∈ Q, which implies
that Q ∩ π23 is an irreducible conic C (containing M1, M2 and P23).

In conclusion, each of the q− 1 lines of
%
a
(A)
3 : A ∈ ℓ′11 \

-
{M1} ∪ 〈M2, P12〉

.'
intersects

the plane π13 in the point P13 and intersects the plane π23 in a distinct point of C \
{M1,M2}; hence, these lines are generators of the cone with vertex P13 and base C.
Switching our views to the plane β instead of the plane π23 simply switches the base of
this cone and hence finishes the proof.

Having obtained the above lemma, we can yet again announce a notation.

Notation 30. For every line a in π12 through P12, not equal to 〈M1, P12〉 or 〈M2, P12〉,
let r(a) be the unique line in γ(a) through A(a) not contained in

%
a
(A)
3 : A ∈ a \ {P12}

'
;

note that such a line is skew to m and is never equal to s.

We are now ready to choose a fifth line ℓ31 that is skew to most planes of Π(4).
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Configuration 31. Let q ∕= 2; we extend Configuration 23. Let t be the tangent line
through S w.r.t. the irreducible conic described in Lemma 29, let M0 := t∩m /∈ {M1,M2}
and consider the line a0 := 〈M0, P12〉 ⊆ π12; note that A(a0) = S, as all lines of its
corresponding bundle have to intersect β in a point of the conic lying on the tangent line
t (which is part of this bundle). Choose a point M3 ∈ m \ {M0,M1,M2} and choose ℓ31
to be a line through M3 intersecting r(a0) in a point outside of π13 ∪ π23 ∪ β. Note that,

in this way, ℓ31 is skew to all q lines of
%
a
(A)
3 : A ∈ a0 \ {P12}

'
, in particular the line s.

Finally, define Q := 〈m, ℓ31〉 ∩ s.
Be sure to keep Figure 1 at hand to maintain an overview of this configuration.

Notation 32. Denote with Π(5) the set of all planes of Π(4) that intersect ℓ31.

Theorem 33. There exist six lines in PG(4, q) in higgledy-piggledy arrangement, two of
which intersect.

Proof. One can easily check the statement for q = 2 using, for example, the package
FinInG within GAP1. Therefore, we can assume that q ∕= 2 throughout this proof and
consider Configuration 31. By Theorem 4, it suffices to prove that there exists a sixth
line ℓ32 skew to all planes of Π(5). Considering the four properties described in Lemma 25,
all planes of Π(5) either meet property 3. or 4. due to the choice of ℓ31 (see Configuration
31). Hence, we can consider a partition {Π1,Π2,Π3,Π4} of Π(5), where

• Π1 is the set of all planes of Π(5) intersecting the plane π12 in precisely a point not
contained in 〈M1, P12〉 ∪ 〈M2, P12〉,

• Π2 is the set of all planes of Π(5) intersecting the plane π12 in precisely the point
P12,

• Π3 is the set of all planes of Π(5) intersecting the plane π12 in precisely a point of
{M1,M2}, and

• Π4 := {π12}.

By Lemma 27, the planes of Π1 intersect the solid Σ3 in a set of q2 − q lines, grouped in
q − 1 bundles of q coplanar, concurrent lines; the planes containing each bundle are the
q − 1 planes through s not containing M1 or M2, and the points of concurrence of the
bundles form, together with M1 and M2, an irreducible conic C of β (Lemma 29). As ℓ31
is skew to s and is not contained in β (nor contains M1 or M2), the line ℓ31 meets at most
one line per bundle. By choice of ℓ31 (see Configuration 31), this line is skew to all lines
of at least one bundle. In conclusion, there are at most q − 2 planes in Π1, one of which
intersects Σ3 in the line 〈M3, S〉.
Now consider the planes of Π2. By definition of ℓ′′11 and ℓ′′21, each line connecting a point
of ℓ′′11 \ {M1} with a point of ℓ′′21 \ {M2} defines a unique plane of Π(4) that intersects π12

in precisely the point P12. Of these q2 planes, only q intersect ℓ31 (thus |Π2| = q) and

1The authors of [3] showed that the smallest strong blocking set obtainable in PG(4, 2) has size 13.
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hence are part of a regulus of the unique hyperbolic quadric Q defined by the pairwise
disjoint lines ℓ′′11, ℓ

′′
21 and ℓ31.

Let e be an external line to C in β through M3 (note that this always exists, as M3 lies on
the 2-secant m to C and hence can never be a nucleus) and define the plane δ := 〈e,Q〉.
We claim that δ intersects Q in an irreducible conic. Note that as M1,M2,M3 ∈ Q, the
line m is a generator of Q through M3. The second generator of Q through M3 is ℓ31.
None of these two generators are contained in δ, hence there does not exist a generator
of Q that is contained in δ and goes through M3 ∈ Q, implying that δ ∩ Q must be an
irreducible conic.
Observe that all planes of Π1 intersect δ in at most a point. After all, if this would not
be the case, an intersection line of a plane of Π1 with Σ3 would lie in δ. Such intersection
line also contains a point of the conic C. However, the plane δ intersects the plane β in
the external line e to C, a contradiction.
Note that, as said before, precisely one of the planes of Π1 intersects Σ3 in a line going
through M3 ∈ δ and hence intersects δ in precisely that point. However, M3 is already
contained in Q. In conclusion, all planes of Π1 ∪Π2 intersect the plane δ in a point set P
consisting of all q + 1 points of an irreducible conic containing M3 (originating from Π2),
together with at most q − 3 extra points (originating from Π1). By Theorem 22, we can
choose a line ℓ32 in δ that avoids all points of P ∪ {Q}. As ℓ32 ⊆ Σ3 is consequently skew
to the line m ∋ M3 (as m ⊈ δ), this line is skew to all planes of Π1 ∪ Π2 ∪ Π4.

We claim that ℓ32 is skew to all planes of Π3 as well, finishing the proof. Suppose that
α ∈ Π3. Note that α ⊈ Σ3 as else it has to contain the points M1, M2, P13 and P23 to be
able to intersect the lines ℓ11, ℓ12, ℓ21 and ℓ22, but those points are not coplanar. Hence,
for each i ∈ {1, 2, 3}, α intersects Σi in a line ai. Suppose that α intersects π12 in precisely
the point Mj for a j ∈ {1, 2} (which implies that a1 ∕= a2). Then, for every i ∈ {1, 2},
the line ai intersects ℓi2 in a point Qi. Hence, the plane α contains two distinct points
Q1 and Q2 of the plane 〈ℓ12, ℓ22〉 and hence has to intersect the line s, which means that
the line a3 has to intersect the line s. As a3 has to intersect the line ℓ31 as well, it has
to be contained in the plane 〈Mj, ℓ31〉, which intersects the line s in Q; thus a3 has to go
through Q. In conclusion, as a3 is not contained in δ (because Mj /∈ δ), it has to intersect
δ in precisely the point Q, which gets avoided by the line ℓ32.

As a consequence, we immediately get the following.

Corollary 34. There exist six planes of PG(4, q) in higgledy-piggledy arrangement, two
of which intersect in a line.

Proof. If q ∈ {2, 3, 4, 5}, some computer-assisted searches prove the statement; see Code
Snippet 55. If q " 7, the corollary follows immediately from Theorem 33 and Proposition
13.
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4 Higgledy-piggledy sets of PG(5, q)

As an addition to Section 3, we briefly discuss small higgledy-piggledy sets of k-subspaces,
k ∈ {1, 2, 3}. There exists an optimal higgledy-piggledy line set in PG(5, q) as the case
k = 1 was already considered in [6] (see Theorem 10(3.)). As a consequence, the case
k = 3 is solved as well.

Corollary 35. There exist seven solids of PG(5, q), q " 7, in higgledy-piggledy arrange-
ment.

Proof. This follows immediately from Theorem 10(3.) and Proposition 13.

This set is an optimal higgledy-piggledy set of solids in PG(5, q). Note that, by Proposition
19, these seven solids necessarily pairwise intersect in a line and that these intersection
lines are pairwise disjoint.

The only remaining non-trivial case is k = 2. If we assume that q " 7, then, by Theorem
7, a higgledy-piggledy set of planes in PG(5, q) has size at least seven. By Theorem 9,
we know that there exists a higgledy-piggledy set of planes in PG(5, q) of size ten. All in
all, there still seems to be room for improvement. We will prove the existence of eight
pairwise disjoint planes of PG(5, q) in higgledy-piggledy arrangement (Theorem 39) by
making use of field reduction (see Section 2).

Definition 36. Let m ∈ N \ {0}. An Fq-subline of PG(1, qm) is a point set isomorphic
to PG(1, q).

By considering the underlying vector space of PG(1, qm), one can easily see that each
three distinct points define a unique Fq-subline of PG(1, qm). Throughout this section,
we mainly focus on the case m = 3.

We remind the reader about the field reduction map FN ′+1,k+1,q introduced in (1), and
consider this map for N ′ = 1 and k = 2:

F2,3,q : PG
-
1, q3

.
→ PG(5, q) ,

with D2,3,q the corresponding Desarguesian spread of planes in PG(5, q).

Let P be an Fq-linear set of PG(1, q3). Then precisely one of the following holds.

1. P has rank 0 and |P| = 0.

2. P has rank 1 and |P| = 1.

3. P has rank 2 and P is an Fq-subline.

4. P has rank 3 and |P| = q2 + 1; in this case, P will be called an Fq-club.

5. P has rank 3 and |P| = q2+ q+1; in this case, P will be called a scattered Fq-linear
set.
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6. P has rank 4 and |P| = q3 + 1.

These definitions correspond to the ones arising in the literature. It is somewhat natural
to consider these six types of Fq-linear sets of PG(1, q3), as the authors of [24, Theorem
5] have proven that all sets of each type are projectively equivalent. The authors of [24]
present several other results, which pave many paths towards our goal. We select precisely
those results that will lead us there the fastest.
The following result was already presented in [14] but, as the authors of [24] point out,
the proof was incomplete as they assumed the projective equivalence of Fq-clubs, which
wasn’t proven up to that point and is generally not true for Fq-clubs of PG(1, qm), m " 4
[24, Theorem 5].

Theorem 37 ([24, Theorem 8]). An Fq-linear set intersects an Fq-subline of PG(1, q3)
in 0, 1, 2, 3 or q + 1 points.

The next result has a story similar to the one above, as this result was first proven in
[17] for Fq-linear sets of PG(1, q3), q = ph, p " 7, based on the projective equivalence
of Fq-clubs and scattered Fq-linear sets. Although the original theorem of [24] concerns
Fq-linear sets of PG(1, qm), we simplify their result to fit our needs.

Theorem 38 ([24, Theorem 23]). Two distinct Fq-linear sets of rank at most 3 in
PG(1, q3), q " 4, share at most 2q + 3 points.

The following theorem presents the main result of this section.

Theorem 39. There exist eight pairwise disjoint planes of PG(5, q) in higgledy-piggledy
arrangement.

Proof. First of all, the cases q ∈ {2, 3, 4, 5} can be checked by computer (see Code Snippet
56); hence assume that q " 7.
Consider an Fq-subline b1 of PG(1, q3) and let C, B12, B13 and D1 be four distinct points
lying on this subline. Take a point B23 /∈ b1 and define b2 to be the unique Fq-subline
containing the points of the set {C,B12, B23}; let D2 be a point of b2 \ {C,B12, B23}.
Naturally, b1 ∕= b2 as B23 /∈ b1. Finally, denote with b3 the unique Fq-subline containing
the points of the set {C,B13, B23}. Note that b3 ∕= bi, i ∈ {1, 2}, as else bi would contain
B(3−i)3, which would imply that b1 and b2 share three distinct points and hence would be
equal, a contradiction. Take a point D3 ∈ b3 \ {C,B13, B23}.
In this way, we obtain three distinct Fq-sublines that pairwise intersect in two points and
have the point C in common. Define P := {C,B12, B13, B23, D1, D2, D3}. By Theorem
37, any Fq-linear set that contains all points of P has to contain all points of b1 ∪ b2 ∪ b3,
as such an Fq-linear set contains at least four points of each subline. As |b1 ∪ b2 ∪ b3| =
3q − 2 > 2q + 3, Theorem 38 implies that there exists at most one Fq-linear set Plin of
rank at most 3 that contains all points of P . Choose a point Q /∈ Plin. Then P ∪ {Q} is a
set of eight points in PG(1, q3) that is not contained in any Fq-linear set of rank at most
3. Theorem 16 finishes the proof.
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The optimal but unsolved case of seven planes in higgledy-piggledy arrange-
ment

Ideally, one would like to find seven planes of PG(5, q) in higgledy-piggledy arrangement,
as Theorem 7 implies that, if q " 7, no higgledy-piggledy set of six planes exists. In fact,
even more can be said of this theoretically smallest higgledy-piggledy plane set.

Proposition 40. Let q " 7. Then any seven planes of PG(5, q) in higgledy-piggledy
arrangement are pairwise disjoint.

Proof. Let K := {π1, π2, . . . , π7} be the higgledy-piggledy set in question and suppose to
the contrary (and w.l.o.g.) that there exists a hyperplane Σ containing π1 and π2. Define
ℓ3 and ℓ4 to be lines contained in π3 ∩ Σ and π4 ∩ Σ, respectively, and let Π be a solid in
Σ that contains 〈ℓ3, ℓ4〉; choose a point Pi in Π∩πi for every i ∈ {5, 6, 7}. Then any plane
π ⊆ Π that contains 〈P5, P6, P7〉 naturally contains a point of π5, π6 and π7. Moreover,
as π is contained in Π ⊇ ℓ3, ℓ4, this plane intersects π3 and π4 as well. Finally, as π ⊆ Σ,
we conclude that π meets all planes of K, contradicting Theorem 4.

Although the question whether a higgledy-piggledy plane set of size seven exists is still
open, the observation above may hint us to try finding such a set as part of a Desargue-
sian spread, mimicking the strategy of proving Theorem 39. One could indeed improve
Theorem 39 if there would exist three distinct Fq-sublines of PG(1, q3) that pairwise in-
tersect in two points but have no point in common (implying the existence of a point set
in PG(1, q3) of seven points not contained in any Fq-linear set of rank at most 3). The
answer to this question of existence is, unfortunately, negative.

Theorem 41. Let m ∈ N \ {0} and q ∕= 2. Then there exist three distinct Fq-sublines b1,
b2 and b3 of PG(1, qm) with the property that

1. |bi ∩ bj| = 2 for every i ∕= j, and

2. b1 ∩ b2 ∩ b3 = ∅,

if and only if m is even.

Proof. First, suppose that three such Fq-sublines of PG(1, qm) do exist. Choose a coordi-
nate system for the projective line and let P01, P10 and P11 be the points corresponding
to the coordinates (0, 1), (1, 0) and (1, 1), respectively. Without loss of generality, we may
assume that {P01, P10, P11} ⊆ b1, {P01, P10} ⊆ b2 and P11 ∈ b3, the first assumption im-
plying that all points of b1 correspond to the set of coordinates {(0, 1)}∪{(1, a) : a ∈ Fq}.
By considering an element of PGL(2, q) that maps three distinct point of b1 (e.g. take P01,
P10 and P11) onto three distinct points of bi, i ∈ {2, 3}, one can find the set of coordinates
corresponding to the points on the subline bi. In this way, we know that there exists an
α ∈ Fqm \ Fq such that the points of b2 correspond to the set of coordinates

{(0, 1)} ∪ {(1, bα) : b ∈ Fq} . (2)
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Suppose that the unique point P1a0 ∈ (b1 ∩ b3) \ {P11} has coordinates (1, a0), a0 ∈
Fq \ {0, 1}. Then, analogously, there exists a β ∈ Fqm \ Fq such that the points of b3
correspond to the set of coordinates

{(1, 1)} ∪ {(c+ β, c+ a0β) : c ∈ Fq} . (3)

By the given properties of these three sublines, there should exist two points, not equal
to P10 or P1a0 , with coordinates contained in both sets (2) and (3). As c+ β ∕= 0 for any
c ∈ Fq, this is equivalent with stating that the equality

bα =
c+ a0β

c+ β
(4)

has two distinct solutions (b1, c1) and (b2, c2), with b1, b2, c1, c2 ∈ Fq \ {0}. Plugging each
solution into (4) and solving for β, we obtain that c1

b1α−1
a0−b1α

= β = c2
b2α−1
a0−b2α

, which expands
to

b1b2(c1 − c2)α
2 =

-
a0(b1c1 − b2c2) + b2c1 − b1c2

.
α + a0(c2 − c1). (5)

The elements b1 and b2 are non-zero. If (c1 − c2) would be zero, then, as c1, c2 ∕= 0,
expression (5) reduces to

(a0 − 1)(b1 − b2) = 0,

which cannot be valid as a0 ∈ Fq \{0, 1} and (b1, c1) ∕= (b2, c2), leading to a contradiction.
In conclusion, expression (5) implies that Fq[α] is the subfield of Fqm isomorphic to Fq2 ,
which can only be true if m is even.
Conversely, assume m even. Consider a point set of PG(1, qm) isomorphic to PG(1, q2).
Then this point set, together with all Fq-sublines of PG(1, q2), can be identified as the
point set of an irreducible elliptic quadric Q−(3, q) of PG(3, q), together with its non-
tangent plane intersections2 [22, Lemma 17.1.5].
Take a line s0 intersecting Q−(3, q) in two points Q1 and Q2, and consider the q+1 planes
through s0. Each such plane π intersects Q−(3, q) in an irreducible conic Cπ, and there
always exists a point Sπ ∈ s0\{Q1, Q2} that lies on at most one tangent line to that conic.
By the pigeon hole principle, we can choose two planes π1 and π2 through s0 such that
there exists a point S ∈ s0\{Q1, Q2} that lies on at most one tangent line to both Cπ1 and
Cπ2 (if q = 3 then S necessarily lies on no tangent lines to both Cπ1 and Cπ2). As q " 3,
we can now take a line si ∕= s0 through S that intersects Cπi

in two points, i ∈ {1, 2};
define π3 := 〈s1, s2〉. One can easily check that the Fq-sublines of PG(1, q2) corresponding
to the intersections of π1, π2 and π3 with Q−(3, q) meet the requirements.

The above theorem does not, however, eliminate the chance of finding seven planes of
PG(5, q) in higgledy-piggledy arrangement using the field reduction method. Computer-
assisted searches confirm that such small subsets of a Desarguesian 2-spread exist for
q ∈ {2, 3, 4, 5, 7} (Code Snippet 56). Hence, we carefully suspect that there generally
exist seven planes in higgledy-piggledy arrangement as part of a Desarguesian spread of
PG(5, q).

2This is a particular ovoidal circle geometry called a Möbius plane.
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Open Problem 42. Prove that there exist seven planes of PG(5, q) in higgledy-piggledy
arrangement.

Once we get a better grasp on the structure of all Fq-linear sets in PG(1, q3), the above
open problem might be solvable using Theorem 16.

5 Minimal codes, covering codes and resolving sets

This section is aimed to briefly discuss the applications of the results of Section 3 and 4
to coding and graph theory. Let n ∈ N and k, r ∈ {0, 1, . . . , n}. Any subspace of Fn

q of
dimension k = n− r or codimension (redundancy) r is said to be a (q-ary) linear code of
length n and dimension k, and will be called a linear [n, k]q-code. Elements of such a code
are called codewords ; the support of a codeword is the set of indices in which the codeword
has non-zero entries. A code is called non-degenerate if each index i is contained in at
least one support of a codeword. See e.g. [4] for an introduction into the topic of coding
theory.

Short minimal linear codes of dimension 5

The new results of Section 3 can be directly translated to upper bounds on the length of
certain minimal codes.

Definition 43. A codeword of a linear code is called minimal if its support contains no
support of any other codeword except for its scalar multiples. A linear code is minimal
if all its codewords are minimal.

The authors of [2, 26] independently proved that minimal codes have a one-to-one corre-
spondence to strong blocking sets (alternatively called cutting blocking sets). Recently,
this correspondence was reproven geometrically in [20, Corollary 3.3].

Theorem 44 ([2, 26, Theorem 3.4, Theorem 14]). Let C be a non-degenerate linear [n, k]q
code with generator matrix G = (G1, . . . , Gn). Let B = {G1, . . . , Gn} be the corresponding
point set of PG(k − 1, q). Then C is a minimal code if and only if B is a strong blocking
set.

As one is generally interested in the smallest possible length of minimal q-ary linear [n, k]q
codes for fixed parameters k and q, one defines m(k, q) to be the smallest possible length
of such a code. The following theorem bundles all relevant known results concerning the
case of k = 5.

Theorem 45 ([3, 7, 14]).

4q + 4 ! m(5, q) !

3
45

46

6q + 6 if q > 36086 and 2, 3 ∤ q,
7q + 7 if q " 7,

8q − 3.
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Proof. The lower bound on m(5, q) is proven in [3, Theorem 2.14] for general k, and
reproven geometrically in [20, Theorem 3.9]. This lower bound can in fact be improved
by 1 if q " 9 ([3, Corollary 2.19]).
The first two upper bounds arise by combining respectively Theorem 10(2.) and Theorem 8
with Theorem 44. The third upper bound is proven in [3, Construction 2]; in this work, the
authors prove the existence of eight lines of PG(4, q) in higgledy-piggledy arrangement.

Furthermore, the authors of [3] computationally proved that m(5, 2) = 13 and m(5, 3) !
20. Our result concerning this topic comes down to the following.

Theorem 46. m(5, q) ! 6q + 5.

Proof. Directly from Theorem 33 and 44.

It’s easy to check that Theorem 46 improves the existing upper bounds on m(5, q) for all
q " 5.

Short covering codes of codimension 5 with covering radius 4

Existence results on (small) strong k-blocking sets lead to existence results on (small)
(N − k)-saturating sets, which in turn imply existence results on (short) covering codes.
Allow us to introduce these notions.

Definition 47. Let S be a point set of PG(N, q).

1. A point P ∈ PG(N, q) is said to be )-saturated by S (or, conversely, the set S
)-saturates P ) if there exists a subspace through P of dimension at most ) that is
spanned by points of S.

2. The set S is a )-saturating set of PG(N, q) if ) is the least integer such that all
points of PG(N, q) are )-saturated by S. Let sq(N, )) denote the smallest possible
size of a )-saturating set of PG(N, q).

The authors of [10, Theorem 3.2] proved that strong k-blocking sets of an embedded
PG(N, q) are (N − k)-saturating sets of the ambient geometry PG

-
N, qN−k+1

.
. The

author of [13] described this method of constructing (N − k)-saturating sets as the strong
blocking set approach.
There has been done a lot of research concerning )-saturating sets in PG(N, q). The fol-
lowing bundles relevant known results concerning sq4(4, 3), sq3(4, 2), sq4(5, 3) and sq3(5, 2).

Theorem 48 ([10, 11, 13]). In the following, e ≈ 2.718 . . . depicts Euler’s number.

1. 4
e
q + 3

2
< sq4(4, 3) !

3
45

46

6q + 6 if q > 36086 and 2, 3 ∤ q,
7q + 7 if q " 7,

8q − 3.

2. 3
e
q2 + 1 < sq3(4, 2) ! 6q2 + 3q − 6.
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3. 4
e
q2 + 3

2
< sq4(5, 3) ! 4q2 + 4q + 4.

4. 3
e
q3 + 1 < sq3(5, 2) ! 3q3 + 1.

Proof. The lower bound arises from [13, Proposition 4.2.1]. The upper bound on sq4(4, 3)
is the same as the one on m(5, q) (see Theorem 45). The upper bound on sq3(4, 2) follows
from [13, Theorem 7.2.9] if q ∕= 2 and [10, Theorem 3.16] if q = 2. The upper bound
on sq4(5, 3) arises from [10, Corollary 7.2], and, finally, the upper bound on sq4(5, 2) was
obtained in [11, Theorem 7].

The computations of [3] furthermore imply that s16(4, 3) ! 13 and s81(4, 3) ! 20.

If we translate our results (Theorem 33, Corollary 34, Theorem 39 and Corollary 35)
to the context of saturating sets using the strong blocking set approach, we respectively
obtain the following.

1. sq4(4, 3) ! 6q + 5.

2. sq3(4, 2) !
(
6q2 + 5q + 1 if q ! 5,

6q2 + 5q − 9 if q " 7.

3. sq4(5, 3) ! 8q2 + 8q + 8.

4. sq3(5, 2) ! 7q3 + 7q2 − 14q − 14 if q " 7.

Note that for bound 2. and 4. we made use of Proposition 19 for q " 7. If q ! 5, we
considered the worst-case scenarios of point coverage for six planes of PG(4, q), two of
which intersect in a line (the other four planes each contribute at most q2 + q points).
Unfortunately, only one of these results improves the ones from the literature (if q " 5),
which we repeat below.

Theorem 49. sq4(4, 3) ! 6q + 5.

We can now translate this result to the coding-theoretical context.

The Hamming distance between two vectors of Fn
q equals the number of positions in which

they differ. A q-ary linear code of length n and codimension (redundancy) r is said to
have covering radius R if R is the least integer such that every vector of Fn

q lies within
Hamming distance R of a codeword. Whenever linear codes are investigated with the
goal of optimising the length or (co)dimension with respect to the covering radius, such
codes are often called [n, n− r]qR covering codes. This type of q-ary linear codes have a
wide range of applications; for a description of several examples of such applications, see
[10, Section 1].
Suppose that S is a point set of PG(r − 1, q) of size n and let H be a q-ary (r×n)-matrix
with the homogeneous coordinates of the points of S as columns. Then S is an (R − 1)-
saturating set of PG(r − 1, q) if and only if H is a parity check matrix of an [n, n− r]qR
code. This describes a one-to-one correspondence between saturating sets of projective
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spaces and linear covering codes. More specifically, any )-saturating set S of PG(N, q)
corresponds to an [n, n− r]qR code with

n = |S|, r = N + 1 and R = )+ 1.

Due to this correspondence, finding small )-saturating sets in PG(N, q) is equivalent to
finding [n, n − r]qR codes of small length. In light of this, the length function ℓq(r, R) is
the smallest length of a q-ary linear code with covering radius R and codimension r. Note
that

ℓq(r, R) = sq(r − 1, R− 1).

Theorem 50. ℓq4(5, 4) ! 6q + 5.

Remark 51. The authors of [10] describe a strong tool called ‘qm-concatenating construc-
tions’ to construct infinite families of covering codes with fixed covering radius R. One
could consider to use this tool on the construction behind Theorem 33, Theorem 10 or
even Theorem 8 to obtain families of short covering codes and study their (asymptotic)
covering densities (see [10]).

Small resolving sets of the point-hyperplane incidence graph

Finally, some results can be deduced on the size of smallest resolving sets of the point-
hyperplane incidence graph of PG(N, q).

Definition 52. Consider a finite, connected simple graph Γ = (V,E) and let d : V ×V →
N be its metric. A vertex v ∈ V is called resolved by a vertex set S = {v1, v2, . . . , vn}
if the ordered sequence (d(v, v1), d(v, v2), . . . , d(v, vn)) is unique. The set S is called a
resolving set of Γ if it resolves all its vertices.

Let ΓP,H(N, q) be the point-hyperplane incidence graph of PG(N, q), i.e. the bipartite
graph that associates every point and every hyperplane with a vertex, vertices of different
parts are adjacent if and only if the corresponding point lies in the corresponding hyper-
plane. The authors of [7, Theorem 4] proved that if q is large enough, any resolving set
of ΓP,H(N, q) has size at least

2Nq − 2
NN−1

(N − 1)!
.

Another result obtained in [7] can be somewhat generalised, using the same arguments,
as follows.

Theorem 53 ([7, Lemma 8]). Suppose that L = {ℓ1, ℓ2, . . . , ℓk} is a higgledy-piggledy line
set of PG(N, q) and Pi ∈ ℓi is a point not lying in any ℓj, j ∕= i; define

m := | {P ∈ ℓi \ {Pi} : i ∈ {1, 2, . . . , k}} |.

Then ΓP,H(N, q) has a resolving set of size 2m.
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Hence, using the known results concerning existence of small higgledy-piggledy line sets,
the same authors pointed out that ΓP,H(3, q) has a resolving set of size 8q [7, Theorem
10]. As a corollary of their main result (Theorem 10(2.)), they also proved that ΓP,H(4, q)
has a resolving set of size 12q if q > 36086 is no power of 2 or 3 [7, Corollary 13]. We can
slightly extend and improve this result, as well as translate the existing result concerning
higgledy-piggledy line sets of PG(5, q) to this graph-theoretical context.

Theorem 54. The graph ΓP,H(4, q) has a resolving set of size 12q − 2. The graph
ΓP,H(5, q) has a resolving set of size 14q.

Proof. Directly from Theorem 10(3.) and 33, combined with Theorem 53.
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A Relevant GAP-code for small values of q

In this appendix, we list some relevant snippets of code that prove the existence of certain
small higgledy-piggledy sets in PG(4, q) and PG(5, q), q small. The main tactic to tackle
this problem is by randomly choosing subspaces and checking whether the selected set
meets the desired property. We use the package ‘FinInG’ [5] of the GAP system [18], hence
one needs to call LoadPackage("FinInG"); before executing any of the code below.
The following snippet checks whether for q ∈ {2, 3, 4, 5} there exist six higgledy-piggledy
planes in PG(4, q), two of which intersect in a line.

Code Snippet 55.
gap> for q in [2..5] do

> pg := PG(4,q);

> repeat

> planeSet := [];

> line := Random(Lines(pg));

> for i in [1,2] do

> AddSet(planeSet,Random(Planes(line)));

> od;

> for i in [1..4] do

> AddSet(planeSet,RandomSubspace(pg,2));

> od;

> until ForAll(Planes(pg),pl -> Dimension(Span(List(planeSet,pl2

-> Meet(pl,pl2)))) = 2);

> Print("Test for q = ",q,": succes!\n");
> od;

The next the snippet checks whether there exist seven planes of PG(5, q) in higgledy-
piggledy arrangement as part of a Desarguesian spread, q ∈ {2, 3, 4, 5, 7}.
Code Snippet 56.
gap> for q in [2,3,4,5,7] do

> pgLine := PG(1,q^3);

> pgBig := PG(5,q);

> proj := NaturalEmbeddingByFieldReduction(pgLine,pgBig);

> repeat

> pointSet := [];

> while Size(pointSet) < 7 do

> AddSet(pointSet,Random(Points(pgLine)));

> od;

> planeSet := Set(pointSet,p -> p^proj);

> until ForAll(Solids(pgBig),sol -> Dimension(Span(List(planeSet,

pl -> Meet(sol,pl)))) = 3);

> Print("Test for q = ",q,": succes!\n");
> od;
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