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Abstract

The notion of shuffle-compatible permutation statistics was implicit in Stanley’s
work on P-partitions and was first explicitly studied by Gessel and Zhuang. The
aim of this paper is to prove that the triple (udr,pk,des) is shuffle-compatible
as conjectured by Gessel and Zhuang, where udr denotes the number of up-down
runs, pk denotes the peak number, and des denotes the descent number. This is
accomplished by establishing an (udr,pk,des)-preserving bijection in the spirit of
Baker-Jarvis and Sagan’s bijective proofs of the shuffle compatibility property of
permutation statistics.

Mathematics Subject Classifications: 05A05, 05C30

1 Introduction

Let P denote the set of all positive integers. To denote the cardinality of a set U , we
use ∣U ∣. For U ⊂ P with ∣U ∣ = n, a permutation of U is a linear order π = π1π2 . . . πn of
the elements of U . Denote by L(U) the set of all permutations of U . The length of a
permutation π is the cardinality of its underlying set, i.e. ∣U ∣, which is denoted by ∣π∣.
Permutations have been extensively studied over the last decades. For an introduction to
research topics in permutation enumerations, see Bóna’s book [2].

Three classical examples of permutation statistics are the descent set Des, the descent
number des, and the major index maj. For π ∈ L(U) with ∣U ∣ = n, define

Des(π) = {i ∶ πi > πi+1,1 ≤ i ≤ n − 1},

∗Corresponding author.
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des(π) = ∣Des(π)∣,

and
maj(π) = ∑

i∈Des(π)
i.

A statistic st is said to be a descent statistic if Des(π) = Des(σ) and ∣π∣ = ∣σ∣ imply
that st(π) = st(σ) for any two permutations π and σ. Clearly, the statistics Des, des and
maj are descent statistics. For π ∈ L(U) with ∣U ∣ = n, the peak set of π, denoted by Pk(π),
is defined to be

Pk(π) = {i ∶ πi−1 < πi > πi+1,2 ≤ i ≤ n − 1}.

The peak number of π, denoted by pk(π), is defined to be the cardinality of Pk(π). The
exterior peak number of π, denoted by epk(π), is defined to be the peak number of 0π0.
A monotone factor of a permutation is a factor that is either strictly increasing or strictly
decreasing. A birun of π is a maximal monotone factor of π. An updown run of π is a
birun of 0π. Let udr(π) denote the number of updown runs of π.

For any two permutations π ∈ L(U) and σ ∈ L(V ) with U ⋂V = ∅, we say that the
permutation τ ∈ L(U ⋃V ) is a shuffle of π and σ if both π and σ are subsequences
of τ . Denote by S(π,σ) the set of shuffles of π and σ. For example, S(31,24) =

{3124,3241,2431,3214,2341,2314}. A permutation statistic st is said to be
shuffle-compatible if for any permutations π and σ with disjoint underlying sets, the mul-
tiset {st(τ) ∶ τ ∈ S(π,σ)}, which encodes the distribution of the statistic st over shuffles of
π and σ, depends only on st(π), st(σ), ∣π∣ and ∣σ∣. For our convenience, we simply write
st(S(π,σ)) for the multiset {st(τ) ∶ τ ∈ S(π,σ)}. For instance, des(S(31,24)) = {13,23}.
We say that the permutation statistic st has shuffle compatibility property if st is shuffle-
compatible.

For a nonnegative integer n, let

[n]q = 1 + q + q2 + . . . + qn−1

and
[n]q! = [1]q[2]q . . . [n]q

where q is a variable. For 0 ≤ k ≤ n, let

(
n

k
)
q

=
[n]q!

[k]q![n − k]q!
.

By utilizing P-partitions, Stanley [12] proved that for any two permutations π and σ with
disjoint underlying sets,

∑τ∈Sk(π,σ) q
maj(τ) = qmaj(π)+maj(σ)+(k−des(π))(k−des(σ))(∣π∣−des(π)+des(σ)

k−des(π) )
q

×(
∣σ∣−des(σ)+des(π)

k−des(σ) )
q

(1)

where Sk(π,σ) = {τ ∶ τ ∈ S(π,σ),des(τ) = k}. The bijective proofs of (1) have been given
by Goulden [5], Stadler [11], Ji and Zhang [7], respectively. Novick [9] provided a bijective
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proof of the following formula due to Garsia and Gessel [3]:

∑
τ∈S(π,σ)

qmaj(τ) = qmaj(π)+maj(σ)(
∣π∣ + ∣σ∣

∣π∣
)
q

(2)

where π and σ are permutations with disjoint underlying sets. Very recently, Ji and Zhang
[8] derived a cyclic analogue of (1). Formulae (1) and (2) imply that the statistics maj
and (maj,des) are shuffle-compatible.

By using noncommutative symmetric functions and quasisymmetric functions, Gessel
and Zhuang [4] further investigated the shuffle compatibility property of permutation
statistics and proved that many permutation statistics do have this property. They also
posed several conjectures concerning the shuffle compatibility of permutation statistics.
Some of these conjectures were then confirmed by Grinberg [6] and disproved by Oğuz
[10]. Recently, Baker-Jarvis and Sagan [1] presented a bijective approach to deal with
the shuffle compatibility of permutation statistics. As an application, Baker-Jarvis and
Sagan [1] proved that the pair (udr,pk) is shuffle-compatible as conjectured by Gessel
and Zhuang [4].

The main objective of this paper is to prove the following conjecture posed by Gessel
and Zhuang [4].

Conjecture 1. (See [4], conjecture 6.7 ) The triple (udr,pk,des) is shuffle-compatible.

In [1], Baker-Jarvis and Sagan remarked that their bijection for proving the shuffle
compatibility of the statistic (udr,pk) does not preserve the statistic des and posed an
open problem of finding a bijective proof of the the shuffle compatibility of the statistic
(udr,pk,des) (see [1], Question 7.1). In this paper, we aim to provide such a bijective
proof in the spirit of Baker-Jarvis and Sagan’s bijective proofs of shuffle compatibility
property of permutation statistics.

2 Proof of Conjecture 1

This section is devoted to the bijective proof of Conjecture 1. To this end, we need to
recall the following two lemmas due to Baker-Jarvis and Sagan [1].

Lemma 2. (See [1], Theorem 4.2 ) The statistic Des is shuffle-compatible.

For m,n ≥ 1, let [n] = {1,2, . . . , n} and [n] +m = {n + i ∶ 1 ≤ i ≤m}.

Lemma 3. (See [1], Corollary 3.2 ) Suppose that st is a descent statistic. The following
are equivalent.

(a) The statistic st is shuffle-compatible.

(b) If st(π) = st(π′) where π,π′ ∈ L([n]), and σ ∈ L([n] +m) for some m,n ≥ 1, then
st(S(π,σ)) = st(S(π′, σ)).
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For a permutation π ∈ L(U) with k biruns, the type of π, denoted by type(π), is
defined to be (t1, t2, . . . , tk), where ti denotes the length of the i-th birun (counting from
left to right). For example, type(6534792) = (3,4,2). For a permutation π = π1π2 . . . πn
with n ≥ 2, define χ+(π) to be 1 if π1 > π2 and to be 0 otherwise. Similarly, we define
χ−(π) to be 1 if πn−1 < πn and to be 0 otherwise. Notice that the peaks of a permutation
occur precisely at the the end of every increasing birun except the rightmost increasing
birun. Hence, one can easily check that for n ≥ 2,

udr(π) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

2pk(π) if χ+(π) = χ−(π) = 0,
2pk(π) + 1 if χ+(π) = 0, χ−(π) = 1,
2pk(π) + 2 if χ+(π) = 1, χ−(π) = 0,
2pk(π) + 3 if χ+(π) = χ−(π) = 1.

(3)

Let π ∈ L([n]) be a permutation with type(π) = (t1, t2, . . . , tk) such that t` ≥ 3 for
some ` ≥ 3. Define Ω`(π) to be the set of permutations π′ ∈ L([n]) with χ+(π′) = χ+(π)
and type(π′) = (t′1, t

′
2, . . . t

′
k) where

t′i =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ti + 1 if i = ` − 2,
ti − 1 if i = `,
ti otherwise.

One can easily check that for any π′ ∈ Ω`(π), we have (udr,pk,des)π = (udr,pk,des)π′ as
the peaks of a permutation occur precisely at the the end of every increasing birun except
the rightmost increasing birun.

Let n ≥ 2. Notice that every permutation of length n either: (1) begins with an ascent
and has an even number of biruns, (2) begins with an ascent and has an odd number of
biruns, (3) begins with a descent and has an odd number of biruns, or (4) begins with
a descent and has an even number of biruns. Clearly, these four types of permutations
correspond directly to the four cases in Formula (3). In order to prove Conjecture 1, we

define four canonical sets Π
(1)
n,k,d through Π

(4)
n,k,d of permutations corresponding to the four

types of permutations mentioned above, where n is the length of the permutation, k is
the number of peaks, and d is the number of descents.

Define
Π
(1)
n,k,d = {π ∈ L([n]) ∶ χ+(π) = 0, type(π) = (t1, t2, . . . , t2k)}

where t1 = n − d − k + 1, t2 = d − k + 2, and ti = 2 for 2 < i ≤ 2k. For example, we have
π = 25796431(10)8 ∈ Π

(1)
10,2,5 with type(π) = (4,5,2,2)

Define
Π
(2)
n,k,d = {π ∈ L([n]) ∶ χ+(π) = 0, type(π) = (t1, t2, . . . , t2k+1)}

where t1 = n when k = 0 and t1 = n − d − k, t2 = d − k + 2, and ti = 2 for 2 < i ≤ 2k + 1
otherwise. For example, we have π = 2796431(10)58 ∈ Π

(2)
10,2,5 with type(π) = (3,5,2,2,2)

Define
Π
(3)
n,k,d = {π ∈ L([n]) ∶ χ+(π) = 1, type(π) = (t1, t2, . . . , t2k+1)}

where t1 = n when k = 0 and t1 = d − k + 1, t2 = n − d − k + 1, and ti = 2 for 2 < i ≤ 2k + 1
otherwise. For example, we have π = 964123(10)785 ∈ Π

(3)
10,2,5 with type(π) = (4,4,2,2,2)

the electronic journal of combinatorics 29(3) (2022), #P3.3 4



Define
Π
(4)
n,k,d = {π ∈ L([n]) ∶ χ+(π) = 1, type(π) = (t1, t2, . . . , t2k+2)}

where t1 = d − k + 1, t2 = n − d − k, and ti = 2 for 2 < i ≤ 2k + 2. For example, we have
π = 96412(10)3857 ∈ Π

(4)
10,2,5 with type(π) = (4,3,2,2,2,2).

By (3), one can deduce the following result.

Lemma 4. Let n ≥ 2. We have

(udr,pk)π =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(2k, k) if π ∈ Π
(1)
n,k,d,

(2k + 1, k) if π ∈ Π
(2)
n,k,d,

(2k + 2, k) if π ∈ Π
(3)
n,k,d,

(2k + 3, k) if π ∈ Π
(4)
n,k,d.

The following theorem will play an essential role in the proof of Conjecture 1.

Theorem 5. Let π ∈ L([n]) be a permutation with (pk,des)π = (k, d) and let σ ∈ L([n]+
m) for some n ≥ 2, m ≥ 1 and k, d ≥ 0. The following statements hold.

(i) If type(π) = (t1, t2, . . . , t2k), χ+(π) = 0, and π ∉ Π
(1)
n,k,d, then there exists a permuta-

tion π′ ∈ Π
(1)
n,k,d such that

(udr,pk,des)π = (udr,pk,des)π′

and
(udr,pk,des)S(π,σ) = (udr,pk,des)S(π′, σ).

(ii) If type(π) = (t1, t2, . . . , t2k+1), χ+(π) = 0, and π ∉ Π
(2)
n,k,d, then there exists a permu-

tation π′ ∈ Π
(2)
n,k,d such that

(udr,pk,des)π = (udr,pk,des)π′

and
(udr,pk,des)S(π,σ) = (udr,pk,des)S(π′, σ).

.

(iii) If type(π) = (t1, t2, . . . , t2k+1), χ+(π) = 1, and π ∉ Π
(3)
n,k,d, then there exists a permu-

tation π′ ∈ Π
(3)
n,k,d such that

(udr,pk,des)π = (udr,pk,des)π′

and
(udr,pk,des)S(π,σ) = (udr,pk,des)S(π′, σ).
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(iv) If type(π) = (t1, t2, . . . , t2k+2), χ+(π) = 1, and π ∉ Π
(4)
n,k,d, then there exists a permu-

tation π′ ∈ Π
(4)
n,k,d such that

(udr,pk,des)π = (udr,pk,des)π′

and
(udr,pk,des)S(π,σ) = (udr,pk,des)S(π′, σ).

Before we prove Theorem 5, we need the following lemma.

Lemma 6. Let π ∈ L([n]) be a permutation with type(π) = (t1, t2, . . . , tk) such that t` ≥ 3
for some ` ≥ 3 and let σ ∈ L([n] +m) for some n ≥ 2 and m ≥ 1. Then there exists an
(udr,pk,des)-preserving bijection φ` ∶ S(π,σ)Ð→ S(π′, σ) for any permutation π′ ∈ Ω`(π).

Proof. Let τ = τ1τ2 . . . τn+m ∈ S(π,σ). If the `-th birun of π is increasing (resp. decreasing),
then let πj and πj+1 be the first (resp. last) two entries of the `-th birun of π and let πi be
the first (resp. last) entry of the (`−2)-th birun of π. Then τ can be uniquely factored as
τaτ bτ c, where τ b is the subsequence of τ between πi and πj+1 including πi and πj+1. Then
τ b can be further decomposed as

πiσ
(1)πi+1σ(2) . . . πjσ(j−i+1)πj+1,

where σ(s) is a (possibly empty) subsequence of τ and all the entries of σ(s) belong to σ
for all 1 ≤ s ≤ j − i+ 1. Now we proceed to construct φ`(τ) by distinguishing the following
two cases.
Case 1. σ(j−i+1) = ∅.
Define φ`(τ) to be the permutation θaθbθc, where θa (resp. θc ) is the permutation obtained
from τa (resp. τ c ) by replacing each element πk by π′k for 1 ≤ k < i (resp. j + 1 < k ≤ n)
and

θb = π′iπ
′
i+1σ

(1)π′i+2σ
(2) . . . π′jσ

(j−i)π′j+1.

For example, let ` = 4, π = 6351274 ∈ L([7]) and σ = (11)89(10) ∈ L([7] + 4). Also let
τ = 63(11)859127(10)4 ∈ S(π,σ) and π′ = 6145273 ∈ Ω4(π). Then τ can be decomposed as
τaτ bτ c as illustrated in Figure 1. Clearly, τ b can be further decomposed as 3σ(1)5σ(2)1σ(3)2
where σ(1) = (11)8, σ(2) = 9 and σ(3) = ∅. By applying the map φ4 to τ , we obtain
φ4(τ) = θaθbθc as shown in Figure 1, where θa = 6, θb = 14(11)8592 and θc = 7(10)3.
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6 3 11 8 5 9 1 2 7 10 4

τa τ b τ c

φ4(τ)

6 1 4 11 8 5 9 2 7 10 3

θa θb θc

Figure 1: An example of Case 1.

Case 2. σ(j−i+1) ≠ ∅.
Suppose that σ(s) ≠ ∅ if and only if s ∈ {s1, s2, . . . , sp} with 1 ≤ s1 < s2 < . . . < sp = j − i+ 1.
Define φ`(τ) to be the permutation θaθbθc, where θa (resp. θc ) is the permutation obtained
from τa (resp. τ c ) by replacing each element πk with π′k for 1 ≤ k < i (resp. j + 1 < k ≤ n)
and θb is obtained from τ b by replacing each πk with π′k+1 for i ≤ k ≤ j, replacing each
σ(sq) by σ(sq+1) for 1 ≤ q ≤ p − 1, and inserting the subsequence π′iσ(s1) immediately to the
left of π′i+1.

For example, let ` = 3, π = 7426315 ∈ L([7]) and σ = (11)8(10)9(12) ∈ L([7] + 5).
Also let τ = (11)7482(10)639(12)15 ∈ S(π,σ) and π′ = 7432615 ∈ Ω3(π). Figure 2
illustrates the decomposition of τ , where τa = (11)748, τ b = 2(10)639(12)1 and τ c = 5.
Clearly, τ b can be further decomposed as 2σ(1)6σ(2)3σ(3)1 where σ(1) = (10), σ(2) = ∅,
and σ(3) = 9(12). By applying the map φ3 to τ , we obtain φ3(τ) = θaθbθc as shown in
Figure 2, where θa = (11)748, θb = 3(10)29(12)61 and θc = 5.

11 7 4 8 2 10 6 3 9 12 1 5

τa τ b τ c

φ3(τ)

11 7 4 8 3 10 2 9 12 6 1 5

θa θb θc

Figure 2: An example of Case 2.
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From the construction of φ`(τ), it is easily seen that φ`(τ) still contains σ as a subse-
quence. Hence, we have φ`(τ) ∈ S(π′, σ), that is, the map φ` is well-defined.

Conversely, given any τ ′ ∈ S(π′, σ), we can recover the permutation τ ∈ S(π,σ) as
follows. If the `-th birun of π′ is increasing (resp. decreasing), then let π′i be the first
(resp. last) entry of the (`−2)-th birun of π′. Let k be a positive integer such that τ ′k = π

′
i.

Then we can recover a permutation τ ∈ S(π,σ) by reversing the procedure in Case 1 when
the `-th birun of π′ is increasing (resp. decreasing) and τ ′k+1 = π

′
i+1 (resp. τ ′k−1 = π

′
i−1 ).

Otherwise, we can recover a permutation τ ∈ S(π,σ) by reversing the procedure in Case
2. So the construction of the map φ` is reversible and hence it is a bijection.

In the following, we aim to show that (udr,pk,des)τ = (udr,pk,des)φ`(τ). We have
four cases: (i) the `-th birun is increasing and σ(j−i+1) = ∅, (ii) the `-th birun is increasing
and σ(j−i+1) ≠ ∅, (iii) the `-th birun is decreasing and σ(j−i+1) = ∅, and (iv) the `-th birun
is decreasing and σ(j−i+1) ≠ ∅. Here we only prove the assertion for cases (i) and (iv). All
the other cases can be verified by similar arguments.
(i) The `-th birun is increasing and σ(j−i+1) = ∅.
It is easy to verify that

des(τ) = des(τaπi) + des(πj+1τ c) + t`−1 − 1 +
j−i+1
∑
s=1

des(σ(s)) +
t`−2−1
∑
s=1

δ(∣σ(s)∣ > 0)

and

pk(τ) = pk(τaπi) + pk(πj+1τ c) +
j−i+1
∑
s=1

epk(σ(s)) + δ(∣σ(t`−2−1)∣ = ∣σ(t`−2)∣ = 0).

Here δ(S) = 1 if the statement S is true, and δ(S) = 0 otherwise. Similarly, we have

des(φ`(τ)) = des(θaπ′i) + des(π′j+1θ
c) + t′`−1 − 1 +

j−i+1
∑
s=1

des(σ(s)) +
t`−2−1
∑
s=1

δ(∣σ(s)∣ > 0),

and

pk(φ`(τ)) = pk(θaπ′i) + pk(π′j+1θ
c) +

j−i+1
∑
s=1

epk(σ(s)) + δ(∣σ(t`−2−1)∣ = ∣σ(t`−2)∣ = 0).

As Des(π1π2 . . . πi) = Des(π′1π
′
2 . . . π

′
i) and Des(πj+1πj+2 . . . πn) = Des(π′j+1π

′
j+2 . . . π′n), we

have Des(τaπi) = Des(θaπ′i) and Des(πj+1τ c) = Des(π′j+1θc). This yields that des(φ`(τ)) =
des(τ) and pk(φ`(τ)) = pk(τ) as t`−1 = t′`−1.

By (3), in order to prove that udr(τ) = udr(φ`(τ)), it suffices to show that χ+(τ) =
χ+(φ`(τ)) and χ−(τ) = χ−(φ`(τ)). Let x and y be positive integers such that τx = πi and
τy = πj+1. If x = 1, then we have χ+(τ) = 0 = χ+(φ`(τ)) since πi < πi+1 and π′i < π

′
i+1

guarantee that 1 ∉ Des(τ) and 1 ∉ Des(φ`(τ)). If x > 1, then Des(τaπi) = Des(θaπ′i)
implies that χ+(τ) = χ+(φ`(τ)). Notice that πj+1 (resp. π′j+1) is not the last entry of the
`-th birun of π (resp. π′). This implies that y < n +m. Then Des(πj+1τ c) = Des(π′j+1θc)
implies that χ−(τ) = χ−(φ`(τ)). So far, we have concluded that χ+(τ) = χ+(φ`(τ)) and
χ−(τ) = χ−(φ`(τ)). Thus, we have udr(τ) = udr(φ`(τ)) as desired.
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(iv) The `-th birun is decreasing and σ(j−i+1) ≠ ∅.
It is routine to check that

des(τ) = des(τaπi) + des(πj+1τ c) + t` − 1 +
j−i+1
∑
s=1

des(σ(s)) +
t`−1−1
∑
s=1

δ(∣σ(s)∣ > 0)

and

pk(τ) = pk(τaπi) + pk(πj+1τ c) +
j−i+1
∑
s=1

epk(σ(s)) + δ(∣σ(t`−1−1)∣ = ∣σ(t`−1)∣ = 0).

Similarly, we have

des(φ`(τ)) = des(θaπ′i) + des(π′j+1θ
c) + t′` +

j−i+1
∑
s=1

des(σ(s)) +
t`−1−1
∑
s=1

δ(∣σ(s)∣ > 0),

and

pk(φ`(τ)) = pk(θaπ′i) + pk(π′j+1θ
c) +

j−i+1
∑
s=1

epk(σ(s)) + δ(∣σ(t`−1−1)∣ = ∣σ(t`−1)∣ = 0).

As Des(π1π2 . . . πi) = Des(π′1π
′
2 . . . π

′
i) and Des(πj+1πj+2 . . . πn) = Des(π′j+1π

′
j+2 . . . π′n), we

have Des(τaπi) = Des(θaπ′i) and Des(πj+1τ c) = Des(π′j+1θc). This yields that des(φ`(τ)) =
des(τ) and pk(φ`(τ)) = pk(τ) since t′` = t` − 1.

By (3), in order to prove that udr(τ) = udr(φ`(τ)), it suffices to show that χ+(τ) =
χ+(φ`(τ)) and χ−(τ) = χ−(φ`(τ)). Let x and y be positive integers such that τx = πi
and τy = πj+1. Clearly, we have x > 1. Then Des(τaπi) = Des(θaπ′i) implies that χ+(τ) =
χ+(φ`(τ)). If y < n +m, Des(πj+1τ c) = Des(π′j+1θc) implies that χ−(τ) = χ−(φ`(τ)). If
y = n +m, then we have χ−(τ) = 0 = χ−(φ`(τ)) since πn−1 > πn and π′n−1 > π′n guarantee
that n + m − 1 ∈ Des(τ) and n + m − 1 ∈ Des(φ`(τ)). So far, we have concluded that
χ+(τ) = χ+(φ`(τ)) and χ−(τ) = χ−(φ`(τ)). Thus, we have udr(τ) = udr(φ`(τ)) as desired.
Hence, the map φ` is an (udr,pk,des)-preserving bijection between S(π,σ) and S(π′, σ),
completing the proof.

Proof of Theorem 5. Take i ∈ [4] to be arbitrary. As π ∉ Π
(i)
n,k,d, we can find the largest

integer `(1) with `(1) > 2 such that t`(1) ≥ 3. Let π(1) be a permutation in Ω`(1)(π). By
Lemma 6, the map φ`(1) serves as an (udr,pk,des)-preserving bijection between S(π,σ)
and S(π(1), σ). Thus we have

(udr,pk,des)π = (udr,pk,des)π(1)

and
(udr,pk,des)S(π,σ) = (udr,pk,des)S(π(1), σ).

If π(1) ∈ Π
(i)
n,k,d, then we stop and set π′ = π(1). Otherwise, let t′i denote the i-th birun of π(1).

Then, find the largest integer `(2) with `(2) > 2 such that t′
`(2) ≥ 3. Again by Lemma 6, the

map φ`(2) serves as an (udr,pk,des)-preserving bijection between S(π(1), σ) and S(π(2), σ)
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where π(2) ∈ Ω`(2)(π
(1)). We continue this process until we get some π(s) ∈ Π

(i)
n,k,d. Then

we set π′ = π(s). Clearly, we have (udr,pk,des)π = (udr,pk,des)π′. By Lemma 6, we have

(udr,pk,des)S(π,σ) = (udr,pk,des)S(π′, σ)

as desired, completing the proof.
Now we are ready for the proof of Conjecture 1.

Proof of Conjecture 1. By Lemma 3, in order to prove Conjecture 1, it suffices to
show that for any two permutations π,π′ ∈ L([n]) with (udr,pk,des)π = (udr,pk,des)π′

and σ ∈ L([n] +m) for n,m ≥ 1, we have (udr,pk,des)S(π,σ) = (udr,pk,des)S(π′, σ). It
is easily seen that the assertion holds for n = 1. We now assume that n ≥ 2.

Let π,π′ ∈ L([n]) with (udr,pk,des)π = (udr,pk,des)π′ and (pk,des)π = (pk,des)π′ =
(k, d) and let σ ∈ L([n] +m). Notice that Des(π) = Des(π′) for any permutations π,π′ ∈
Π
(i)
n,k,d for fixed i ∈ [4]. Then by Lemma 2, we have

(udr,pk,des)S(π,σ) = (udr,pk,des)S(π′, σ)

when π,π′ ∈ Π
(i)
n,k,d for fixed i ∈ [4]. Otherwise, by Theorem 5, there exist two permutations

τ, τ ′ ∈ Πn,k,d satisfying that

(udr,pk,des)π = (udr,pk,des)τ,

(udr,pk,des)S(π,σ) = (udr,pk,des)S(τ, σ),

(udr,pk,des)π′ = (udr,pk,des)τ ′,

and
(udr,pk,des)S(π′, σ) = (udr,pk,des)S(τ ′, σ).

In order to show that (udr,pk,des)S(π,σ) = (udr,pk,des)S(π′, σ), it remains to show

that both τ and τ ′ are elements of Π
(i)
n,k,d for some i ∈ [4]. This follows immediately from

Lemma 4 and the equality (udr,pk,des)τ = (udr,pk,des)τ ′. This completes the proof.
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