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Abstract

A vertex of a graph is bisimplicial if the set of its neighbors is the union of
two cliques; a graph is quasi-line if every vertex is bisimplicial. A recent result of
Chudnovsky and Seymour asserts that every non-empty even-hole-free graph has
a bisimplicial vertex. Both Hadwiger’s Conjecture and the Erdős-Lovász Tihany
Conjecture have been shown to be true for quasi-line graphs, but are open for even-
hole-free graphs. In this note, we prove that every even-hole-free graph G with
ω(G) < χ(G) = s + t − 1 satisfies the Erdős-Lovász Tihany Conjecture provided
that t > s > χ(G)/3; every 9-chromatic graph G with ω(G) 6 8 has a K4 ∪ K6

minor; and every even-hole-free graph with no Kk minor is (2k−5)-colorable for all
k > 7. Our proofs rely heavily on the structural result of Chudnovsky and Seymour
on even-hole-free graphs.

Mathematics Subject Classifications: 05C55, 05C35

1 Introduction

All graphs in this paper are finite and simple. For a graph G, we use V (G) to denote

the vertex set, E(G) the edge set, |G| the number of vertices, e(G) the number of edges,

δ(G) the minimum degree, ∆(G) the maximum degree, α(G) the independence number,

and ω(G) the clique number. A graph G is k-colorable or has a proper k-coloring if there

is a function τ : V (G) → {1, . . . , k}, such that for every edge uv of G, τ(u) 6= τ(v).

The chromatic number of G, denoted χ(G), is the minimum integer k for which G is

k-colorable. We say that G is k-chromatic if χ(G) = k. A graph H is a minor of a graph

G if H can be obtained from a subgraph of G by contracting edges. We write G < H if
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H is a minor of G. In those circumstances we also say that G has an H minor. Our work

is motivated by the celebrated Hadwiger’s Conjecture [12] and the Erdős-Lovász Tihany

Conjecture [11].

Conjecture 1 (Hadwiger’s Conjecture [12]). For every integer k > 1, every graph with

no Kk minor is (k − 1)-colorable.

Conjecture 1 is trivially true for k 6 3, and reasonably easy for k = 4, as shown in-

dependently by Hadwiger [12] and Dirac [9]. However, for k > 5, Hadwiger’s Conjecture

implies the Four Color Theorem [1, 2]. Wagner [32] proved that the case k = 5 of Had-

wiger’s Conjecture is, in fact, equivalent to the Four Color Theorem, and the same was

shown for k = 6 by Robertson, Seymour and Thomas [23]. Despite receiving considerable

attention over the years, Hadwiger’s Conjecture remains open for k > 7 and is widely con-

sidered among the most important problems in graph theory and has motivated numerous

developments in graph coloring and graph minor theory. The best known upper bound on

the chromatic number of graphs with no Kk minor is O(k log log k) due to Delcourt and

Postle [10], improving a recent breakthrough of Norin, Postle, and the present author [20]

who improved a long-standing bound obtained independently by Kostochka [15, 16] and

Thomason [30]. We refer the reader to recent surveys [5, 13, 24] for further background

on Hadwiger’s Conjecture.

Throughout the paper, let s and t be positive integers. A graph G is (s, t)-splittable if

V (G) can be partitioned into two sets S and T such that χ(G[S]) > s and χ(G[T ]) > t.

In 1968, Erdős [11] published the following conjecture of Lovász, which has since been

known as the Erdős-Lovász Tihany Conjecture.

Conjecture 2 (The Erdős-Lovász Tihany Conjecture). Let G be a graph with ω(G) <

χ(G) = s+ t− 1, where t > s > 2 are integers. Then G is (s, t)-splittable.

Conjecture 2 is hard, and few related results are known. The case (2, 2) of Conjecture 2

is trivial; the cases (2, 3) and (3, 3) were shown by Brown and Jung [3] in 1969; Mozhan [19]

and Stiebitz [26] independently proved the case (2, 4) in 1987; the cases (3, 4) and (3, 5)

were settled by Stiebitz [27] in 1988. A relaxed version of Conjecture 2 was proved in [29].

Recent work on both Conjecture 1 and Conjecture 2 have also focused on proving the

conjectures for certain classes of graphs. A vertex of a graph is bisimplicial if the set of its

neighbors is the union of two cliques; a graph is quasi-line if every vertex is bisimplicial.

Note that every line graph is quasi-line and every quasi-line graph is claw-free [7]. A hole

in a graph is an induced cycle of length at least four; a hole is even if it has an even

length. A graph is even-hole-free if it contains no even hole. Hadwiger’s Conjecture has

been shown to be true for line graphs by Reed and Seymour [21]; quasi-line graphs by

Chudnovsky and Ovetsky Fradkin [6]; graphs G with α(G) > 3 and no hole of length
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between 4 and 2α(G)− 1 by Thomas and the present author [31]. Meanwhile, the Erdős-

Lovász Tihany Conjecture has also been verified to be true for line graphs by Kostochka

and Stiebitz [17]; quasi-line graphs, and graphs G with α(G) = 2 by Balogh, Kostochka,

Prince and Stiebitz [4]; graphs G with α(G) > 3 and no hole of length between 4 and

2α(G)− 1 by the present author [25].

Chudnovsky and Seymour [8] recently proved a structural result on even-hole-free

graphs.

Theorem 3 (Chudnovsky and Seymour [8]). Let G be a non-empty even-hole-free graph.

Then G has a bisimplicial vertex and χ(G) 6 2ω(G)− 1.

It is unknown whether Conjecture 1 and Conjecture 2 hold for even-hole-free graphs.

Using Theorem 3, we prove in Section 2 that for all k > 7, every even-hole-free graph with

no Kk minor is (2k− 5)-colorable; and every even-hole-free graph G with ω(G) < χ(G) =

s + t − 1 satisfies Conjecture 2 provided that t > s > χ(G)/3. It is worth noting that

Kawarabayashi, Pedersen and Toft [14] observed that if Hadwiger’s Conjecture holds,

then the following conjecture might be easier to settle than the Erdős-Lovász Tihany

Conjecture.

Conjecture 4 (Kawarabayashi, Pedersen, Toft [14]). Every graph G satisfying ω(G) <

χ(G) = s + t − 1 has two vertex-disjoint subgraphs G1 and G2 such that G1 < Ks and

G2 < Kt, where t > s > 2 are integers.

In the same paper [14], they settled Conjecture 4 for the additional values of (s, t) ∈
{(2, 6), (3, 6), (4, 4), (4, 5)}. We end Section 2 by proving the (4, 6) case for Conjecture 4,

that is, we prove that every graph G with χ(G) = 9 > ω(G) has a K4 ∪K6 minor. Here

K4 ∪K6 denotes the disjoint union of K4 and K6.

We need to introduce more notation. Let G be a graph. For a vertex x ∈ V (G),

we will use N(x) to denote the set of vertices in G that are adjacent to x. We define

N [x] = N(x) ∪ {x} and d(x) = |N(x)|. If A,B ⊆ V (G) are disjoint, we say that A is

complete to B if each vertex in A is adjacent to all vertices in B, and A is anti-complete

to B if no vertex in A is adjacent to any vertex in B. If A = {a}, we simply say a is

complete to B or a is anti-complete to B. The subgraph of G induced by A, denoted

G[A], is the graph with vertex set A and edge set {xy ∈ E(G) : x, y ∈ A}. We denote by

B \A the set B −A, and G \A the subgraph of G induced on V (G) \A, respectively. If

A = {a}, we simply write B \ a and G \ a, respectively. An (s, t)-graph is a connected

(s + t − 1)-chromatic graph which does not contain two vertex-disjoint subgraphs with

chromatic number s and t, respectively. We use the convention “A :=” to mean that A

is defined to be the right-hand side of the relation.

Finally, we shall make use of the following results of Stiebitz [27, 28] and Mader [18].

the electronic journal of combinatorics 29(3) (2022), #P3.30 3



Theorem 5 (Stiebitz [27]). Suppose G is an (s, t)-graph with t > s > 2. If ω(G) > t,

then ω(G) > s+ t− 1.

Theorem 6 (Stiebitz [28]). Every graph G satisfying δ(G) > s + t + 1 has two vertex-

disjoint subgraphs G1 and G2 such that δ(G1) > s and δ(G2) > t.

Theorem 7 (Mader [18]). For every integer p 6 7, every graph on n > p vertices and at

least (p− 2)n−
(
p−1
2

)
+ 1 edges has a Kp minor.

2 Main results

We begin with a lemma which plays a key role in the proof of Theorem 9 and Theorem 10.

Lemma 8. Let G be a graph and x ∈ V (G) with p := χ(G[N(x)]) > 2. Let V1, . . . , Vp
be the color classes of a proper p-coloring of G[N(x)] with |V1| > · · · > |Vp| > 1. If

|Vr ∪ · · · ∪ Vp| 6 χ(G)− r − 1 for some r ∈ [p] with 2 6 r 6 p, then p 6 χ(G)− 2 and G

is (r, χ(G) + 1− r)-splittable.

Proof. Let G, p, r, V1, . . . , Vp be as given in the statement. Note that p−r+1 6 |Vr∪· · ·∪
Vp| 6 χ(G)−r−1 and so p 6 χ(G)−2 and V (G)\N [x] 6= ∅. Let W := V1∪· · ·∪Vr−1. Then

χ(G[{x}∪W ]) = r and χ(G\W ) > χ(G)−(r−1) = χ(G)+1−r. It suffices to show that

χ(G\ ({x}∪W )) > χ(G\W ). Let q := χ(G\ ({x}∪W )) > χ(G\W )−1 > χ(G)− r > 2

and let U1, . . . , Uq be the color classes of a proper q-coloring of G \ ({x} ∪ W ). Since

x is adjacent to |Vr ∪ · · · ∪ Vp| 6 χ(G) − r − 1 6 q − 1 vertices in G \ W , we see

that x is anti-complete to Ui for some i ∈ [q]. We may assume that i = 1. Then

U1 ∪ {x}, U2, . . . , Uq form the color classes of a proper q-coloring of G \W . Therefore,

χ(G \ ({x} ∪W )) = q > χ(G \W ) > χ(G)− r + 1, as desired.

We now prove that the Erdős-Lovász Tihany Conjecture holds for even-hole-free graphs

G with ω(G) < χ(G) = s+ t− 1 if t > s > χ(G)/3. It would be nice if one can prove the

same holds for all even-hole free graphs.

Theorem 9. Let G be an even-hole-free graph with ω(G) < χ(G) = s + t − 1, where

t > s > 2. If s > χ(G)/3, then G is (s, t)-splittable.

Proof. Suppose the assertion is false. LetG be a counterexample with |G|minimum. Then

G is vertex-critical; in addition, G is an (s, t)-graph. Thus δ(G) > χ(G)−1 = s+t−2. By

Theorem 5, ω(G) 6 t− 1. Since G is even-hole-free, by Theorem 3, G has a bisimplicial

vertex v. Then N(v) is the union of two cliques. Thus α(G[N(v)]) 6 2, ω(G[N(v)]) 6 t−2

and

s+ t− 2 = χ(G)− 1 6 δ(G) 6 d(v) 6 2ω(G[N(v)]) 6 2t− 4.
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It follows that t > s + 2 > 4 and χ(G) = s + t − 1 > 2s + 1. We next claim that

∆(G) 6 |G| − 2. Suppose there exists x ∈ V (G) such that d(x) = |G| − 1. Then

χ(G \ x) = χ(G)− 1 = s+ (t− 1)− 1 > ω(G)− 1 = ω(G \ x) and t− 1 > s > χ(G \ x)/3.

By the minimality of G, G \ x is (s, t − 1)-splittable and thus G is (s, t)-splittable, a

contradiction. Thus ∆(G) 6 |G| − 2, as claimed. It follows that V (G) \N [v] 6= ∅ and so

χ(G[N [v]]) 6 χ(G) − 1. Let p := χ(N(v)). Then p = χ(G[N [v]]) − 1 6 χ(G) − 2. Note

that

p > ω(G[N(v)]) > d(v)/2 > (χ(G)− 1)/2 > ((2s+ 1)− 1)/2 = s > 2.

Let V1, . . . , Vp be the color classes of a proper p-coloring of G[N(v)] with 2 > |V1| > · · · >
|Vp| > 1. Suppose p > t− 1. Then |Vt−2| = 1 because d(v) 6 2t− 4. Therefore,

|Vt ∪ · · · ∪ Vp| = p− t+ 1 6 (χ(G)− 2)− t+ 1 = χ(G)− t− 1.

By Lemma 8 applied to G and v with r = t, we see that G is (s, t)-splittable, a con-

tradiction. Thus s 6 p 6 t − 2. Next, if |Vs ∪ · · · ∪ Vp| 6 χ(G) − s − 1, then G is

(s, t)-splittable by applying Lemma 8 to G and v with r = s, a contradiction. Hence,

|Vs ∪ · · · ∪ Vp| > χ(G)− s = t− 1 > 3. Note that p− s+ 1 6 (t− 2)− 2 + 1 = t− 3, and

so |Vs| = 2 and

d(v) = (|V1|+ · · ·+ |Vs−1|) + |Vs ∪ · · · ∪ Vp| > 2(s− 1) + t− 1 = 2s+ t− 3.

It follows that t−2 > ω(G[N(v)]) > d(v)/2 > (2s+t−3)/2, which implies that t > 2s+1.

Thus χ(G) = s+ t− 1 > 3s, contrary to the assumption that 3s > χ(G).

We next prove that Conjecture 4 is true when (s, t) = (4, 6).

Theorem 10. Every 9-chromatic graph G with ω(G) 6 8 has a K4 ∪K6 minor.

Proof. Suppose for a contradiction that G is a counterexample to the statement with min-

imum number of vertices. Then G is vertex-critical, and so δ(G) > 8 and G is connected.

Suppose G contains two vertex-disjoint subgraphs G1 and G2 such that χ(G1) > 4 and

χ(G2) > 6. Since Hadwiger’s Conjecture holds for k-chromatic graphs with k 6 6, we see

that G1 < K4 and G2 < K6, a contradiction. Thus G is a (4, 6)-graph, and so ω(G) 6 5

by Theorem 5. Note that G is not necessarily contraction-critical, as a proper minor of

G may have clique number 9. We claim that

Claim 1. 2 6 α(G[N(x)]) 6 d(x)− 7 for each x ∈ V (G).

Proof. Let x ∈ V (G). Since ω(G) 6 5 and δ(G) > 8, we see that α(G[N(x)]) > 2.

Suppose α(G[N(x)]) > d(x)− 6. Let A be a maximum independent set of G[N(x)]. Let

G∗ be obtained from G by contracting G[A ∪ {x}] into a single vertex, say w. Note that
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ω(G∗) < 8 and G∗ has no K4 ∪ K6 minor. By the minimality of G, χ(G∗) 6 8. Let

c : V (G∗)→ [8] be a proper 8-coloring of G∗. Since |N(x) \A| = d(x)− |A| 6 6, we may

assume that c(N(x) \ A) ⊆ [6] and c(w) = 7. But then we obtain a proper 8-coloring of

G from c by coloring all the vertices in A with color 7 and the vertex x with color 8, a

contradiction. Thus 2 6 α(G[N(x)]) 6 d(x)− 7, as claimed.

By Claim 1, δ(G) > 9. Suppose δ(G) > 13. By Theorem 6, G contains two vertex-

disjoint subgraphs G1 and G2 such that δ(G1) > 4 and δ(G2) > 8. By Theorem 7, we see

that G1 < K4 and G2 < K6, a contradiction. Thus 9 6 δ(G) 6 12. We next claim that

Claim 2. G[N(x)] is even-hole-free and χ(G[N(x)]) 6 2ω(G[N(x)]) − 1 for each x ∈
V (G).

Proof. Let x ∈ V (G). Suppose G[N(x)] contains an even hole C. Then χ(G[V (C) ∪
{x}]) = 3 and so χ(G\(V (C)∪{x})) > χ(G)−3 = 6. It is easy to see that G[V (C)∪{x}] <
K4. Since Hadwiger’s Conjecture holds for 6-chromatic graphs, we see that G \ (V (C) ∪
{x}) has a K6 minor, and so G has a K4 ∪K6 minor, a contradiction. Thus G[N(x)] is

even-hole-free. By Theorem 3, χ(G[N(x)]) 6 2ω(G[N(x)])− 1.

Let v ∈ V (G) with d(v) = δ(G), and let p := χ(G[N(v)]). Since 9 6 d(v) 6 12, we see

that p > |N(x)|/α(G[N(x)]) > 3 by Claim 1. Suppose G[N(v)] is K3-free. By Claim 2,

p 6 2ω(G[N(v)])−1 = 3. Thus χ(G[N [v]]) = 4 and χ(G\N [v]) = χ(G\N(v)) > 9−3 = 6,

contrary to the fact that G is a (4, 6)-graph. Thus ω(G[N(v)]) > 3. Let v1, v2, v3 ∈ N(v)

be pairwise adjacent in G and let H := G \ {v, v1, v2, v3}. Then G[{v, v1, v2, v3}] = K4

and

2e(H) > (d(v)− 3)(|G \N [v]|) + (d(v)− 4) · |N(v) \ {v1, v2, v3}|
= (d(v)− 3)(|G| − d(v)− 1) + (d(v)− 4)(d(v)− 3)

= (d(v)− 3)(|H| − 1).

Suppose d(v) ∈ {11, 12}. Then 2e(H) > 8(|H|−1). By Theorem 7, H < K6, and so G has

a K4 ∪K6 minor, a contradiction. This proves that 9 6 d(v) 6 10. Then p > 4 by Claim

1. Since ω(G) 6 5, we see that ω(G[N(v)]) 6 4 and so G[N(v)] contains the complement

of a matching of size at least three. It follows that 4 6 p 6 d(v)−3. Let V1, . . . , Vp be the

color classes of a proper p-coloring of G[N(v)] with |V1| > · · · > |Vp| > 1. If p ∈ {4, 5},
then |V4| 6 2 because d(v) 6 10. Thus |V4 ∪ · · · ∪ Vp| 6 4 = χ(G)− 4− 1. By Lemma 8

applied to G and v with r = 4, we see that G is (4, 6)-splittable, contrary to the fact that

G is a (4, 6)-graph. It remains to consider the case 6 6 p 6 d(v)− 3. Since d(v) 6 10, we

see that |V5| = 1. Thus |V6 ∪ · · · ∪ Vp| = p− 5 6 (d(v)− 3)− 5 6 2 = χ(G)− 6− 1. By

Lemma 8 applied to G and v with r = 6, we see that G is (4, 6)-splittable, a contradiction.

This completes the proof of Theorem 10.
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We end this section with an easy result (Theorem 11) on coloring even-hole-free graphs

with no Kk minor, where k > 7. It seems non-trivial to improve the bound in Theorem 11

to 2k − 6. Rolek and the present author [22, Theorem 5.2] proved that if Mader’s bound

in Theorem 7 can be generalized to all values of p (as in [22, Conjecture 5.1]), then every

graph with no Kp minor is (2p− 6)-colorable for all p > 7.

Theorem 11. For all k > 7, every even-hole-free graph with no Kk minor is (2k − 5)-

colorable.

Proof. Suppose the assertion is false. Let G be an even-hole free graph with no Kk minor

and χ(G) > 2k − 4. We choose G with |G| minimum. Then G is vertex-critical and

χ(G) = 2k − 4. Thus δ(G) > 2k − 5; in addition, G is connected and has no clique-cut.

Suppose ω(G) > k − 1. Let K be a (k − 1)-clique in G. Then G \ K is connected

because G has no clique-cut; by contracting G \ K into a single vertex we obtain a Kk

minor, a contradiction. Thus ω(G) 6 k − 2. Since G is even-hole-free, by Theorem 3,

χ(G) 6 2ω(G)− 1 6 2(k − 2)− 1 = 2k − 5, a contradiction.
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[4] József Balogh, Alexandr V. Kostochka, Noah Prince, and Michael Stiebitz. The
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