Planar Turán Numbers of Cycles: A Counterexample

Daniel W. Cranston* Bernard Lidický ${ }^{\dagger}$ Xiaonan Liu ${ }^{\ddagger}$ Abhinav Shantanam ${ }^{\S}$

Submitted: Oct 5, 2021; Accepted: Jun 23, 2022; Published: Aug 12, 2022
(C) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

The planar Turán number $\operatorname{ex}_{\mathcal{P}}\left(C_{\ell}, n\right)$ is the largest number of edges in an n vertex planar graph with no ℓ-cycle. For each $\ell \in\{3,4,5,6\}$, upper bounds on $\operatorname{ex}_{\mathcal{P}}\left(C_{\ell}, n\right)$ are known that hold with equality infinitely often. Ghosh, Győri, Martin, Paulos, and Xiao [arXiv:2004.14094] conjectured an upper bound on $\operatorname{ex}_{\mathcal{P}}\left(C_{\ell}, n\right)$ for every $\ell \geqslant 7$ and n sufficiently large. We disprove this conjecture for every $\ell \geqslant 11$. We also propose two revised versions of the conjecture.

Mathematics Subject Classifications: 05C35

1 Introduction

The Turán number ex (n, H) for a graph H is the maximum number of edges in an n vertex graph with no copy of H as a subgraph. Turán famously showed that ex $\left(n, K_{\ell}\right) \leqslant$ $\left(1-\frac{1}{\ell-1}\right) \frac{n^{2}}{2}$; for example, see [1, Chapter 32]. The Erdős-Stone Theorem [8, Exercise 10.38] generalizes this result, by asymptotically determining ex (n, H) for every non-bipartite graph $H: \operatorname{ex}(n, H)=\left(1-\frac{1}{\chi(H)-1}\right) \frac{n^{2}}{2}+o\left(n^{2}\right)$; here $\chi(H)$ is the chromatic number of H. Dowden [3] considered the problem when restricting to n-vertex graphs that are planar. The planar Turán number $\operatorname{ex}_{\mathcal{P}}(n, H)$ for a graph H is the maximum number of edges in an n-vertex planar graph with no copy of H as a subgraph (not necessarily induced). This parameter has been investigated for various graphs H in [6] and [4]; but here we focus mainly on cycles. It is well-known that if G is an n-vertex planar graph with no triangle, then G has at most $2 n-4$ edges; further, this bound is achieved by every planar graph with each face of length 4. Thus, $\operatorname{ex}_{\mathcal{P}}\left(n, C_{3}\right)=2 n-4$ for all $n \geqslant 4$. Dowden [3] proved that $\operatorname{ex}_{\mathcal{P}}\left(n, C_{4}\right) \leqslant \frac{15(n-2)}{7}$ for all $n \geqslant 4$ and $\operatorname{ex}_{\mathcal{P}}\left(n, C_{5}\right) \leqslant \frac{12 n-33}{5}$ for all $n \geqslant 11$. He also gave constructions showing that both bounds are sharp infinitely often.

[^0]For each $k \in\{4,5\}$, form Θ_{k} from C_{k} by adding a chord of the cycle. Lan, Shi, and Song [7] showed that $\operatorname{ex}_{\mathcal{P}}\left(n, \Theta_{4}\right) \leqslant \frac{12(n-2)}{5}$ for all $n \geqslant 4$, that $\operatorname{ex}_{\mathcal{P}}\left(n, \Theta_{5}\right) \leqslant \frac{5(n-2)}{2}$ for all $n \geqslant 5$, and that $\exp _{\mathcal{P}}\left(n, C_{6}\right) \leqslant \frac{18(n-2)}{7}$ for all $n \geqslant 7$. The bounds for Θ_{4} and Θ_{5} are sharp infinitely often. However, the bound for C_{6} was strengthened by Ghosh, Győri, Martin, Paulos, and Xiao [5], who showed that $\operatorname{ex}_{\mathcal{P}}\left(n, C_{6}\right) \leqslant \frac{5 n-14}{2}$ for all $n \geqslant 18$. They also showed that this bound is sharp infinitely often. In the same paper, Ghosh et al. conjectured a bound on $\operatorname{ex}_{\mathcal{P}}\left(n, C_{\ell}\right)$ for each $\ell \geqslant 7$ and each sufficiently large n. In this note, we disprove their conjecture.

Conjecture 1 ([5]; now disproved). For each $\ell \geqslant 7$, for n sufficiently large, if G is an n-vertex planar graph with no copy of C_{ℓ}, then $e(G) \leqslant \frac{3(\ell-1)}{\ell} n-\frac{6(\ell+1)}{\ell}$. That is, $\operatorname{ex}_{\mathcal{P}}\left(n, C_{\ell}\right) \leqslant \frac{3(\ell-1)}{\ell} n-\frac{6(\ell+1)}{\ell}$.

In fact, we disprove the conjecture in a strong way.
Theorem 2. For each $\ell \geqslant 11$ and each n sufficiently large (as a function of ℓ), we have $\exp \left(n, C_{\ell}\right)>\frac{3(\ell-1)}{\ell} n-\frac{6(\ell+1)}{\ell}$. Furthermore, if there exists a function $s: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$such that $\operatorname{ex} x_{\mathcal{P}}\left(n, C_{\ell}\right) \leqslant \frac{3(s(\ell)-1)}{s(\ell)} n$ for all ℓ and all n sufficiently large (as a function of ℓ), then $s(\ell)=\Omega\left(\ell^{\lg _{2} 3}\right)$.

We prove the first statement of Theorem 2 in Section 2, and sketch a proof of the second statement in Section 3. Our constructions modify that outlined by Ghosh et al. [5]. The main building blocks, which we call gadgets, are triangulations, in which every cycle has length less than ℓ. Clearly, a set of vertex-disjoint gadgets will have no C_{ℓ}. To increase the average degree, we can identify vertices on the outer faces of these gadgets as long as we avoid creating cycles. We can also allow ourselves to create cycles among the gadgets as long as each created cycle has length more than ℓ. So we must find the way to do this most efficiently.

Our notation is standard, but we mention a few things for completeness. We let $e(G)$ and $n(G)$ denote the numbers of edges and vertices in a graph G. We write C_{ℓ} for a cycle of length ℓ.

2 Disproving the Conjecture: a First Construction

To disprove Conjecture 1, we start with a planar graph in which each face has length $\ell+1$ (and each cycle has length at least $\ell+1$), and then we "substitute" a gadget for each vertex. As a first step, we construct the densest planar graphs with a given girth g, for each fixed $g \geqslant 6$. We will also need our dense graphs to have maximum degree 3 , as we require in the next definition.

Definition 3. If G is a plane graph of girth g with each vertex of degree 2 or 3 , and $e(G)=\frac{g}{g-2}(n-2)$, then G is a plane dense graph of girth g.
plane dense graph

An easy counting argument shows that if G is an n-vertex plane dense graph of girth g, where $n=(g-2) \frac{5 k-2}{2}+2$ (for some positive even integer k), then G has $10 k-8$ vertices of degree 3 and all other vertices of degree 2 .

Lemma 4. Fix an integer $g \geqslant 3$. If G is a connected planar graph with n vertices and girth g, then $e(G) \leqslant \frac{g}{g-2}(n-2)$. For each $g \geqslant 6$, this bound holds with equality infinitely often; specifically, it holds with equality if k is a positive even integer and $n=$ $(g-2) \frac{5 k-2}{2}+2$. In fact, for each such k and n, there exists a 2-connected plane graph G that attains this bound and that has every vertex of degree 2 or 3.

Proof. Let G be a connected plane graph with girth g. Denote by n, e, and f the numbers of vertices, edges, and faces in G. Every face boundary contains a cycle, ${ }^{1}$ so every face boundary has length at least g. Thus, $2 e \geqslant g f$. Substituting into Euler's formula and simplifying gives the desired bound: $e \leqslant \frac{g}{g-2}(n-2)$.

Now we construct graphs for which the bound holds with equality. Before giving our full construction, we sketch a simpler construction which has the desired properties except that it has maximum degree 6 (rather than each degree being 2 or 3 , as we require). Begin with a 4 -connected n-vertex plane triangulation with maximum degree 6 . We will find a set M of edges such that every triangular face contains exactly one edge in M. To see that such a set exists, we consider the planar dual G^{*}. Since G is a triangulation and 2 -connected, G^{*} is 3 -regular. By Tutte's Theorem, G^{*} contains a perfect matching M^{*} (in fact, this was proved earlier by Petersen). The set M of edges in G corresponding to the edges of M^{*} in G^{*} has the desired property: each triangle of G contains exactly one edge of M.

To get the desired graph G^{\prime} with each face of length g, we replace each edge of G not in M with a path of length $\lfloor(g+1) / 3\rfloor$ and replace each edge of G in M with a path of length $g-2\lfloor(g+1) / 3\rfloor$. Now each face of G^{\prime} has length $2\lfloor(g+1) / 3\rfloor+(g-2\lfloor(g+1) / 3\rfloor)=g$. Thus, for G^{\prime} the inequality $2 e\left(G^{\prime}\right) \geqslant g f\left(G^{\prime}\right)$ in the initial paragraph holds with equality. So $e\left(G^{\prime}\right)=\frac{g}{g-2}\left(n\left(G^{\prime}\right)-2\right)$. Since each non-facial cycle of G has length at least 4, each non-facial cycle of G^{\prime} has length at least g.

Now we show how to also guarantee that each vertex of G^{\prime} has degree 2 or 3 . The construction is similar, except that it starts from a particular plane graph G with every face of length 6 and every vertex of degree 2 or 3 . Again, we find a subset M of edges such that each face of G contains exactly one edge of M. To form G^{\prime} from G, we replace each edge not in M with a path of length $\lfloor(g+1) / 6\rfloor$ and we replace each edge in M with a path of length $g-5\lfloor(g+1) / 6\rfloor$. Thus, each face of G^{\prime} has length exactly $5\lfloor(g+1) / 6\rfloor+(g-5\lfloor(g+1) / 6\rfloor)=g$.

It will turn out that each non-facial cycle of G has either (i) length at least 10 or (ii) length at least 8 and at least one edge in M. The corresponding non-facial cycle in G^{\prime} thus has length at least g. In Case (ii) this follows from the calculation in the previous paragraph. In Case (i), when $g \geqslant 10$ this holds because $10\lfloor(g+1) / 6\rfloor \geqslant 10(g-4) / 6 \geqslant g$. So consider Case (i) when $g \leqslant 9$. Since each path in G^{\prime} replacing an edge in G has length at least 1 , each non-facial cycle in G^{\prime} has length at least 10 , which is at least g since $g \leqslant 9$. Thus, what remains is to construct our graph G, specify the set of edges M, and check that each non-facial cycle in G either has length at least 10 or has length 8 and includes an edge in M.

We construct an infinite family of 2-connected plane graphs G_{k} on $10 k-2$ vertices, with $5 k-2$ faces (each of length 6), and with all vertices of degree 2 or 3 ; here k is an

[^1]

Figure 1: The planar graph G_{k} has $10 k-2$ vertices, $15 k-6$ edges, and every face of length 6 . Every vertex of G_{k} has degree 2 or 3 and every non-facial cycle either (i) has length at least 10 or (ii) has length 8 and includes a blue edge. The set of blue edges intersects every face exactly once.
arbitrary positive even integer. Figure 1 shows G_{k}. (By Euler's formula, each G_{k} has 6 vertices of degree 2 and $10 k-8$ vertices of degree 3.) Each of k "diagonal columns" contains 10 vertices, except for the first and last, which each contain one vertex fewer. We write $v_{i, j}$ to denote the j th vertex down from the top in column i, except that we start column 1 with $v_{1,2}$. So $V=\left\{v_{i, j} \mid 1 \leqslant i \leqslant k, 1 \leqslant j \leqslant 10,(i, j) \notin\{(1,1),(k, 10)\}\right\}$. The edge set consists of the boundary cycles of $4(k-1) 6$-faces in the hexagonal grid, $k-1$ "curved edges" $v_{i, 1} v_{i-1,10}$, when $2 \leqslant i \leqslant k$, as well two "end edges" $v_{1,2} v_{1,7}$ and $v_{k, 4} v_{k, 9}$. The matching M contains $v_{i, 4} v_{i+1,3}$ and $v_{i, 8} v_{i+1,7}$ when $1 \leqslant i \leqslant k-1$, edge $v_{i, 1} v_{i-1,10}$ for each odd $i \geqslant 3$ if $k \geqslant 4$, and the end edges $v_{1,2} v_{1,7}$ and $v_{k, 4} v_{k, 9}$. It is easy to check that the only vertices with degree 2 are $v_{1,3}, v_{1,5}, v_{1,9}, v_{k, 2}, v_{k, 6}, v_{k, 8}$; the remaining $10 k-8$ vertices all have degree 3 .

We now show that every non-facial cycle has either (i) length at least 10 or (ii) length at least 8 and at least one edge in M. The facial cycles containing the left end-edge are C_{0} and C_{1}, and those containing the right end-edge are $C_{5 k-4}$ and $C_{5 k-3}$. We denote by $C_{2}, C_{3}, \ldots, C_{5 k-5}$ the facial cycles that do not use any end-edge. Informally, C_{2} is the "top left" of these (containing $v_{1,2}$), and subscripts increase as we move down the first diagonal and then wrap around toroidally with the facial cycle containing $v_{1,10}$ and two curved edges (see Figure 1), and continue on to the facial cycle containing $v_{k, 9}$. Formally, each of these is C_{k}, where X denotes its vertex set and $k:=\max \left\{j / 2: v_{i, j} \in X\right\}+5 * \min \{i-1$: $\left.v_{i, j} \in X\right\}+\left(\left|\left\{i: v_{i, j} \in X\right\}\right|-2\right)$.

Note that the edge-set of any non-facial cycle C is the symmetric difference of the edge-sets of the facial cycles "inside" (or "outside") of C. Consider first a non-facial cycle C that does not contain any end-edge. Pick the side of C that does not contain the right end-edge; take the symmetric difference of the edge-sets of the facial cycles on this side
incrementally, in order of increasing subscripts. The symmetric difference of the first two facial cycles has size at least 10 and this size never decreases. Now consider the non-facial cycles that contain exactly one end-edge; by (rotational) symmetry, assume it is the left end-edge. For these cycles, take the symmetric difference incrementally as above for the side not containing the right end-edge; the symmetric difference of the first two facial cycles has size at least 8 and again this size never decreases.

Finally, consider a non-facial cycle C that contains both end-edges. Now take the symmetric difference incrementally as above for the side of C that includes C_{1}; the size of the symmetric difference is now initially at least 8 , and never decreases until the final facial cycle ($C_{5 k-4}$ or $C_{5 k-3}$) is added and the symmetric difference is complete. The final facial cycle C^{\prime} may reduce the size of the symmetric difference by at most 4 , but the final symmetric difference still has size at least 12 (due to the position of C^{\prime} relative to C_{1}, and the fact that $k \geqslant 2$).

To finish the proof, we should verify that $\left|V\left(G^{\prime}\right)\right|=(g-2) \frac{5 k-2}{2}+2$, as claimed. By construction, each vertex of G^{\prime} has degree 2 or 3 . Each vertex with degree 3 in G^{\prime} also has degree 3 in G, and we have exactly $10 k-8$ of these. Let n, e, and f denote the numbers of vertices, edges, and faces in G^{\prime}. Now summing degrees gives

$$
3(10 k-8)+2(n-(10 k-8))=2 e=g f=\frac{g}{g-2}(2 n-4),
$$

where the last two equalities hold as at the start of the proof. Thus, $n=(g-2) \frac{5 k-2}{2}+$ 2.

Definition 5. Let G be a connected plane graph, with every vertex of degree 2 or 3 . Let B be a plane graph with 3 vertices specified on its outer face. To substitute B into G we do the following. Subdivide every edge of G. For each vertex v in G, delete v from the subdivided graph and identify $d(v)$ vertices on the outer face of a copy of B with the neighbors of v in the subdivided graph.

Now we consider the result of substituting B into G, as in Definition 5 .
Lemma 6. Let G be a plane graph; denote by n_{2} and n_{3} the numbers of vertices with degree 2 and 3 in G. Let B be a plane graph with n_{B} vertices and e_{B} edges, and with 3 vertices specified on its outer face. Form G^{\prime} by substituting B into G. Now e $\left(G^{\prime}\right)=$ $\left(n_{2}+n_{3}\right) e_{B}$ and $n\left(G^{\prime}\right)=n_{2}\left(n_{B}-1\right)+n_{3}\left(n_{B}-3 / 2\right)$. Further, if G has no cycle of length ℓ or shorter, and B has no cycle of length ℓ, then G^{\prime} has no cycle of length ℓ.

Proof. Each vertex in G gives rise to an edge-disjoint copy of B in G^{\prime}; thus $e\left(G^{\prime}\right)=$ $\left(n_{2}+n_{3}\right) e_{B}$. Each vertex of degree 2 in G contributes $n_{B}-1$ vertices to G^{\prime}, since exactly two of its vertices lie in two copies of B in G^{\prime} (and all others vertices lie in one copy of B). Similarly, each vertex of degree 3 in G contributes $n_{B}-3 / 2$ vertices to G^{\prime}. Finally, assume G and B satisfy the hypotheses on the lengths of their cycles. Now consider a cycle C^{\prime} in G^{\prime}. If C^{\prime} is contained entirely in one copy of B, then C^{\prime} has length not equal to ℓ. If C^{\prime} visits two or more copies of B, then C^{\prime} maps to a cycle C in G with length no longer than the length of C^{\prime}. Since each cycle in G has length longer than ℓ, we are done.

Now suppose that we plan to substitute some plane graph B into a plane dense graph of girth $\ell+1$. Which B should we choose? Since B must not contain any ℓ-cycle, a natural choice is a triangulation of order $\ell-1$. Indeed, every such B yields a graph that attains the bound in Conjecture 1. This is Corollary 8, which follows from our next lemma.

Lemma 7. Let G be a plane dense graph of girth $\ell+1$. We form G^{\prime} by substituting into G a plane graph B with 3 vertices specified on its outer face. Now e $\left(G^{\prime}\right)=$ $\frac{e_{B}(\ell-1)}{\left(n_{B}-1\right)(\ell-1)-2}\left(n\left(G^{\prime}\right)-\frac{2(\ell+1)}{\ell-1}\right)$, where $e_{B}=e(B)$ and $n_{B}=n(B)$.

Proof. Let G be a plane dense graph of girth $\ell+1$ on n vertices, and let n_{2} and n_{3} denote, respectively, its numbers of vertices with degree 2 and 3. Recall from Lemma 4 (with $g=\ell+1$) that $n=(\ell-1) \frac{5 k-2}{2}+2$ for some even integer k, that $n_{3}=10 k-8$, and that $n_{2}=n-n_{3}$. Lemma 6 implies that $e\left(G^{\prime}\right)=\left(n_{2}+n_{3}\right) e_{B}=n e_{B}$ and that $n\left(G^{\prime}\right)=n_{2}\left(n_{B}-1\right)+n_{3}\left(n_{B}-3 / 2\right)=\left(n-n_{3}\right)\left(n_{B}-1\right)+n_{3}\left(n_{B}-3 / 2\right)=n\left(n_{B}-1\right)-n_{3} / 2$. Now we show that $e\left(G^{\prime}\right)=\frac{e_{B}(\ell-1)}{\left(n_{B}-1\right)(\ell-1)-2}\left(n\left(G^{\prime}\right)-\frac{2(\ell+1)}{\ell-1}\right)$. The final equality comes from substituting for n_{3} and simplifying (using that $n=(\ell-1) \frac{5 k-2}{2}+2$).

$$
\begin{aligned}
\frac{e\left(G^{\prime}\right)}{n\left(G^{\prime}\right)-\frac{2(\ell+1)}{\ell-1}} & =\frac{n e_{B}(\ell-1)}{\left(n\left(n_{B}-1\right)-n_{3} / 2\right)(\ell-1)-2(\ell+1)} \\
& =\frac{e_{B}(\ell-1)}{\left(n_{B}-1\right)(\ell-1)-\frac{n_{3}(\ell-1)+4(\ell+1)}{2 n}} \\
& =\frac{e_{B}(\ell-1)}{\left(n_{B}-1\right)(\ell-1)-2} .
\end{aligned}
$$

Corollary 8. The bound in Conjecture 1 holds with equality for each plane graph formed by substituting a plane triangulation on $\ell-1$ vertices into a plane dense graph of girth $\ell+1$.

Proof. This follows from the above lemma when B is a plane triangulation on $\ell-1$ vertices, so $n_{B}=\ell-1$ and $e_{B}=3(\ell-1)-6=3 \ell-9$. We get

$$
\begin{aligned}
\frac{e_{B}(\ell-1)}{\left(n_{B}-1\right)(\ell-1)-2} & =\frac{3(\ell-3)(\ell-1)}{(\ell-2)(\ell-1)-2} \\
& =\frac{3(\ell-3)(\ell-1)}{\ell^{2}-3 \ell+2-2} \\
& =\frac{3(\ell-1)}{\ell} .
\end{aligned}
$$

To beat the bound of Conjecture 1, it will suffice to instead substitute into a plane dense graph of girth $\ell+1$ any triangulation with order larger than $\ell-1$, as long as it has each cycle of length at most $\ell-1$. This is because the conjectured average degree is less than 6 , and is attained by substituting a triangulation of order $\ell-1$, as shown in Corollary 8. However, the average degree of a triangulation tends to 6 (from below) as its order grows. For each $\ell \in\{3, \ldots, 10\}$, every triangulation on ℓ vertices is Hamiltonian, i.e., it contains an ℓ-cycle. But for each $\ell \geqslant 11$, there exists a triangulation on ℓ vertices with no ℓ-cycle; this is a consequence of Lemma 9 , which we prove next. (In fact, much more is true, as we show in Section 3.)

Lemma 9. For every integer $t \geqslant 5$, there exist a plane triangulation with $3 t-4$ vertices and each cycle of length at most $2 t$, and a plane triangulation with $3 t-3$ vertices and each cycle of length at most $2 t+1$.

Proof. We start with a plane triangulation on t vertices. First we add into the interior of each face a new vertex, making it adjacent to each vertex on the face. Let A denote the set of vertices in the original triangulation, and let B denote the set of added vertices. Since $|A|=t$ and $|B|=2 t-4$, the resulting graph G_{1} has order $3 t-4$. Further, B is an independent set. Thus, on every cycle C, at least half of the vertices must be from A. Hence, C has length at most $2|A|=2 t$.

Now we obtain G_{2} by adding a single vertex inside some face of G_{1}. It is easy to check that G_{2} is a $(3 t-3)$-vertex triangulation with each cycle of length at most $2 t+1$.

We have already outlined the proof of our main result. We let B be a plane triangulation with no ℓ-cycle, and with order at least ℓ, as guaranteed by Lemma 9 . We simply substitute B into a plane dense graph of girth $\ell+1$. For completeness, we include more details in the proof of Theorem 10.

Theorem 10. For each $\ell \geqslant 11$, Conjecture 1 is false. In particular, whenever k is even and positive, if $\ell \geqslant 11$ and ℓ is odd then, $\operatorname{ex}\left(n, C_{\ell}\right) \geqslant \frac{9(\ell-5)(\ell-1)}{(3 \ell-13)(\ell-1)-4}\left(n-\frac{2(\ell+1)}{\ell-1}\right)$ for $n=\left((\ell-1) \frac{5 k-2}{2}+2\right)\left(\frac{3(\ell-1)}{2}-5\right)-(5 k-4)$ and if $\ell \geqslant 11$ and ℓ is even, then $\exp \left(n, C_{\ell}\right) \geqslant \frac{3(3 \ell-16)(\ell-1)}{(3 \ell-14)(\ell-1)-4}\left(n-\frac{2(\ell+1)}{\ell-1}\right)$ for $n=\left((\ell-1) \frac{5 k-2}{2}+2\right)\left(3\left(\frac{\ell}{2}-1\right)-4\right)-(5 k-4)$. Proof. Let $a_{1}:=\frac{9(\ell-5)(\ell-1)}{(3 \ell-13)(\ell-1)-4}$ and $a_{2}:=\frac{3(3 \ell-16)(\ell-1)}{(3 \ell-14)(\ell-1)-4}$. Since $\ell \geqslant 11$, easy algebra implies that $a_{i}>\frac{3(\ell-1)}{\ell}$, for each $i \in\{1,2\}$. Thus, $a_{i}\left(n-\frac{2(\ell+1)}{\ell-1}\right)>\frac{3(\ell-1)}{\ell}\left(n-\frac{2(\ell+1)}{\ell-1}\right)=\frac{3(\ell-1)}{\ell} n-$ $\frac{6(\ell+1)}{\ell-1}$ for each $i \in\{1,2\}$. So it suffices to show that $\operatorname{ex}_{\mathcal{P}}\left(n, C_{\ell}\right) \geqslant a_{1}\left(n-\frac{2(\ell+1)}{\ell-1}\right)$ when $\ell \geqslant 11$ and ℓ is odd; and that $\operatorname{ex}_{\mathcal{P}}\left(n, C_{\ell}\right) \geqslant a_{2}\left(n-\frac{2(\ell+1)}{\ell-1}\right)$ when $\ell \geqslant 11$ and ℓ is even (for the claimed values of n). Let G be a plane dense graph of girth $\ell+1$. Recall that $n(G)=(\ell-1) \frac{5 k-2}{2}+2$ for some even integer k, and that G has $10 k-8$ vertices of degree 3 ; let $n_{3}:=10 k-8$.

When $\ell \geqslant 11$ and ℓ is odd, let $t_{1}:=\frac{\ell-1}{2}$ and $n_{B_{1}}:=3 t_{1}-4=\frac{3(\ell-1)}{2}-4$. We have $t_{1} \geqslant 5$; so by Lemma 9 , there exists a plane triangulation B_{1} with $n_{B_{1}}$ vertices and with each cycle of length at most $2 t_{1}=\ell-1$. By Euler's formula, $e_{B_{1}}=e\left(B_{1}\right)=$ $3\left(3 t_{1}-4\right)-6=9 t_{1}-18=9\left(\frac{\ell-1}{2}-2\right)$. Form G_{1}^{\prime} by substituting B_{1} into G. Lemma 6 implies that G^{\prime} is a connected plane graph with no cycle of length ℓ, and that $n\left(G_{1}^{\prime}\right)=$ $n(G)\left(n_{B_{1}}-1\right)-n_{3} / 2=\left((\ell-1) \frac{5 k-2}{2}+2\right)\left(\frac{3(\ell-1)}{2}-5\right)-(5 k-4)$. By Lemma 7, we have

$$
\begin{aligned}
e\left(G_{1}^{\prime}\right) & =\frac{e_{B_{1}}(\ell-1)}{\left(n_{B_{1}}-1\right)(\ell-1)-2}\left(n\left(G_{1}^{\prime}\right)-\frac{2(\ell+1)}{\ell-1}\right) \\
& =\frac{9(\ell-5)(\ell-1)}{(3 \ell-13)(\ell-1)-4}\left(n\left(G_{1}^{\prime}\right)-\frac{2(\ell+1)}{\ell-1}\right) \\
& =a_{1}\left(n\left(G_{1}^{\prime}\right)-\frac{2(\ell+1)}{\ell-1}\right) .
\end{aligned}
$$

Hence, if $\ell \geqslant 11$ and ℓ is odd, then whenever k is positive and even and $n=\left((\ell-1) \frac{5 k-2}{2}+\right.$ $2)\left(\frac{3(\ell-1)}{2}-5\right)-(5 k-4)$, we have $\operatorname{ex}_{\mathcal{P}}\left(n, C_{\ell}\right) \geqslant a_{1}\left(n-\frac{2(\ell+1)}{\ell-1}\right)>\frac{3(\ell-1)}{\ell} n-\frac{6(\ell+1)}{\ell}$.

Now suppose $\ell \geqslant 11$ and ℓ is even. Let $t_{2}:=\frac{\ell}{2}-1$ and $n_{B_{2}}:=3 t_{2}-3=\frac{3 \ell}{2}-6$. Form G_{2}^{\prime} by substituting B_{2} into G, where B_{2} is a plane triangulation with $n_{B_{2}}$ vertices and each cycle of B_{2} has length at most $2 t_{2}+1=\ell-1$. (The existence of B_{2} is guaranteed by Lemma 9.) By Euler's formula, $e_{B_{2}}=e\left(B_{2}\right)=\frac{9 \ell}{2}-24$. Similarly, it follows from Lemma 6 that G_{2}^{\prime} is a connected plane graph with no cycle of length ℓ, and that $n\left(G_{2}^{\prime}\right)=n(G)\left(n_{B_{2}}-1\right)-n_{3} / 2=\left((\ell-1) \frac{5 k-2}{2}+2\right)\left(\frac{3 \ell}{2}-7\right)-(5 k-4)$. Lemma 7 implies that

$$
\begin{aligned}
e\left(G_{2}^{\prime}\right) & =\frac{e_{B_{2}}(\ell-1)}{\left(n_{B_{2}}-1\right)(\ell-1)-2}\left(n\left(G_{2}^{\prime}\right)-\frac{2(\ell+1)}{\ell-1}\right) \\
& =\frac{3(3 \ell-16)(\ell-1)}{(3 \ell-14)(\ell-1)-4}\left(n\left(G_{2}^{\prime}\right)-\frac{2(\ell+1)}{\ell-1}\right) \\
& =a_{2}\left(n\left(G_{2}^{\prime}\right)-\frac{2(\ell+1)}{\ell-1}\right)>\frac{3(\ell-1)}{\ell} n\left(G_{2}^{\prime}\right)-\frac{6(\ell+1)}{\ell} .
\end{aligned}
$$

This completes our proof.
Now for each $\ell \geqslant 11$, we extend the construction in Theorem 10 to all sufficiently large n (which will prove the first sentence of Theorem 2). Our general idea is to build a counterexample with order n^{\prime}, larger than n, and delete vertices to get a counterexample of order precisely n. To see that this works, note that we can substitute different gadgets for different vertices in a sparse planar graph of girth $\ell+1$. As long as each gadget has more than ℓ vertices, we will beat the bound in Conjecture 1. In fact, we still beat the bound if a bounded number of gadgets have exactly ℓ vertices, and all other gadgets have more vertices (this is only needed in the case that $\ell \in\{11,12\}$, since that is when the gadget has precisely ℓ vertices). So we follow the construction in Theorem 10, and then repeatedly remove vertices of degree 3 (that lie in B in Lemma 9). We can remove up to $t-4$ of these from each gadget. And the increase to the order of G^{\prime} when we increase k in Theorem 10 is less than $(5 g-10)(3 t-5)$. So it suffices that the number of vertices in the sparse planar graph G is greater than $\lceil(5 g-10)(3 t-5) /(t-4)\rceil \leqslant 50(g-2)$. This proves the first sentence of Theorem 2.

3 Denser Constructions and a Revised Conjecture

In this short section, we construct counterexamples to Conjecture 1 that are asymptotically much denser than those we constructed in the previous section. We also propose two revised versions of Conjecture 1.

By iterating the idea in Lemma 9, Moon and Moser [9] constructed planar triangulations where the length of the longest cycle is sublinear in the order. These triangulations will serve as the gadgets in our denser constructions.

Theorem 11 ([9]). For each positive integer k there exists a 3-connected plane triangulation G_{k} with $n\left(G_{k}\right)=\frac{3^{k+1}+5}{2}$ and with longest cycle of length less than $\frac{7}{2} n\left(G_{k}\right)^{\log _{3} 2}$.

Corollary 12. There exists a positive real D_{1} such that for all integers $\ell \geqslant 6$ there exists a plane triangulation G_{ℓ} with $n\left(G_{\ell}\right) \geqslant D_{1} \ell^{\lg _{2} 3}$ such that G_{ℓ} has no cycle of length at least ℓ.

T_{1}

T_{2}

T_{3}

Figure 2: Triangulations T_{1}, T_{2}, and T_{3}.

Chen and $\mathrm{Yu}[2]$ showed that Theorem 11 is essentially best possible.
Theorem 13 ([2]). There exists a positive real D_{2} such that every 3-connected n-vertex planar graph contains a cycle of length at least $D_{2} n^{\log _{3} 2}$.

We briefly sketch the Moon-Moser construction, which proves Theorem 11. For a more detailed analysis, we recommend Section 2 of [2]. Start with a planar drawing of K_{4}, which we call T_{1}. To form T_{i+1} from T_{i}, add a new vertex v_{f} inside each face f (other than the outer face), making v_{f} adjacent to each of the three vertices on the boundary of f, see Figure 2. It is each to check that the order of T_{i} is $3+\left(1+3+\cdots+3^{i-1}\right) \approx \frac{3^{i}}{2}$.

To bound the length of the longest cycle in T_{i}, we note that the vertices added when forming T_{j} from T_{j-1} form an independent set, for each j. Thus, for any cycle in T_{i}, at most half of the vertices were added at the final step. Of those added earlier, at most half were added at the penultimate step, etc. So the length of a longest cycle grows roughly by a factor of 2 at each step (while the order of T_{i} grows roughly by a factor of 3).

To prove the second statement of Theorem 2, we substitute into a sparse planar graph of girth $\ell+1$ a gadget with no cycle of length ℓ, as guaranteed by Corollary 12. We suspect this construction is extremal. So we conclude with the following two conjectures, which are each best possible.

Conjecture 14. Fix $\ell \geqslant 7$, let G be a plane dense graph of girth $\ell+1$, and let B be a n-vertex planar triangulation with no ℓ-cycle, where B is chosen to maximize n. If G^{\prime} is formed by substituting B into G and $n^{\prime}:=\left|V\left(G^{\prime}\right)\right|$, then $\operatorname{ex}_{\mathcal{P}}\left(n^{\prime}, C_{l}\right)=\left|E\left(G^{\prime}\right)\right|$.

Proving Conjecture 14 seems plausible for some small values of ℓ. But proving it in general seems difficult. So we also pose the following weaker conjecture. Note that Conjecture 15 would be immediately implied by Conjecture 14 (together with Theorem 13).

Conjecture 15. There exists a constant D such that for all ℓ and for all sufficiently large n we have $\operatorname{ex}\left(n, C_{\ell}\right) \leqslant \frac{3\left(D \ell^{\lg _{2} 3}-1\right)}{D \ell^{\lg _{2} 3}} n$.

Acknowledgments

Most research in this paper took place at the 2021 Graduate Research Workshop in Combinatorics. We heartily thank the organizers. We also thank Caroline Bang, Florian Pfender, and Alexandra Wesolek for early discussions on this problem. Finally, we thank two anonymous referees for their constructive feedback.

References

[1] M. Aigner and G. M. Ziegler. Proofs from The Book. Springer, Berlin, sixth edition, 2018.
[2] G. Chen and X. Yu. Long cycles in 3-connected graphs. J. Combin. Theory Ser. B, 86(1):80-99, 2002.
[3] C. Dowden. Extremal C_{4}-free/ C_{5}-free planar graphs. J. Graph Theory, 83(3):213230, 2016.
[4] L. Fang, B. Wang, and M. Zhai. Planar Turán number of intersecting triangles. Discrete Mathematics, 345(5):112794, 2022.
[5] D. Ghosh, E. Győri, R. R. Martin, A. Paulos, and C. Xiao. Planar Turán number of the 6-cycle, 2020. arXiv:2004.14094.
[6] Y. Lan, Y. Shi, and Z.-X. Song. Extremal H-free planar graphs. Electron. J. Combin., 26(2): \#P2.11, 2019.
[7] Y. Lan, Y. Shi, and Z.-X. Song. Extremal theta-free planar graphs. Discrete Math., 342(12):111610, 2019.
[8] L. Lovász. Combinatorial problems and exercises. AMS Chelsea Publishing, Providence, RI, second edition, 2007.
[9] J. W. Moon and L. Moser. Simple paths on polyhedra. Pacific J. Math., 13:629-631, 1963.

[^0]: *Department of Computer Science, Virginia Commonwealth University, Richmond, VA, U.S.A.; dcranston@vcu.edu
 ${ }^{\dagger}$ Department of Mathematics, Iowa State University, Ames, IA, U.S.A.; lidicky@iastate.edu. Research of this author is partially supported by NSF grant DMS-1855653.
 ${ }^{\ddagger}$ School of Mathematics, Georgia Institute of Technology, Atlanta, GA, U.S.A.; xliu729@gatech.edu
 ${ }^{\S}$ Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada; ashantan@sfu.ca

[^1]: ${ }^{1}$ To see this, form G^{\prime} from G by deleting all cut-edges. Since each component of G^{\prime} is 2-connected, each face boundary is either a cycle or a disjoint union of cycles (if G^{\prime} is disconnected). Note that each face boundary in G contains all edges of a face boundary in G^{\prime}.

