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Abstract

The planar Turán number exP(C`, n) is the largest number of edges in an n-
vertex planar graph with no `-cycle. For each ` ∈ {3, 4, 5, 6}, upper bounds on
exP(C`, n) are known that hold with equality infinitely often. Ghosh, Győri, Martin,
Paulos, and Xiao [arXiv:2004.14094] conjectured an upper bound on exP(C`, n) for
every ` > 7 and n sufficiently large. We disprove this conjecture for every ` > 11.
We also propose two revised versions of the conjecture.

Mathematics Subject Classifications: 05C35

1 Introduction

The Turán number ex(n,H) for a graph H is the maximum number of edges in an n-
vertex graph with no copy of H as a subgraph. Turán famously showed that ex(n,K`) 6
(1− 1

`−1)n
2

2
; for example, see [1, Chapter 32]. The Erdős–Stone Theorem [8, Exercise 10.38]

generalizes this result, by asymptotically determining ex(n,H) for every non-bipartite
graph H: ex(n,H) = (1 − 1

χ(H)−1)n
2

2
+ o(n2); here χ(H) is the chromatic number of H.

Dowden [3] considered the problem when restricting to n-vertex graphs that are planar.
The planar Turán number exP(n,H) exP (n,H)for a graph H is the maximum number of edges
in an n-vertex planar graph with no copy of H as a subgraph (not necessarily induced).
This parameter has been investigated for various graphs H in [6] and [4]; but here we
focus mainly on cycles. It is well-known that if G is an n-vertex planar graph with no
triangle, then G has at most 2n−4 edges; further, this bound is achieved by every planar
graph with each face of length 4. Thus, exP(n,C3) = 2n − 4 for all n > 4. Dowden [3]

proved that exP(n,C4) 6
15(n−2)

7
for all n > 4 and exP(n,C5) 6 12n−33

5
for all n > 11. He

also gave constructions showing that both bounds are sharp infinitely often.
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For each k ∈ {4, 5}, form Θk from Ck by adding a chord of the cycle. Lan, Shi, and

Song [7] showed that exP(n,Θ4) 6 12(n−2)
5

for all n > 4, that exP(n,Θ5) 6 5(n−2)
2

for

all n > 5, and that exP(n,C6) 6 18(n−2)
7

for all n > 7. The bounds for Θ4 and Θ5 are
sharp infinitely often. However, the bound for C6 was strengthened by Ghosh, Győri,
Martin, Paulos, and Xiao [5], who showed that exP(n,C6) 6 5n−14

2
for all n > 18. They

also showed that this bound is sharp infinitely often. In the same paper, Ghosh et al.
conjectured a bound on exP(n,C`) for each ` > 7 and each sufficiently large n. In this
note, we disprove their conjecture.

Conjecture 1 ([5]; now disproved). For each ` > 7, for n sufficiently large, if G is

an n-vertex planar graph with no copy of C`, then e(G) 6 3(`−1)
`

n − 6(`+1)
`

. That is,

exP(n,C`) 6
3(`−1)
`

n− 6(`+1)
`

.

In fact, we disprove the conjecture in a strong way.

Theorem 2. For each ` > 11 and each n sufficiently large (as a function of `), we have

exP(n,C`) >
3(`−1)
`

n − 6(`+1)
`

. Furthermore, if there exists a function s : Z+ → Z+ such

that exP(n,C`) 6
3(s(`)−1)
s(`)

n for all ` and all n sufficiently large (as a function of `), then

s(`) = Ω(`lg2 3).

We prove the first statement of Theorem 2 in Section 2, and sketch a proof of the
second statement in Section 3. Our constructions modify that outlined by Ghosh et
al. [5]. The main building blocks, which we call gadgets, are triangulations, in which
every cycle has length less than `. Clearly, a set of vertex-disjoint gadgets will have no
C`. To increase the average degree, we can identify vertices on the outer faces of these
gadgets as long as we avoid creating cycles. We can also allow ourselves to create cycles
among the gadgets as long as each created cycle has length more than `. So we must find
the way to do this most efficiently.

Our notation is standard, but we mention a few things for completeness. We let e(G)
and n(G)

e(G), n(G)

denote the numbers of edges and vertices in a graph G. We write C` C`for a cycle
of length `.

2 Disproving the Conjecture: a First Construction

To disprove Conjecture 1, we start with a planar graph in which each face has length
` + 1 (and each cycle has length at least ` + 1), and then we “substitute” a gadget for
each vertex. As a first step, we construct the densest planar graphs with a given girth g,
for each fixed g > 6. We will also need our dense graphs to have maximum degree 3, as
we require in the next definition.

Definition 3. If G is a plane graph of girth g with each vertex of degree 2 or 3, and
e(G) = g

g−2(n− 2), then G is a plane dense graph of girth g
plane dense

graph.

An easy counting argument shows that if G is an n-vertex plane dense graph of girth
g, where n = (g − 2)5k−2

2
+ 2 (for some positive even integer k), then G has 10k − 8

vertices of degree 3 and all other vertices of degree 2.
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Lemma 4. Fix an integer g > 3. If G is a connected planar graph with n vertices
and girth g, then e(G) 6 g

g−2(n − 2). For each g > 6, this bound holds with equality
infinitely often; specifically, it holds with equality if k is a positive even integer and n =
(g− 2)5k−2

2
+ 2. In fact, for each such k and n, there exists a 2-connected plane graph G

that attains this bound and that has every vertex of degree 2 or 3.

Proof. Let G be a connected plane graph with girth g. Denote by n, e, and f the numbers
of vertices, edges, and faces in G. Every face boundary contains a cycle,1 so every face
boundary has length at least g. Thus, 2e > gf . Substituting into Euler’s formula and
simplifying gives the desired bound: e 6 g

g−2(n− 2).
Now we construct graphs for which the bound holds with equality. Before giving our

full construction, we sketch a simpler construction which has the desired properties except
that it has maximum degree 6 (rather than each degree being 2 or 3, as we require). Begin
with a 4-connected n-vertex plane triangulation with maximum degree 6. We will find a
set M of edges such that every triangular face contains exactly one edge in M . To see
that such a set exists, we consider the planar dual G∗. Since G is a triangulation and
2-connected, G∗ is 3-regular. By Tutte’s Theorem, G∗ contains a perfect matching M∗

(in fact, this was proved earlier by Petersen). The set M of edges in G corresponding to
the edges of M∗ in G∗ has the desired property: each triangle of G contains exactly one
edge of M .

To get the desired graph G′ with each face of length g, we replace each edge of G not in
M with a path of length b(g+1)/3c and replace each edge of G in M with a path of length
g − 2b(g + 1)/3c. Now each face of G′ has length 2b(g + 1)/3c+ (g − 2b(g + 1)/3c) = g.
Thus, for G′ the inequality 2e(G′) > gf(G′) in the initial paragraph holds with equality.
So e(G′) = g

g−2(n(G′) − 2). Since each non-facial cycle of G has length at least 4, each
non-facial cycle of G′ has length at least g.

Now we show how to also guarantee that each vertex of G′ has degree 2 or 3. The
construction is similar, except that it starts from a particular plane graph G with every
face of length 6 and every vertex of degree 2 or 3. Again, we find a subset M of edges
such that each face of G contains exactly one edge of M . To form G′ from G, we replace
each edge not in M with a path of length b(g + 1)/6c and we replace each edge in
M with a path of length g − 5b(g + 1)/6c. Thus, each face of G′ has length exactly
5b(g + 1)/6c+ (g − 5b(g + 1)/6c) = g.

It will turn out that each non-facial cycle of G has either (i) length at least 10 or (ii)
length at least 8 and at least one edge in M . The corresponding non-facial cycle in G′

thus has length at least g. In Case (ii) this follows from the calculation in the previous
paragraph. In Case (i), when g > 10 this holds because 10b(g+ 1)/6c > 10(g− 4)/6 > g.
So consider Case (i) when g 6 9. Since each path in G′ replacing an edge in G has length
at least 1, each non-facial cycle in G′ has length at least 10, which is at least g since
g 6 9. Thus, what remains is to construct our graph G, specify the set of edges M , and
check that each non-facial cycle in G either has length at least 10 or has length 8 and
includes an edge in M .

We construct an infinite family of 2-connected plane graphs Gk on 10k − 2 vertices,
with 5k − 2 faces (each of length 6), and with all vertices of degree 2 or 3; here k is an

1To see this, form G′ from G by deleting all cut-edges. Since each component of G′ is 2-connected,
each face boundary is either a cycle or a disjoint union of cycles (if G′ is disconnected). Note that each
face boundary in G contains all edges of a face boundary in G′.
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Figure 1: The planar graph Gk has 10k − 2 vertices, 15k − 6 edges, and every face of
length 6. Every vertex of Gk has degree 2 or 3 and every non-facial cycle either (i) has
length at least 10 or (ii) has length 8 and includes a blue edge. The set of blue edges
intersects every face exactly once.

arbitrary positive even integer. Figure 1 shows Gk. (By Euler’s formula, each Gk has
6 vertices of degree 2 and 10k − 8 vertices of degree 3.) Each of k “diagonal columns”
contains 10 vertices, except for the first and last, which each contain one vertex fewer.
We write vi,j to denote the jth vertex down from the top in column i, except that we start
column 1 with v1,2. So V = {vi,j | 1 6 i 6 k, 1 6 j 6 10, (i, j) /∈ {(1, 1), (k, 10)}}. The
edge set consists of the boundary cycles of 4(k − 1) 6-faces in the hexagonal grid, k − 1
“curved edges” vi,1vi−1,10, when 2 6 i 6 k, as well two “end edges” v1,2v1,7 and vk,4vk,9.
The matching M contains vi,4vi+1,3 and vi,8vi+1,7 when 1 6 i 6 k − 1, edge vi,1vi−1,10 for
each odd i > 3 if k > 4, and the end edges v1,2v1,7 and vk,4vk,9. It is easy to check that the
only vertices with degree 2 are v1,3, v1,5, v1,9, vk,2, vk,6, vk,8; the remaining 10k − 8 vertices
all have degree 3.

We now show that every non-facial cycle has either (i) length at least 10 or (ii) length
at least 8 and at least one edge in M . The facial cycles containing the left end-edge are
C0 and C1, and those containing the right end-edge are C5k−4 and C5k−3. We denote by
C2, C3, . . . , C5k−5 the facial cycles that do not use any end-edge. Informally, C2 is the “top
left” of these (containing v1,2), and subscripts increase as we move down the first diagonal
and then wrap around toroidally with the facial cycle containing v1,10 and two curved
edges (see Figure 1), and continue on to the facial cycle containing vk,9. Formally, each of
these is Ck, where X denotes its vertex set and k := max{j/2 : vi,j ∈ X}+ 5∗min{i− 1 :
vi,j ∈ X}+ (|{i : vi,j ∈ X}| − 2).

Note that the edge-set of any non-facial cycle C is the symmetric difference of the
edge-sets of the facial cycles “inside” (or “outside”) of C. Consider first a non-facial cycle
C that does not contain any end-edge. Pick the side of C that does not contain the right
end-edge; take the symmetric difference of the edge-sets of the facial cycles on this side
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incrementally, in order of increasing subscripts. The symmetric difference of the first two
facial cycles has size at least 10 and this size never decreases. Now consider the non-facial
cycles that contain exactly one end-edge; by (rotational) symmetry, assume it is the left
end-edge. For these cycles, take the symmetric difference incrementally as above for the
side not containing the right end-edge; the symmetric difference of the first two facial
cycles has size at least 8 and again this size never decreases.

Finally, consider a non-facial cycle C that contains both end-edges. Now take the
symmetric difference incrementally as above for the side of C that includes C1; the size
of the symmetric difference is now initially at least 8, and never decreases until the final
facial cycle (C5k−4 or C5k−3) is added and the symmetric difference is complete. The final
facial cycle C ′ may reduce the size of the symmetric difference by at most 4, but the final
symmetric difference still has size at least 12 (due to the position of C ′ relative to C1,
and the fact that k > 2).

To finish the proof, we should verify that |V (G′)| = (g − 2)5k−2
2

+ 2, as claimed. By
construction, each vertex of G′ has degree 2 or 3. Each vertex with degree 3 in G′ also
has degree 3 in G, and we have exactly 10k − 8 of these. Let n, e, and f denote the
numbers of vertices, edges, and faces in G′. Now summing degrees gives

3(10k − 8) + 2(n− (10k − 8)) = 2e = gf =
g

g − 2
(2n− 4),

where the last two equalities hold as at the start of the proof. Thus, n = (g − 2)5k−2
2

+
2.

Definition 5. Let G be a connected plane graph, with every vertex of degree 2 or 3. Let
B be a plane graph with 3 vertices specified on its outer face. To substitute B into G substitute

B into Gwe do the following. Subdivide every edge of G. For each vertex v in G, delete v from
the subdivided graph and identify d(v) vertices on the outer face of a copy of B with the
neighbors of v in the subdivided graph.

Now we consider the result of substituting B into G, as in Definition 5.

Lemma 6. Let G be a plane graph; denote by n2 and n3 the numbers of vertices with
degree 2 and 3 in G. Let B be a plane graph with nB vertices and eB edges, and with
3 vertices specified on its outer face. Form G′ by substituting B into G. Now e(G′) =
(n2 + n3)eB and n(G′) = n2(nB − 1) + n3(nB − 3/2). Further, if G has no cycle of length
` or shorter, and B has no cycle of length `, then G′ has no cycle of length `.

Proof. Each vertex in G gives rise to an edge-disjoint copy of B in G′; thus e(G′) =
(n2 +n3)eB. Each vertex of degree 2 in G contributes nB− 1 vertices to G′, since exactly
two of its vertices lie in two copies of B in G′ (and all others vertices lie in one copy of
B). Similarly, each vertex of degree 3 in G contributes nB − 3/2 vertices to G′. Finally,
assume G and B satisfy the hypotheses on the lengths of their cycles. Now consider a
cycle C ′ in G′. If C ′ is contained entirely in one copy of B, then C ′ has length not equal
to `. If C ′ visits two or more copies of B, then C ′ maps to a cycle C in G with length
no longer than the length of C ′. Since each cycle in G has length longer than `, we are
done.
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Now suppose that we plan to substitute some plane graph B into a plane dense graph
of girth ` + 1. Which B should we choose? Since B must not contain any `-cycle, a
natural choice is a triangulation of order ` − 1. Indeed, every such B yields a graph
that attains the bound in Conjecture 1. This is Corollary 8, which follows from our next
lemma.

Lemma 7. Let G be a plane dense graph of girth ` + 1. We form G′ by substitut-
ing into G a plane graph B with 3 vertices specified on its outer face. Now e(G′) =

eB(`−1)
(nB−1)(`−1)−2

(
n(G′)− 2(`+1)

`−1

)
, where eB = e(B) and nB = n(B).

Proof. Let G be a plane dense graph of girth ` + 1 on n vertices, and let n2 and n3

denote, respectively, its numbers of vertices with degree 2 and 3. Recall from Lemma 4
(with g = ` + 1) that n = (` − 1)5k−2

2
+ 2 for some even integer k, that n3 = 10k − 8,

and that n2 = n − n3. Lemma 6 implies that e(G′) = (n2 + n3)eB = neB and that
n(G′) = n2(nB−1)+n3(nB−3/2) = (n−n3)(nB−1)+n3(nB−3/2) = n(nB−1)−n3/2.

Now we show that e(G′) = eB(`−1)
(nB−1)(`−1)−2

(n(G′) − 2(`+1)
`−1 ). The final equality comes from

substituting for n3 and simplifying (using that n = (`− 1)5k−2
2

+ 2).

e(G′)

n(G′)− 2(`+1)
`−1

=
neB(`− 1)

(n(nB − 1)− n3/2)(`− 1)− 2(`+ 1)

=
eB(`− 1)

(nB − 1)(`− 1)− n3(`−1)+4(`+1)
2n

=
eB(`− 1)

(nB − 1)(`− 1)− 2
.

Corollary 8. The bound in Conjecture 1 holds with equality for each plane graph formed
by substituting a plane triangulation on ` − 1 vertices into a plane dense graph of girth
`+ 1.

Proof. This follows from the above lemma when B is a plane triangulation on ` − 1
vertices, so nB = `− 1 and eB = 3(`− 1)− 6 = 3`− 9. We get

eB(`− 1)

(nB − 1)(`− 1)− 2
=

3(`− 3)(`− 1)

(`− 2)(`− 1)− 2

=
3(`− 3)(`− 1)

`2 − 3`+ 2− 2

=
3(`− 1)

`
.

To beat the bound of Conjecture 1, it will suffice to instead substitute into a plane
dense graph of girth ` + 1 any triangulation with order larger than ` − 1, as long as it
has each cycle of length at most ` − 1. This is because the conjectured average degree
is less than 6, and is attained by substituting a triangulation of order `− 1, as shown in
Corollary 8. However, the average degree of a triangulation tends to 6 (from below) as its
order grows. For each ` ∈ {3, . . . , 10}, every triangulation on ` vertices is Hamiltonian,
i.e., it contains an `-cycle. But for each ` > 11, there exists a triangulation on ` vertices
with no `-cycle; this is a consequence of Lemma 9, which we prove next. (In fact, much
more is true, as we show in Section 3.)
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Lemma 9. For every integer t > 5, there exist a plane triangulation with 3t− 4 vertices
and each cycle of length at most 2t, and a plane triangulation with 3t − 3 vertices and
each cycle of length at most 2t+ 1.

Proof. We start with a plane triangulation on t vertices. First we add into the interior of
each face a new vertex, making it adjacent to each vertex on the face. Let A denote the
set of vertices in the original triangulation, and let B denote the set of added vertices.
Since |A| = t and |B| = 2t − 4, the resulting graph G1 has order 3t − 4. Further, B is
an independent set. Thus, on every cycle C, at least half of the vertices must be from A.
Hence, C has length at most 2|A| = 2t.

Now we obtain G2 by adding a single vertex inside some face of G1. It is easy to check
that G2 is a (3t− 3)-vertex triangulation with each cycle of length at most 2t+ 1.

We have already outlined the proof of our main result. We let B be a plane triangu-
lation with no `-cycle, and with order at least `, as guaranteed by Lemma 9. We simply
substitute B into a plane dense graph of girth `+ 1. For completeness, we include more
details in the proof of Theorem 10.

Theorem 10. For each ` > 11, Conjecture 1 is false. In particular, whenever k is

even and positive, if ` > 11 and ` is odd then, exP(n,C`) > 9(`−5)(`−1)
(3`−13)(`−1)−4

(
n− 2(`+1)

`−1

)
for n = ((` − 1)5k−2

2
+ 2)(3(`−1)

2
− 5) − (5k − 4) and if ` > 11 and ` is even, then

exP(n,C`) >
3(3`−16)(`−1)
(3`−14)(`−1)−4

(
n− 2(`+1)

`−1

)
for n = ((`− 1)5k−2

2
+ 2)(3( `

2
− 1)− 4)− (5k− 4).

Proof. Let a1 := 9(`−5)(`−1)
(3`−13)(`−1)−4 and a2 := 3(3`−16)(`−1)

(3`−14)(`−1)−4 . Since ` > 11, easy algebra implies

that ai >
3(`−1)
`

, for each i ∈ {1, 2}. Thus, ai(n− 2(`+1)
`−1 ) > 3(`−1)

`

(
n− 2(`+1)

`−1

)
= 3(`−1)

`
n−

6(`+1)
`−1 for each i ∈ {1, 2}. So it suffices to show that exP(n,C`) > a1(n − 2(`+1)

`−1 ) when

` > 11 and ` is odd; and that exP(n,C`) > a2(n − 2(`+1)
`−1 ) when ` > 11 and ` is even

(for the claimed values of n). Let G be a plane dense graph of girth ` + 1. Recall that
n(G) = (`− 1)5k−2

2
+ 2 for some even integer k, and that G has 10k− 8 vertices of degree

3; let n3 := 10k − 8.
When ` > 11 and ` is odd, let t1 := `−1

2
and nB1 := 3t1 − 4 = 3(`−1)

2
− 4. We

have t1 > 5; so by Lemma 9, there exists a plane triangulation B1 with nB1 vertices
and with each cycle of length at most 2t1 = ` − 1. By Euler’s formula, eB1 = e(B1) =
3(3t1 − 4) − 6 = 9t1 − 18 = 9( `−1

2
− 2). Form G′1 by substituting B1 into G. Lemma 6

implies that G′ is a connected plane graph with no cycle of length `, and that n(G′1) =

n(G)(nB1 − 1)− n3/2 = ((`− 1)5k−2
2

+ 2)(3(`−1)
2
− 5)− (5k − 4). By Lemma 7, we have

e(G′1) =
eB1(`− 1)

(nB1 − 1)(`− 1)− 2

(
n(G′1)−

2(`+ 1)

`− 1

)
=

9(`− 5)(`− 1)

(3`− 13)(`− 1)− 4

(
n(G′1)−

2(`+ 1)

`− 1

)
= a1

(
n(G′1)−

2(`+ 1)

`− 1

)
.

Hence, if ` > 11 and ` is odd, then whenever k is positive and even and n = ((`−1)5k−2
2

+

2)(3(`−1)
2
− 5)− (5k − 4), we have exP(n,C`) > a1

(
n− 2(`+1)

`−1

)
> 3(`−1)

`
n− 6(`+1)

`
.
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Now suppose ` > 11 and ` is even. Let t2 := `
2
− 1 and nB2 := 3t2 − 3 = 3`

2
− 6.

Form G′2 by substituting B2 into G, where B2 is a plane triangulation with nB2 vertices
and each cycle of B2 has length at most 2t2 + 1 = ` − 1. (The existence of B2 is
guaranteed by Lemma 9.) By Euler’s formula, eB2 = e(B2) = 9`

2
− 24. Similarly, it

follows from Lemma 6 that G′2 is a connected plane graph with no cycle of length `, and
that n(G′2) = n(G)(nB2 − 1) − n3/2 = ((` − 1)5k−2

2
+ 2)(3`

2
− 7) − (5k − 4). Lemma 7

implies that

e(G′2) =
eB2(`− 1)

(nB2 − 1)(`− 1)− 2

(
n(G′2)−

2(`+ 1)

`− 1

)
=

3(3`− 16)(`− 1)

(3`− 14)(`− 1)− 4

(
n(G′2)−

2(`+ 1)

`− 1

)
= a2

(
n(G′2)−

2(`+ 1)

`− 1

)
>

3(`− 1)

`
n(G′2)−

6(`+ 1)

`
.

This completes our proof.

Now for each ` > 11, we extend the construction in Theorem 10 to all sufficiently
large n (which will prove the first sentence of Theorem 2). Our general idea is to build a
counterexample with order n′, larger than n, and delete vertices to get a counterexample
of order precisely n. To see that this works, note that we can substitute different gadgets
for different vertices in a sparse planar graph of girth ` + 1. As long as each gadget has
more than ` vertices, we will beat the bound in Conjecture 1. In fact, we still beat the
bound if a bounded number of gadgets have exactly ` vertices, and all other gadgets have
more vertices (this is only needed in the case that ` ∈ {11, 12}, since that is when the
gadget has precisely ` vertices). So we follow the construction in Theorem 10, and then
repeatedly remove vertices of degree 3 (that lie in B in Lemma 9). We can remove up to
t− 4 of these from each gadget. And the increase to the order of G′ when we increase k
in Theorem 10 is less than (5g− 10)(3t− 5). So it suffices that the number of vertices in
the sparse planar graph G is greater than d(5g − 10)(3t− 5)/(t− 4)e 6 50(g − 2). This
proves the first sentence of Theorem 2.

3 Denser Constructions and a Revised Conjecture

In this short section, we construct counterexamples to Conjecture 1 that are asymptot-
ically much denser than those we constructed in the previous section. We also propose
two revised versions of Conjecture 1.

By iterating the idea in Lemma 9, Moon and Moser [9] constructed planar triangula-
tions where the length of the longest cycle is sublinear in the order. These triangulations
will serve as the gadgets in our denser constructions.

Theorem 11 ([9]). For each positive integer k there exists a 3-connected plane triangu-

lation Gk with n(Gk) = 3k+1+5
2

and with longest cycle of length less than 7
2
n(Gk)

log3 2.

Corollary 12. There exists a positive real D1 such that for all integers ` > 6 there exists
a plane triangulation G` with n(G`) > D1`

lg2 3 such that G` has no cycle of length at least
`.
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Figure 2: Triangulations T1, T2, and T3.

Chen and Yu [2] showed that Theorem 11 is essentially best possible.

Theorem 13 ([2]). There exists a positive real D2 such that every 3-connected n-vertex
planar graph contains a cycle of length at least D2n

log3 2.

We briefly sketch the Moon–Moser construction, which proves Theorem 11. For a
more detailed analysis, we recommend Section 2 of [2]. Start with a planar drawing of
K4, which we call T1. To form Ti+1 from Ti, add a new vertex vf inside each face f (other
than the outer face), making vf adjacent to each of the three vertices on the boundary

of f , see Figure 2. It is each to check that the order of Ti is 3 + (1 + 3 + · · ·+ 3i−1) ≈ 3i

2
.

To bound the length of the longest cycle in Ti, we note that the vertices added when
forming Tj from Tj−1 form an independent set, for each j. Thus, for any cycle in Ti, at
most half of the vertices were added at the final step. Of those added earlier, at most half
were added at the penultimate step, etc. So the length of a longest cycle grows roughly
by a factor of 2 at each step (while the order of Ti grows roughly by a factor of 3).

To prove the second statement of Theorem 2, we substitute into a sparse planar graph
of girth `+1 a gadget with no cycle of length `, as guaranteed by Corollary 12. We suspect
this construction is extremal. So we conclude with the following two conjectures, which
are each best possible.

Conjecture 14. Fix ` > 7, let G be a plane dense graph of girth ` + 1, and let B be a
n-vertex planar triangulation with no `-cycle, where B is chosen to maximize n. If G′ is
formed by substituting B into G and n′ := |V (G′)|, then exP(n′, Cl) = |E(G′)|.

Proving Conjecture 14 seems plausible for some small values of `. But proving it in
general seems difficult. So we also pose the following weaker conjecture. Note that Con-
jecture 15 would be immediately implied by Conjecture 14 (together with Theorem 13).

Conjecture 15. There exists a constant D such that for all ` and for all sufficiently large

n we have exP(n,C`) 6
3(D`lg2 3−1)
D`lg2 3 n.
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