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Abstract

Turán-type problem is one of central problems in extremal graph theory. Erdős
et al. [J. Combin. Theory Ser. B 64 (1995), 89-100] obtained the exact Turán
number of the friendship graph Fk for n > 50k2, and characterized all its ex-
tremal graphs. Cioabă et al. [Electron. J. Combin. 27(4) (2020), #P4.22] ini-
tially introduced Triangle Removal Lemma into a spectral Turán-type problem,
then showed that SPEX(n, Fk) ⊆ EX(n, Fk) for n large enough, where EX(n, Fk)
and SPEX(n, Fk) are the families of n-vertex Fk-free graphs with maximum size
and maximum spectral radius, respectively. In this paper, the family SPEX(n, Fk)
is uniquely determined for sufficiently large n. Our key approach is to find various
alternating cycles or closed trails in nearly regular graphs. Some typical spectral
techniques are also used. This presents a probable way to characterize the unique-
ness of extremal graphs for some of other spectral extremal problems. In the end,
we mention several related conjectures.

Mathematics Subject Classifications: 05C50, 05C35
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1 Introduction

A graph is said to be H-free, if it does not contain H as a subgraph. A classic problem
in extremal graph theory asks what is the maximum number of edges in an H-free graph
of order n, where the maximum number of edges is called the Turán number of H and
denoted by ex(n,H). The set of extremal H-free graphs with ex(n,H) edges is denoted by
EX(n,H). An important motivation of investigating Turán numbers is that they are very
useful for Ramsey theory. The original statements can be found in [9]. Turán-type problem
can be at least traced back to Mantel’s theorem in 1907, which says that ex(n,C3) = bn2

4
c.

In 1941, Turán [27] showed that ex(n,Kk+1) = |E(Tn,k)| for n > k + 1 > 3, and the k-
partite Turán graph Tn,k is the unique extremal graph.

Let A(G) be the adjacency matrix of a graph G and ρ(G) be its spectral radius. By
Perron-Frobenius theorem, every connected graph G exists a positive unit eigenvector
corresponding to ρ(G), which is called the Perron vector of G. In 1986, Wilf [29] showed
that ρ(G) 6 n(1− 1

k
) for every n-vertex Kk+1-free graph G. Wilf’s result was sharpened

by Nikiforov [18], who proved that ρ(G) 6 ρ(Tn,k) for every n-vertex Kk+1-free graph G,
with equality if and only if G ∼= Tn,k. Babai and Guiduli [2] established asymptotically a

Kővári-Sós-Turán bound ρ(G) 6 ((s− 1)
1
t + o(1))n1− 1

t for every n-vertex Ks,t-free graph
G (where s > t > 2), then Nikiforov [22] obtained a new upper bound with main term

(s− t+ 1)
1
tn1− 1

t . Nikiforov [21] formally posed a spectral version of Turán-type problem,
and established some interesting results and conjectures (see for example, [1, 19, 20, 21]).
Moreover, Nikiforov also develops some methods for spectral Turán-type problems such
as deleting vertices, removing edges and counting the number of walks (see [23]).

Problem 1 ([21]). What is the maximum spectral radius of an H-free graph of order n?

In the past decades, much attention has been paid to Problem 1 and its variations (see
surveys [3, 23, 13] and some recent results [4, 5, 6, 7, 12, 15, 25, 26, 30]). For convenience,
we denote by SPEX(n,H) the family of extremal H-free graphs with maximum spectral
radius in Problem 1.

A graph is called a friendship graph, and denoted by Fk, if it consists of k trian-
gles which intersect in exactly one common vertex. In 1995, Erdős, Füredi, Gould and
Gunderson proved the following classic result in extremal graph theory.

Theorem 2 ([10]). For every k > 1, and for every n > 50k2, ex(n, Fk) = bn2

4
c + k2 − k

if k is odd; and ex(n, Fk) = bn2

4
c+ k2 − 3

2
k if k is even.

Moreover, the extremal graphs were completely determined in [10]. A nearly (k − 1)-
regular graph is a graph with one vertex of degree k − 2 and all other vertices of degrees
k − 1. It was showed in [10] that EX(n, Fk) consists of all graphs obtained by taking
Tn,2 and embedding a subgraph H in one part, where H ∼= Kk ∪Kk for odd k and H is a
nearly (k− 1)-regular graph of order 2k− 1 for even k. A nearly (k− 1)-regular graph of
order 2k − 1 does exist for every even k > 2, and there are many if k is large.

We can first construct a graph with vertex set {w0} ∪ A ∪ B such that N(w0) = A
and |B| = |A| + 2 = k. Then, we partition A into A1 ∪ A2 and B into {u0} ∪ B? ∪ B??
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Figure 1: Graph H? with B = {u0} ∪B? ∪B??.

such that |A1| = |A2| = |B??| = k−2
2
. Finally, we join k − 1 edges from u0 to A1 ∪ B?,

k−2
2

independent edges from B?? to A2, and some additional edges such that both A and
B \ {u0} are cliques. The resulting graph H? is a nearly (k − 1)-regular graph of order
2k − 1 (see Fig. 1).

In [6], Cioabă, Feng, Tait and Zhang studied the spectral counterpart of Theorem 2. If
k = 1, then Theorem 2 is just the well-known Mantel’s theorem, and the spectral version
is known from Nikiforov’s spectral Turán theorem (see [18]). Both extremal graphs are the
only graph Tn,2. For k > 2, the authors [6] obtained the following theorem by combining
Triangle Removal Lemma (see [10, 11, 24]) and spectral techniques. This develops a new
tool for Problem 1. Subsequently, Triangle Removal Lemma was also used efficiently to
other spectral Turán-type problems (see [7, 8, 14]).

Theorem 3 ([6]). For every fixed k > 2 and n large enough, SPEX(n, Fk) ⊆ EX(n, Fk).

In this paper, our goal is a further characterization of SPEX(n, Fk). We obtain the
following result, which gives the uniqueness of the graphs in SPEX(n, Fk).

Theorem 4. For every fixed k > 2 and n large enough, the only graph in SPEX(n, Fk)
is obtained from Tn,2 by embedding a graph H in a part of size bn

2
c, where H ∼= Kk ∪Kk

for odd k and H ∼= H? for even k (see Fig. 1).

The rest of the paper is organized as follows. In Section 2, some structural and spectral
propositions are obtained for graphs in EX(n, Fk). In Section 3, the nearly (k−1)-regular
graph H is characterized for graphs in SPEX(n, Fk). In Section 4, it is showed that H
must be embedded in a part of size bn

2
c. In Section 5, some related conjectures are

mentioned for further research.

2 Propositions for graphs in EX(n, Fk)

By the result due to Erdős et al. [10], we know that each graph in EX(n, Fk) is obtained
from Tn,2 with two parts (say S, T ) by embedding a subgraph H in one part, where
H ∼= Kk ∪Kk for odd k and H is a nearly (k − 1)-regular graph of order 2k − 1 for even
k. Without loss of generality we may assume that H is embedded in S.
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For odd k, H has been uniquely determined up to isomorphism. In this section, we
focus on the case that k is even and try to obtain some useful propositions for a graph
G ∈ EX(n, Fk) and its subgraph H. For even k, since H is a nearly (k− 1)-regular graph
of order 2k − 1, there exists a partition V (H) = {w0} ∪ A ∪ B such that NH(w0) = A,
|B| = |A|+ 2 = k, and dH(v) = k − 1 for every vertex v ∈ A ∪B.

A trail is a walk whose edges are distinct. In particular, a trail is closed if its original
and terminal vertices are the same. Now, by coloring all the edges of H[A∪B] red and all
its non-edges blue, we obtain a copy of K|A∪B| with red and blue colours. If there exists
a closed trail C in K|A∪B| such that any two consecutive edges of C have distinct colours,
then we call C an alternating closed trail of H[A ∪ B]. In the following, we present a
structural proposition of the nearly regular graph H.

Proposition 5. If A is neither an empty set nor a clique, then there exists an alternating
closed trail C such that C = v0v1u1u2v0 or C = v0v1u1u2v2u3v0, where each vi ∈ A, each
ui ∈ B and v0v1 is a blue edge (non-edge).

Proof. Let v0 ∈ A with dB(v0) = maxv∈A dB(v), and let NA(v0) = A \ (NA(v0) ∪ {v0}).
Note that dA∪B(v) = k − 2 for each v ∈ A. Then dA(v0) = minv∈A dA(v). Moreover, since
A is not a clique, we have dA(v0) 6 |A| − 2 = k − 4, which implies that NA(v0) 6= ∅ and
NB(v0) 6= ∅. Now define B′ = {u ∈ B : ∃ v ∈ NA(v0) with v ∼ u}, where v ∼ u denotes
vertices v and u are adjacent. Since dB(v) = dA∪B(v)−dA(v) > (k− 2)−|A\{v, v0}| = 2
for each v ∈ NA(v0), we also have B′ 6= ∅. Now we give the following claim.

Claim 6. If there exists a blue edge with one endpoint in B′ and the other in NB(v0),
then we have an alternating 4-cycle.

Proof. Let u1u2 be a blue edge, where u1 ∈ B′ and u2 ∈ NB(v0) \ {u1}. By the definition
of B′, we can find a vertex v1 ∈ NA(v0) with v1 ∼ u1. Now it is easy to see that
C = v0v1u1u2v0 is an alternating 4-cycle and v0v1 is a blue edge.

Next, we may assume that each edge u′u′′ is red for any two distinct vertices u′ ∈ B′
and u′′ ∈ NB(v0). Then we have the following claim.

Claim 7. If there exists a blue edge within B′, then we have an alternating closed trail
of length six.

Proof. Let u1u2 be a blue edge within B′, that is, u1 � u2 in H. By the above assumption,
both u1 and u2 are not in NB(v0). By the definition of B′, we can find a vertex vi ∈ NA(v0)
with vi ∼ ui for i ∈ {1, 2}, where possibly v1 = v2. Note that dB(v0) = maxv∈A dB(v) >
dB(v2) and u2 ∈ NB(v2) \ NB(v0), then NB(v0) * NB(v2). Thus, we can find a vertex
u3 ∈ NB(v0) with u3 � v2. Now C = v0v1u1u2v2u3v0 is an alternating closed trail of
length six and v0v1 is a blue edge.

Now by Claims 6 and 7, we may assume that each edge u′u′′ is red for any two distinct
vertices u′ ∈ B′ and u′′ ∈ B′ ∪NB(v0).

Let v1u1 be a red edge, where v1 ∈ NA(v0) and u1 ∈ B′. Then dB(u1) = dH(u1) −
dA(u1) = (k − 1)− dA(u1) 6 k − 2 = |B| − 2, and so we can find a vertex u2 ∈ B \ {u1}
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such that u1u2 is blue. Furthermore, it follows from the above assumption that u2 ∈
B \ (B′∪NB(v0)). This implies that NA(u2) ⊆ NA(v0). Since dA(u2) = dH(u2)−dB(u2) >
(k − 1) − |B \ {u1, u2}| = 1, then we can find a vertex v2 ∈ NA(v0) with v2 ∼ u2. Now
by the definition of v0, we also have NB(v0) * NB(v2). Subsequently, we can find a
vertex u3 ∈ NB(v0) with u3 � v2 (possibly u3 = u1). Therefore, C = v0v1u1u2v2u3v0 is an
alternating closed trail of length six and v0v1 is a blue edge. This completes the proof.

Recall that G contains a spanning subgraph K|S|,|T | with H being embedded in S,
where |S| + |T | = n and ||S| − |T || 6 1. In the following, let ρ := ρ(G) and X =
(x1, . . . , xn)T be the Perron vector ofG. For convenience, we write xmaxV (H) = maxv∈V (H) xv
and xminV (H) = minv∈V (H) xv. Then we can obtain some propositions for sufficiently large
n.

Proposition 8. Let XT =
∑

v∈T xv. Then

xmaxV (H) 6
XT

ρ− k + 1
, xminV (H) >

XT

ρ− k + 2
. (1)

Proof. Note that V (H) ⊆ S. Then T ⊆ NG(v) for each v ∈ V (H). Moreover, we know
that ρxv =

∑
u∈NG(v) xu and k − 2 6 dH(v) 6 k − 1 for each v ∈ V (H). Thus,

ρxmaxV (H) 6 XT + (k − 1)xmaxV (H), ρxminV (H) > XT + (k − 2)xminV (H).

Consequently, xmaxV (H) 6
XT

ρ−k+1
and xminV (H) >

XT

ρ−k+2
.

We now evaluate Perron components for vertices in A and B. This will be frequently
used in the subsequent sections.

Proposition 9. For each vertex v ∈ A, we have(
ρ+ k − 1 +

k(k − 2)

ρ− k + 2

)
XT 6 ρ2xv 6

(
ρ+ k − 1 +

k(k − 2)

ρ− k + 1

)
XT .

Proof. For each v ∈ A, we have ρxv = XT +
∑

u∈NH(v)

xu and ρ2xv = ρXT +
∑

u∈NH(v)

ρxu,

where

ρxu 6

{
XT + (k − 2)xmaxV (H), u = w0,

XT + (k − 1)xmaxV (H), u ∈ NH(v) \ {w0}.

Since dH(v) = k − 1, we have
∑

u∈NH(v)

ρxu 6 (k − 1)XT + k(k − 2)xmaxV (H), and hence

ρ2xv 6 (ρ+ k − 1)XT + k(k − 2)xmaxV (H).

Similarly, we can obtain

ρ2xv > (ρ+ k − 1)XT + k(k − 2)xminV (H).

By Proposition 8, the result follows.
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Proposition 10. For each vertex v ∈ B, we have(
ρ+ k − 1 +

(k − 1)2

ρ− k + 2

)
XT 6 ρ2xv 6

(
ρ+ k − 1 +

(k − 1)2

ρ− k + 1

)
XT .

Proof. For each v ∈ B, we know that NH(v) ⊆ A ∪ B. Hence, dH(u) = k − 1 for each
vertex u ∈ NH(v). Moreover, ρxv = XT +

∑
u∈NH(v)

xu and ρ2xv = ρXT +
∑

u∈NH(v)

ρxu, where

XT + (k − 1)xminV (H) 6 ρxu 6 XT + (k − 1)xmaxV (H).

Since |NH(v)| = k − 1, we have

(ρ+ k − 1)XT + (k − 1)2xminV (H) 6 ρ2xv 6 (ρ+ k − 1)XT + (k − 1)2xmaxV (H).

Therefore, the result holds from (1).

Proposition 11. For any two vertices u1, u2 ∈ B, if dB(u1) > dB(u2), then xu1 > xu2.

Proof. Since u1, u2 ∈ B, we have dA∪B(u1) = dA∪B(u2) = k−1. Now assume that dB(u1) =
dB(u2) + a, where a > 1. Then dA(u1) = dA(u2) − a. Write b = (ρ − k + 1)(ρ − k + 2).
By Propositions 9-10, we obtain

ρ2(xmaxA − xminA) 6
k(k − 2)

b
XT , ρ2(xmaxB − xminB) 6

(k − 1)2

b
XT ; (2)

while

ρ2(xminB − xminA) > ρ2(xminB − xmaxA) >
ρ− k2 + k + 1

b
XT . (3)

Since T ⊆ NG(u1) ∩NG(u2), we can see that

ρxu1 − ρxu2 =
∑

v∈NH(u1)

xv −
∑

v∈NH(u2)

xv

> dB(u1)xminB + dA(u1)xminA − dB(u2)xmaxB − dA(u2)xmaxA

= a(xminB − xminA)− dA(u2)(xmaxA − xminA)− dB(u2)(xmaxB − xminB).

Note that dA(u2) + dB(u2) = k − 1 and ρ >
√
|S||T | =

√⌊
n
2

⌋⌈
n
2

⌉
>> k3. Combining (2)

and (3), we have ρxu1 − ρxu2 > 0. Therefore, xu1 > xu2 .

Since ρ >

√⌊
n
2

⌋⌈
n
2

⌉
>> k3, by (3) we can also conclude that

xminB > xmaxA. (4)
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3 Characterization of H for graphs in SPEX(n, Fk)

Let G ∈ SPEX(n, Fk), where k > 2 and n is large enough. By Theorem 3 we know that
G ∈ EX(n, Fk), that is, G is obtained from K|S|,|T | with |S| + |T | = n and ||S| − |T || 6
1 by embedding a subgraph H in one part (say S). In this section, we focus on the
characterization of H. For odd k, H has already been uniquely determined.

Theorem 12 ([6]). If k is odd and n is sufficiently large, then H ∼= Kk ∪Kk.

In the following, we assume that k is even. Recall that H is a nearly (k − 1)-regular
graph of order 2k− 1 with V (H) = {w0}∪A∪B, where NH(w0) = A, |B| = |A|+ 2 = k,
and dH(v) = k − 1 for each v ∈ A ∪ B. To characterize H for even k, it suffices to
determine the structure of H[A ∪B].

Lemma 13. If k > 4 and n is sufficiently large, then A must be a clique.

Proof. Suppose, to the contrary, that A is not a clique. By Proposition 5, H[A ∪ B]
contains an alternating closed trail C. Next we consider the following two cases.

Case 1. C = v0v1u1u2v0, where v0, v1 ∈ A; u1, u2 ∈ B and v0v1 is a blue edge.

Now let G′ be the graph obtained from G by exchanging the color of each edge in C,
that is, let G′ = G−{u1v1, u2v0}+{v0v1, u1u2}. Then G′[{w0}∪A∪B] and G[{w0}∪A∪B]
have the same degree sequence, and thus G′[{w0}∪A∪B] is also a nearly (k− 1)-regular
graph. This implies that G′ ∈ EX(n, Fk) too.

On the other hand, write ρ = ρ(G) and ρ′ = ρ(G′). Then

ρ′ − ρ > XT (A(G′)− A(G))X = 2(xv0xv1 + xu1xu2)− 2(xu1xv1 + xu2xv0)

= 2(xu1 − xv0)(xu2 − xv1). (5)

It follows from (4) that xu > xv for any v ∈ A and u ∈ B. Therefore ρ′ > ρ by (5), which
contradicts the fact that G ∈ SPEX(n, Fk).

Case 2. C = v0v1u1u2v2u3v0, where v0, v1, v2 ∈ A; u1, u2, u3 ∈ B and v0v1 is a blue edge.

We also define G′ to be the graph obtained from G by exchanging the color of each
edge in C. Similarly, G′ is also Fk-free. Moreover,

ρ′ − ρ > 2(xv0xv1 + xu1xu2 + xv2xu3)− 2(xu1xv1 + xu2xv2 + xu3xv0)

= 2(xu1 − xv0)(xu2 − xv1)− 2(xu2 − xu3)(xv2 − xv0). (6)

Combining (2), (3) and (6), we obtain

ρ′ − ρ >
((ρ− k2 + k + 1)2

b2
− k(k − 2)(k − 1)2

b2

)2X2
T

ρ4
> 0

for sufficiently large n, a contradiction.
By Cases 1 and 2, we can conclude that A is a clique.

the electronic journal of combinatorics 29(3) (2022), #P3.32 7



By Lemma 13, A ∪ {w0} is a clique. For each vertex v ∈ A, since dH(v) = k − 1, we
have dB(v) = (k − 1) − |A| = 1. Let e(A,B) be the number of edges with one endpoint
in A and the other in B. Then

e(A,B) = |A| = k − 2. (7)

Now assume that u0 ∈ B with xu0 = minu∈B xu. Moreover, let B∗ = {u ∈ B : dB(u) =
k − 1} and B∗∗ = B \ (B∗ ∪ {u0}). Then e(B∗, A) = 0, as dH(u) = k − 1 for each u ∈ B.
Now we are ready to give a complete characterization of H for even k.

Theorem 14. If k is even and n is sufficiently large, then H ∼= H? (see Fig. 1).

Proof. If k = 2, then |A| = k−2 = 0 and |B| = k = 2. Since H is a nearly (k−1)-regular
graph of order 2k − 1, it is easy to see that H ∼= K1 ∪ K2, and hence H ∼= H?. In the
following, we assume that k > 4. We first give five claims.

Claim 15. B∗ is a clique and xu∗ = maxv∈B xv > xu for each u∗ ∈ B∗ and each u ∈ B\B∗.

Proof. We first show that B∗ 6= ∅. If not, then B∗ = ∅, that is, for each u ∈ B,
dB(u) 6 k−2, and hence dA(u) > 1. It follows that e(B,A) > |B| = k, which contradicts
(7). Therefore, B∗ 6= ∅.

Note that |B| = k and dB(u∗) = k − 1 for each u∗ ∈ B∗. Then every vertex of B∗ is
a dominating vertex of B, and so B∗ is a clique. Since e(B∗, A) = 0, by symmetry we
have xu∗1 = xu∗2 for any two vertices u∗1, u

∗
2 ∈ B∗. Moreover, since dB(u∗) > dB(u) for each

u∗ ∈ B∗ and each u ∈ B \B∗, by Proposition 11, we have xu∗ = maxv∈B xv > xu.

Claim 16. u0 /∈ B∗ and B∗∗ 6= ∅.

Proof. Note that xu0 = minu∈B xu. If u0 ∈ B∗, then by the definition of u0 and Claim 15,
we know that xu = xv for all distinct vertices u, v ∈ B. That is to say, xu = maxv∈B xv
for each u ∈ B. It follows that B = B∗ and e(B,A) = e(B∗, A) = 0, which contradicts
(7). Therefore, u0 /∈ B∗.

Since every vertex of B∗ is a dominating vertex of B, we have dB(u0) > |B∗|. On
the other hand, u0 /∈ B∗, then dB(u0) 6 k − 2, and hence |B∗| 6 k − 2. Therefore,
|B∗∗| = |B \ (B∗ ∪ {u0})| > 1.

Claim 17. e({u0}, B∗∗) = 0.

Proof. Suppose, to the contrary, that there exists a vertex u1 ∈ B∗∗ with u0 ∼ u1. By
the definition of B∗∗, we have dB(u1) 6 k − 2, and hence there exists a vertex u2 ∈ B
with u2 � u1. Now since dB(u2) 6 |B \ {u1, u2}| = k − 2, we have dA(u2) > 1. Thus we
can find a vertex v1 ∈ A such that v1 ∼ u2. Recall that dB(v) = 1 for each v ∈ A. Then
v1 � u0. Therefore, we can obtain an alternating 4-cycle u0u1u2v1u0.

Let G′ = G − {u0u1, u2v1} + {u1u2, u0v1}. Similar to the analysis of Lemma 13, we
have that G′ is Fk-free. Moreover,

ρ(G′)− ρ(G) > XT (A(G′)− A(G))X = 2(xu1xu2 + xu0xv1)− 2(xu0xu1 + xu2xv1)

= 2(xu1 − xv1)(xu2 − xu0).
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By (4) we know that xu1 > xv1 , and by the choice of u0 we have xu2 > xu0 . Thus
ρ(G′) > ρ(G). On the other hand, since G ∈ SPEX(n, Fk), we have ρ(G′) = ρ(G), and
hence X is also the Perron vector of G′. Observe that NG(u2) \ NG′(u2) = {v1} and
NG′(u2) \NG(u2) = {u1}. Hence,

0 = ρ(G′)xu2 − ρ(G)xu2 = xu1 − xv1 > 0,

a contradiction. Therefore, e({u0}, B∗∗) = 0.

Claim 18. |B∗| = ē(B∗∗) + k
2
, where ē(B∗∗) denotes the number of non-edges in G[B∗∗].

Proof. Note that e({u0}, B∗∗) = 0. Then ē(B) = ē(B∗∗)+ |B∗∗|. Recall that dH(u) = k−1
for each u ∈ B and |B| = k. Then we have k(k − 1) =

∑
u∈B dH(u) = e(B,A) + 2e(B) =

e(B,A)+k(k−1)−2ē(B), and hence e(B,A) = 2ē(B). Note that |B∗∗| = |B\(B∗∪{u0})| =
k − 1− |B∗|. Then e(B,A) = 2ē(B) = 2ē(B∗∗) + 2k − 2− 2|B∗|. Combining (7), we have
|B∗| = ē(B∗∗) + k

2
.

Claim 19. If B∗∗ is a clique, then H ∼= H?.

Proof. By Claim 17, dB∗∗(u0) = 0, and so dB(u0) = |B∗|. Note that dH(u0) = k − 1 =
|B∗| + |B∗∗|. Thus dA(u0) = dH(u0) − dB(u0) = |B∗∗|. Now if B∗∗ is a clique, then
dB(u) = |B \ {u, u0}| = k − 2 and dA(u) = 1 for each u ∈ B∗∗. Recall that e(B∗, A) = 0.
Therefore,

e(B,A) =
∑
u∈B∗∗

dA(u) + dA(u0) = 2|B∗∗|.

Combining (7), we have |B∗∗| = e(B,A)
2

= k−2
2

, and so |B∗| = (k − 1) − |B∗∗| = k
2
. Now

dB(u0) = |B∗| = k
2
, hence dA(u0) = k−2

2
. Combining Lemma 13 and dB(v) = 1 for each

v ∈ A, we have each vertex of A \NA(u0) has exactly one neighbor in B∗∗ and vice versa.
Note that |B∗∗| = k−2

2
. It follows that there are k−2

2
independent edges between B∗∗ and

A \NA(u0), and hence H ∼= H? (see Fig. 1).

By Claim 19, it suffices to show that B∗∗ is a clique in the following. The case
|B∗∗| = 1 is trivial. We may assume that |B∗∗| > 2. Suppose, to the contrary, that B∗∗

is not a clique. Then we can find two vertices u1, u2 ∈ B∗∗ with u1 � u2. Without loss
of generality, we assume that xu2 > xu1 . For any vertex u∗ of B∗, by Claim 15 and the
choice of u0, we have

xu∗ > xu2 > xu1 > xu0 . (8)

Moreover, dB(ui) 6 k − 2 implies that dA(ui) > 1 for i ∈ {1, 2}. Thus we can find
v1, v2 ∈ A such that v1 ∼ u1 and v2 ∼ u2. Recall that A is a clique and dB(v) = 1 for
each v ∈ A. Then v1 6= v2, and by symmetry, we have∑

v∈NA(u2)

xv = dA(u2)xv2 . (9)
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u∗

u2 u1 u0

v2 v1

Figure 2: An alternating 6-cycle.

By (8) and Proposition 11, dB(u2) > dB(u1) > dB(u0), and so dA(u2) 6 dA(u1) 6 dA(u0).
Combining (7), we can see that

dA(u2) 6
⌊e(A,B)

3

⌋
=
⌊k − 2

3

⌋
6
k − 4

2
, (10)

as k > 4.
Since A is a clique, we have NG(v1)\NG(v2) = {v2, u1} and NG(v2)\NG(v1) = {v1, u2}.

Hence ρ(xv2 − xv1) = (xv1 − xv2) + (xu2 − xu1), which gives

xv2 − xv1 =
xu2 − xu1
ρ+ 1

> 0. (11)

Observe that

NG(u2) \NG(u∗) = NA(u2) ∪ {u∗}, NG(u∗) \NG(u2) = NB(u∗) \NB(u2), (12)

where |NB(u∗) \NB(u2)| = |NA(u2) ∪ {u∗}| = dA(u2) + 1. Thus∑
u∈NB(u∗)\NB(u2)

xu 6 dA(u2)xu∗ + xu2 , (13)

as u2 ∈ NB(u∗) \NB(u2) and xu∗ = maxu∈B xu. Combining (12), (13) and (9), we obtain

ρ(xu∗ − xu2) 6 (xu2 − xu∗) + dA(u2)(xu∗ − xv2) < dA(u2)(xu∗ − xv2),

as xu∗ > xu2 by (8). Furthermore, by (10) and (11), we conclude that

ρ(xu∗ − xu2) <
k − 4

2
(xu∗ − xv2) 6

k − 4

2
(xu∗ − xv1). (14)

Now note that u1 � u2 and v1, v2 /∈ NG(u0) ∪ NG(u∗). Thus we can find an alternating
6-cycle C1 = u1v1u0u

∗v2u2u1 (see Fig. 2).
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Let

G1 = G− {u1v1, u0u∗, v2u2}+ {v1u0, u∗v2, u2u1}. (15)

Then G1 is Fk-free by previous analysis. If there still exist u′1, u
′
2 ∈ B∗∗ with u′1 � u′2,

by Claim 4, we can also find a vertex u∗′ ∈ B∗ \ {u∗} and an alternating 6-cycle C2

with u∗′ ∈ V (C2) and E(C1) ∩ E(C2) = ∅, then obtain an Fk-free graph G2 by a similar
operation. Continue this operation until B∗∗ is a clique, and denote by G′ the resulting
graph. Then G′ ∈ EX(n, Fk), as G ∈ EX(n, Fk). Let H ′ = G′[{w0} ∪A ∪B], ρ′ = ρ(G′)
and Y = (y1, . . . , yn)T be the Perron vector of G′. In order to differentiate with the above
B∗ and B∗∗, we write B? = {u ∈ B : dH′[B](u) = k− 1} and B?? = B \ (B? ∪ {u0}) in H ′.
Note that dH′[B??](u0) = 0 and B?? becomes a clique with B∗∗ ∪ {u∗} ⊆ B??. By Claim
19, H ′ ∼= H?, which implies that |B??| = dH′[A](u0) = k−2

2
and NH′[B](u0) = B? (see Fig.

1).
Since NH′[B](u0) = B?, we have {u∗, u1, u2} ⊆ B?? in H ′. By (15), v1 ∼ u0 and v2 ∼ u∗

in H ′. Thus we can observe from Fig. 1 that

NG′(u
∗) \NG′(u0) = (B?? \ {u∗}) ∪ {v2}, NG′(u0) \NG′(u

∗) = NH′[A](u0). (16)

By symmetry, ∑
u∈B??\{u∗}

yu = (|B??| − 1)yu∗ =
k − 4

2
yu∗

and ∑
v∈NH′[A](u0)

yv = dH′[A](u0)yv1 =
k − 2

2
yv1 .

Combining (16), we have

ρ′(yu∗ − yu0) = (yv2 − yv1) +
k − 4

2
(yu∗ − yv1). (17)

Since |B??| > |{u∗, u1, u2}| > 3, we have dH′[B](u
∗) > dH′[B](u0). Since G′ ∈ EX(n, Fk),

by Proposition 11, we obtain yu∗ > yu0 . Recall that v1 ∼ u0 and v2 ∼ u∗ in H ′. Similar
to (11), we can obtain

yv2 − yv1 =
yu∗ − yu0
ρ′ + 1

> 0.

Combining (17), we have

ρ′(yu∗ − yu0) >
k − 4

2
(yu∗ − yv1) >

k − 4

2
(yu∗ − yv2). (18)

Now let E = E(G), E ′ = E(G′) and E be the set of non-edges in G[B∗∗]. Then

Y T (ρ′ − ρ)X = Y T (A(G′)− A(G))X

=
∑
uv∈E′

(xuyv + xvyu)−
∑
uv∈E

(xuyv + xvyu)

=
∑

u1u2∈E

γ,
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where by (15)

γ = (xu0yv1 + xv1yu0 + xu∗yv2 + xv2yu∗ + xu1yu2 + xu2yu1)

−(xu1yv1 + xv1yu1 + xu∗yu0 + xu0yu∗ + xu2yv2 + xv2yu2).

Since u∗, u1, u2 ∈ B?? in H ′, we have yu∗ = yu1 = yu2 by symmetry, and thus
xv2yu∗ − xv2yu2 = 0. Moreover, xu1 > xu0 by (8) and yu∗ > yv1 by (4). Then

(xu0yv1 + xu1yu2)− (xu1yv1 + xu0yu∗) = (xu0 − xu1)(yv1 − yu∗) > 0.

Hence we have

γ > yu0(xv1 − xu∗) + yv2(xu∗ − xu2) + yu1(xu2 − xv1)
= (yu∗ − yu0)(xu∗ − xv1)− (yu∗ − yv2)(xu∗ − xu2),

as yu1 = yu∗ . By (4), yu∗ > yv2 and xu∗ > xv1 . Combining (14) and (18), we obtain

γ >
k − 4

2
(yu∗ − yv2)(xu∗ − xv1)

( 1

ρ′
− 1

ρ

)
.

Note that G ∈ SPEX(n, Fk) and G′ ∈ EX(n, Fk). Then ρ′ 6 ρ, and so γ > 0. It follows
that Y T (ρ′ − ρ)X =

∑
u1u2∈E γ > 0, and thus ρ′ > ρ, a contradiction. Therefore, B∗∗ is a

clique of H. This completes the proof.

4 The only graph in SPEX(n, Fk)

By Theorems 12 and 14, H is uniquely determined up to isomorphism. Let e(H) be the
number of edges of the subgraph H. Recall the known fact that ||S| − |T || 6 1 and
the assumption that H is embedded in S. To obtain the uniqueness of the graphs in
SPEX(n, Fk), we only need to prove |S| 6 |T |.

Lemma 20. Regardless of parity of k, we have

ρ2 < |S||T |+ 2e(H)
( |T |
ρ

+ 1
)
.

Proof. For each v ∈ T , we have ρxv = XS and ρ2xv = ρXS =
∑
u∈S

ρxu. Note that

ρxu =


XT , u ∈ S \ V (H),

XT +
∑

w∈NH(u)

xw, u ∈ V (H). (19)

It follows that

ρ2xv =
∑
u∈S

XT +
∑

u∈V (H)

∑
w∈VH(u)

xw 6 |S|XT + 2e(H)xmaxV (H)
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for each v ∈ T . By (1), we know that xmaxV (H) 6 XT

ρ−k+1
< XT

ρ−k , and hence ρ2xv 6(
|S|+ 2e(H)

ρ−k

)
XT . Summing this inequality for all v ∈ T , we have

ρ2XT 6
(
|S||T |+ 2e(H)

|T |
ρ− k

)
XT . (20)

Recall that ρ2 > |S||T | = bn
2
cdn

2
e. Hence for sufficiently large n, we have

ρ2 − kρ− k|T | =
(ρ2

2
− kρ

)
+
(ρ2

2
− k|T |

)
> ρ
(ρ

2
− k
)

+ |T |
( |S|

2
− k
)
> 0.

Solving ρ2 − kρ − k|T | > 0, we obtain |T |
ρ−k < |T |

ρ
+ 1. Combining (20), we have

ρ2 < |S||T |+ 2e(H)
(
|T |
ρ

+ 1
)
, as desired.

Theorem 21. Regardless of parity of k, we have |S| 6 |T |.

Proof. Recall that |S| + |T | = n and ||S| − |T || 6 1. Suppose, to the contrary, that
|S| > |T | + 1. Then |S| = |T | + 1 = n+1

2
. Select a vertex v0 ∈ S \ V (H), and define

G′ = G − {v0v : v ∈ T} + {v0u : u ∈ S \ {v0}}. Then G′ ∈ EX(n, Fk), and so
ρ(G′) 6 ρ(G). Let ρ′ = ρ(G′) and Y = (y1, . . . , yn)T be the Perron vector of G′. Then we
have ρxv0 = XT and yv = yv0 for each v ∈ T. Hence

xv0 =
XT

ρ
, yv0 =

YT
|T |

. (21)

Thus, YT + yv0 = |T |+1
|T | YT = |S|

|T |YT . Note that

ρ′yu =


YT + yv0 , u ∈ S \ (V (H) ∪ {v0}),

YT + yv0 +
∑

w∈NH(u)

yw, u ∈ V (H). (22)

Moveover, for each u ∈ V (H), we have

ρ
∑

w∈NH(u)

xw =
∑

w∈NH(u)

ρxw > dH(u)XT , (23)

and

ρ′
∑

w∈NH(u)

yw =
∑

w∈NH(u)

ρ′yw >
∑

w∈NH(u)

(YT + yv0) = dH(u)
|S|
|T |

YT . (24)

Combining (19) and (23), we obtain that∑
u∈S\{v0}

ρxu = (|S| − 1)XT +
∑

u∈V (H)

∑
w∈NH(u)

xw > |T |XT +
2e(H)

ρ
XT . (25)
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Note that (|S| − 1)(YT + yv0) = |T | |S||T |YT = |S|YT . By (22) and (24), we have

∑
u∈S\{v0}

ρ′yu = (|S| − 1)(YT + yv0) +
∑

u∈V (H)

∑
w∈NH(u)

yw > |S|YT +
2e(H)

ρ′
|S|
|T |

YT . (26)

Furthermore, it follows from (25) and (26) that∑
u∈S\{v0}

xu >
( |T |
ρ

+
2e(H)

ρ2

)
XT , (27)

and ∑
u∈S\{v0}

yu >
( |S|
ρ′

+
2e(H)

ρ′2

)
YT >

( |S|
ρ

+
2e(H)

ρ2

)
YT . (28)

Observe that

Y T (ρ′ − ρ)X = Y T (A(G′)− A(G))X

=
∑

uv∈E(G′)

(xuyv + xvyu)−
∑

uv∈E(G)

(xuyv + xvyu).

=
∑

u∈S\{v0}

(xv0yu + xuyv0)−
∑
v∈T

(xv0yv + xvyv0).

Clearly,
∑

v∈T (xv0yv + xvyv0) = xv0YT + yv0XT ; moreover, by (27) and (28), we have

∑
u∈S\{v0}

(xv0yu + xuyv0) > xv0

( |S|
ρ

+
2e(H)

ρ2

)
YT + yv0

( |T |
ρ

+
2e(H)

ρ2

)
XT .

Note that xv0 = XT

ρ
and yv0 = YT

|T | by (21). Therefore,

Y T (ρ′ − ρ)X >
XT

ρ

( |S|
ρ

+
2e(H)

ρ2
− 1
)
YT +

YT
|T |

( |T |
ρ

+
2e(H)

ρ2
− 1
)
XT .

=
XTYT
ρ2|T |

(
|S||T |+ 2e(H)

( |T |
ρ

+ 1
)
− ρ2

)
.

By Lemma 20, ρ′ > ρ, a contradiction. The proof is completed.

Combining Theorem 21, Theorems 12 and 14, we complete the proof of Theorem 4.
The only graph in SPEX(n, Fk) is determined for every fixed positive integer k > 2 and
sufficiently large n.
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5 Concluding remarks

Let Gn,k be the family of connected irregular graphs on n vertices with given maximum
degree k. Define λ = max{ρ(G) : G ∈ Gn,k}. Until now, the value of λ is still unknown.
In [16], Liu and Li proposed the following conjecture.

Conjecture 22 ([16]). Let 3 6 k 6 n − 2 and G be a graph attaining the maximum
spectral radius among all connected non-regular graphs of order n with fixed maximum
degree k. Then G is a nearly k-regular graph for odd nk, and a graph with degree sequence
(k, . . . , k, k − 2) for even nk.

Liu [17] has just confirmed Conjecture 22 for k ∈ {3, 4} by determining the unique
extremal graph respectively. For general k, the conjecture is still open. We hope that our
method to characterize a nearly n−1

2
-regular graph will be helpful for studying the above

conjecture. We also expect a characterization of extremal nearly k-regular graphs on n
vertices with maximum spectral radius.

To end this paper, we would like to introduce a recent conjecture due to Cioabă, Desai
and Tait [7]. This extends a spectral color critical edge theorem of Nikiforov ([20]).

Conjecture 23 ([7]). Let F be any graph such that the graphs in EX(n, F ) are Turán
graphs plus O(1) edges. Then SPEX(n, F ) ⊆ EX(n, F ) for sufficiently large n.

We are happy to see that Conjecture 23 has just been solved by Wang, Kang and
Xue (see [28]). We further wonder whether there exists only one graph in SPEX(n, F )
for every F satisfying the condition. Nikiforov’s result (see Theorem 2 in [20]; see also a
direct version in [31]) implies that the extremal graph is unique for every graph F with a
color critical edge, when the O(1) is replaced by 0. Theorems 3 and 4 give a new support.
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