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Abstract

We develop a connection between DP-colorings of k-uniform hypergraphs of
order n and coverings of n-dimensional Boolean hypercube by pairs of antipodal
(n− k)-dimensional faces. Bernshteyn and Kostochka established a lower bound on
the number of edges in a non-2-DP-colorable k-uniform hypergraph namely, 2k−1

for odd k and 2k−1 + 1 for even k. They proved that these bounds are tight for
k = 3, 4. In this paper, we prove that the bound is achieved for all odd k > 3.

Mathematics Subject Classifications: 05C15, 05C65, 05C35, 51E05

1 Introduction

Let Qn
2 be the n-dimensional Boolean hypercube. We consider coverings and splittings

of Qn
2 into faces. A k-covering of Qn

2 is a set of (n − k)-dimensional axis-aligned planes
or (n − k)-faces such that the union of the faces is equal to Qn

2 . Two m-faces are called
parallel if they have the same directions and a pair of parallel faces is called antipodal if
for each vertex from one face there exists an antipodal vertex in another face.

We denote an (n− k)-face of Qn
2 by an n-tuple (a1, a2, . . . , an) of symbols 0, 1, ∗ where

the symbol ∗ is used n − k times. In more detail, (a1, . . . , an) = {(x1, . . . , xn) : xi =
ai if ai = 0 or ai = 1}. Parallel faces have symbols ∗ in the same coordinates. In the case
of antipodal faces symbols in other coordinates are different. Notice that two faces are
disjoint if and only if the corresponding tuples are different from each other and from ∗
in one of the coordinates.

It is clear that each k-covering of Qn
2 consists of 2k or more (n − k)-faces. If a k-

covering C of Qn
2 consists of exactly 2k (n − k)-faces then C is a k-splitting of Qn

2 into
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(n− k)-faces. If n− k = 1 then such splitting is equivalent to a perfect matching in the
Boolean hypercube. A k-covering of Qn

2 is called an antipodal k-splitting if it consists of
exactly 2k (n− k)-faces and it does not contain pairs of parallel non-antipodal faces. An
antipodal k-splitting contains two or zero faces of any direction (see Proposition 4).

The concept of DP-coloring was introduced by Dvořák and Postle [3] for graphs in
order to generalize the notion of a proper coloring. In [1] Bernshteyn and Kostochka
extended the definition of DP-colorings to the hypergraph case.

Definition 1. Let G be an r-uniform hypergraph on n vertices. For each e ∈ E(G) we
consider two antipodal 2-colorings ϕe : e→ {0, 1} and ϕe = ϕe⊕ 1. Let Φ be a collection
of ϕe, e ∈ E(G). We say that a 2-coloring f : V (G) → {0, 1} avoids Φ if f |e 6= ϕe and
f |e 6= ϕe for each e ∈ E(G). A hypergraph G is called 2-DP-colorable if for every Φ there
exists a 2-coloring f avoiding Φ.

Note that a hypergraph G is a proper 2-colorable if there exists a 2-coloring f avoiding
Φ0, where Φ0 consists of constant maps.

Bernshteyn and Kostochka ([1]) considered the problem to estimate the minimum
number of edges in non-2-DP-colorable k-uniform hypergraphs. The existence of a non-
2-DP-colorable k-uniform hypergraph with e edges and n vertices is equivalent to the
existence of a covering of Qn

2 by e pairs of antipodal (n− k)-faces. If the hypergraph has
no multiple edges then the definition of DP-coloring implies that this covering does not
contain pairs of parallel non-antipodal faces. If e = 2k−1 then a non-2-DP-colorable k-
uniform hypergraph with e edges generates an antipodal k-splitting and vice versa. The
connection between 2-colorings of hypergraphs and coverings of the hypercube will be
stated in more detail in Section 3.

It is known (see [1]) that for any even k each k-uniform hypergraph with 2k−1 edges
has a 2-DP-coloring. Bernshteyn and Kostochka initially conjectured that for any odd
k > 3 there exists a non-2-DP-colorable k-uniform hypergraph with 2k−1 edges. But they
changed their hypothesis because I mistakenly claimed that each 5-uniform hypergraph
with 16 edges is 2-DP-colorable (see [1]). The main result of this paper is a construction of
antipodal k-splittings for any odd k > 3 and, consequently, a proof of the existence of non-
2-DP-colorable k-uniform hypergraphs with 2k−1 edges. Thereby the initial conjecture is
true.

It is not difficult to prove that any s-colorable hypergraph is s-DP-colorable (see [1])
and every k-uniform hypergraph with sk−1 or fewer edges is properly s-colorable. A better
bound for the case of proper colorings is known. Cherkashin and Kozik [2], Radhakrishnan

and Srinivasan [4] (for s = 2) showed that any k-uniform hypergraph with c(s)( k
ln k

)
s−1
s sk−1

or fewer edges is properly s-colorable, where c(s) > 0 does not depend on k (k is large
enough). A survey of results on proper colorings of hypergraphs and related problems can
be found in [5]. A Brooks’ type theorem for DP-colorings of hypergraphs is proved in [6].
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2 Splittings of a hypercube

We denote a (n − k)-face of Qn
2 by a n-tuple (a1, a2, . . . , an) of symbols 0, 1, ∗ where the

symbol ∗ is used n− k times. In more detail, (a1, . . . , an) = {(x1, . . . , xn) : xi = ai if ai =
0 or ai = 1}. Isometries of the Boolean hypercube are generated by permutations of
coordinates and vector additions over GF(2). Consider the action of isometries on k-
splittings. If A = {(ai1, . . . , ain) : i = 1, . . . , 2k} is an antipodal k-splitting, then Aτ =
{(aiτ1, . . . , aiτn) : i = 1, . . . , 2k} is an antipodal k-splitting for any permutation τ of the set
{1, . . . , n}. Let us agree that ∗ ⊕ 0 = ∗ ⊕ 1 = ∗. We define addition of n-tuples to act
coordinate-wise. Then for any (n− k)-face a and any b ∈ Qn

2 the sum a⊕ b is an (n− k)-
face of Qn

2 . It is clear that if A is an antipodal k-splitting, then A⊕ b = {a⊕ b : a ∈ A}
is an antipodal k-splitting for each b ∈ Qn

2 . A and A′ are called equivalent antipodal
k-splittings if A′ is obtained from A by an isometry.

Proposition 2. If there exists an antipodal k-splitting of Qn
2 , then there exists an antipodal

k-splitting of Qn+1
2 with the same cardinality.

Proof. If A is an antipodal k-splitting of Qn
2 , then B = {(a1, . . . , an, ∗) : (a1, . . . , an) ∈ A}

is an antipodal k-splitting of Qn+1
2 .

Let a be an (n−k)-face in Qn
2 . A k-face a⊥ is called orthogonal (dual) to a if positions

of asterisks in a and a⊥ are complementary and other positions are arbitrary. For example,
a = (0, 1, 1, 0, ∗, ∗) and a⊥ = (∗, ∗, ∗, ∗, 1, 0). The following statement can be found in [1].
Below we prove it in the notation of this article.

Proposition 3 ([1]). If k is even then an antipodal k-splitting of Qn
2 does not exist.

Proof. Let A be an antipodal k-splitting and k is even. Let us consider an (n − k)-face
a ∈ A, the (n−k)-face a ∈ A antipodal to a. By the definitions, we obtain that x = a∩a⊥
and x̃ = a∩a⊥ are antipodal vertices within the face a⊥. For example, a = (0, 1, 1, 0, ∗, ∗),
a⊥ = (∗, ∗, ∗, ∗, 1, 0), x = (0, 1, 1, 0, 1, 0), x̃ = (1, 0, 0, 1, 1, 0). The number of units in the
Boolean vector is called the weight of the vector. The parity of this weight is called the
parity of the vector. The vertices x and x̃ have the same parity because k is even. But
for all other b ∈ A we obtain that b ∩ a⊥ has the same number of even-weighted and
odd-weighted vertices because the intersection of faces is a face or the empty set. Since
A is a splitting, the set {b∩ a⊥ : b ∈ A} is a splitting of a⊥ as well. Because the numbers
of even-weighted and odd-weighted vertices in a⊥ are equal, we have a contradiction.

Proposition 4. For any k-splitting A of Qn
2 (n > k > 0) and for any direction of faces

the number of (n− k)-faces of this direction in A is even.

Proof. Suppose a ∈ A and A contains m (n−k)-faces of the same direction as a. Consider
a face a⊥. If b ∈ A has the same direction as a, then |b ∩ a⊥| = 1, otherwise the number
|b ∩ a⊥| is even. Since |a⊥| = 2k =

∑
b∈A |b ∩ a⊥| and all terms except m are even, m is

even.
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Let T be a subset of {1, . . . , n}. An antipodal k-splitting A in Qn
2 is called t-balanced

on T if every a ∈ A has t elements 0 and 1 (|T | − t asterisks) in coordinates from T .

Proposition 5. If there exist an antipodal k1-splitting of Q
n1
2 and an antipodal k2-splitting

of Qn2
2 which is t-balanced on T , |T | = n3 6 n2, then there exists an antipodal (k2 + (k1−

1)t)-splitting of Q
n2+(n1−1)n3

2 .

Proof. Let A be an antipodal k2-splitting of Qn2
2 and B = B0 ∪ B1 be an antipodal k1-

splitting of Qn1
2 where sets B0 and B1 do not contain parallel (n1 − k1)-faces. Consider

an (n2 − k2)-face (a1, . . . , an2) ∈ A. For i ∈ T , if ai = 0 we replace ai by every possible
b ∈ B0; if ai = 1 then we replace ai by every possible b ∈ B1; if ai = ∗ then we replace ai
by

(∗, . . . , ∗)︸ ︷︷ ︸
n1

.

So, we obtain a set C of |A|(|B|/2)t = 2k2 · 2(k1−1)t tuples corresponding to m-faces in

Q
n2+(n1−1)n3

2 , where

m = n2 − k2 − (n3 − t) + (n3 − t)n1 + t(n1 − k1)
= n2 + (n1 − 1)n3 − (k2 + (k1 − 1)t).

It is not difficult to verify that:
1) all faces in C are disjoint because A and B consist of disjoint faces;

2) C is a covering of Q
n2+(n1−1)n3

2 by counting cardinality of ∪C and, consequently, C is
a (k2 + (k1 − 1)t)-splitting;
3) C contains pairs of antipodal faces because A and B contain pairs of antipodal faces;
4) C does not contain parallel non-antipodal faces because A and B do not contain such
faces.

Corollary 6. If there exist an antipodal k1-splitting of Qn1
2 and an antipodal k2-splitting

of Qn2
2 , then there exists an antipodal k1k2-splitting of Qn1n2

2 .

Proof. Every k-splitting of Qn
2 is k-balanced on {1, . . . , n} by definition. We can define

n3 = n2, t = k2 and use Proposition 5.

The following antipodal 3-splitting of Q4
2 corresponds to the well-known antipodal

perfect matching in Q4
2. We will denote it by E3.

∗ 0 0 0, ∗ 1 1 1,
0 ∗ 0 1, 1 ∗ 1 0,
0 1 ∗ 0, 1 0 ∗ 1,
0 0 1 ∗, 1 1 0 ∗.

We find two antipodal 5-splittings of Q8
2.
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00 1∗ 00 ∗∗, 11 0∗ 11 ∗∗,
00 ∗1 10 ∗∗, 11 ∗0 01 ∗∗,
0∗ 01 00 ∗∗, 1∗ 10 11 ∗∗,
∗0 10 01 ∗∗, ∗1 01 10 ∗∗,
01 1∗ 0∗ 0∗, 10 0∗ 1∗ 1∗,
00 ∗0 1∗ 1∗, 11 ∗1 0∗ 0∗,
0∗ 10 1∗ 0∗, 1∗ 01 0∗ 1∗,
∗0 00 0∗ 1∗, ∗1 11 1∗ 0∗,
01 0∗ ∗1 0∗, 10 1∗ ∗0 1∗,
10 ∗1 ∗0 0∗, 01 ∗0 ∗1 1∗,
1∗ 10 ∗0 0∗, 0∗ 01 ∗1 1∗,
∗1 00 ∗0 ∗0, ∗0 11 ∗1 ∗1,
∗0 00 ∗∗ 00, ∗1 11 ∗∗ 11,
∗0 0∗ ∗1 01, ∗1 1∗ ∗0 10,
∗0 ∗1 ∗1 00, ∗1 ∗0 ∗0 11,
∗∗ 00 ∗0 01, ∗∗ 11 ∗1 10;

0∗ ∗0 ∗0 10, 1∗ ∗1 ∗1 01,
0∗ ∗1 1∗ 10, 1∗ ∗0 0∗ 01,
0∗ ∗1 00 ∗0, 1∗ ∗0 11 ∗1,
0∗ ∗0 00 0∗, 1∗ ∗1 11 1∗,
∗1 0∗ ∗1 00, ∗0 1∗ ∗0 11,
∗1 1∗ 1∗ 00, ∗0 0∗ 0∗ 11,
∗0 0∗ 01 ∗0, ∗1 1∗ 10 ∗1,
∗1 0∗ 10 0∗, ∗0 1∗ 01 1∗,
∗1 ∗0 ∗1 10, ∗0 ∗1 ∗0 01,
∗0 ∗1 1∗ 00, ∗1 ∗0 0∗ 11,
∗0 ∗0 11 ∗0, ∗1 ∗1 00 ∗1,
∗0 ∗0 10 0∗, ∗1 ∗1 01 1∗,
1∗ 1∗ ∗0 10, 0∗ 0∗ ∗1 01,
1∗ 1∗ 0∗ 00, 0∗ 0∗ 1∗ 11,
1∗ 0∗ 00 ∗0, 0∗ 1∗ 11 ∗1,
0∗ 1∗ 01 0∗, 1∗ 0∗ 10 1 ∗ .
By counting of asterisks in the columns we find that the first antipodal 5-splitting is not

1-balanced on any pairs of coordinates. But the second antipodal 5-splitting is 1-balanced
on the sets {1, 2} and {3, 4}. We will denote it by E5. Note that any isometry of the
hypercube exchanges only the order of columns and symbols 0 and 1 in any fixed column.
Then any isometry preserves the property of splittings to be 1-balanced. Consequently,
the above two antipodal 5-splittings are nonequivalent. We believe that all antipodal
5-splittings are reducible to these two ones.

Theorem 7. There exists an antipodal k-splitting for every odd k > 3.

Proof. Let us use antipodal 5-splitting E5 and 3-splitting E3 in the construction from
Proposition 5 with k1 = 3, k2 = 5, n1 = 4, n2 = 8, T = {1, 2}, t = 1. We obtain an
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antipodal 7-splitting E7. Replacing E3 by E5 in this construction, we obtain an antipodal
9-splitting E9. Consider E7 and E9 as the base cases. Suppose that we can construct
an antipodal (2s − 3)-splitting E2s−3. Then by Proposition 5 we obtain an antipodal
(2s+1)-splitting E2s+1 from E2s−3 and 1-balanced 5-splitting E5. Consequently, we prove
the theorem by induction.

3 2-DP-colorings

Let G be an r-uniform hypergraph on n vertices. A 2-coloring f of a k-uniform hypergraph
on n vertices is in a one-to-one correspondence to an n-tuple over alphabet {0, 1}. Each
k-hyperedge corresponds to (n − k)-faces of Qn

2 of some direction. For example, a k-
hyperedge consisting of i1th,. . . ,ikth vertices corresponds to faces

(∗, . . . , ∗, ai1 , ∗, . . . , ∗, ai2 , ∗, . . . , aik , ∗ . . . , ∗)

where aij ∈ {0, 1}. The set {aij} corresponds to some coloring of vertices from the
hyperedge. Thereby f corresponds to an element of Qn

2 and 2-colorings of k-hyperedges
correspond to (n− k)-faces.

Let us remember the definition of 2-DP-coloring. A 2-coloring f avoids a 2-coloring
ϕe = (∗, . . . , 1, . . . , ∗, . . . , 0, . . . , ∗) of e ∈ E(G) if and only if f 6∈ ϕe. A 2-coloring f
avoids a collection Φ if f 6∈ ϕe ∪ ϕe for each ϕe ∈ Φ. A hypergraph G is a 2-DP-
colorable if for every collection Φ of antipodal 2-colorings of hyperedges there exists a
2-coloring f avoiding Φ. Thereby G is a 2-DP-colorable if and only if any collection
{ϕe, ϕe : e ∈ E(G)} is not a covering of Qn

2 .
Consider a table of size n× `, where every column corresponds to a (n− k)-face of an

antipodal covering of Qn
2 . Let us replace in the table symbols ∗ by 0 and other symbols by

1. By the definition, the resulting table is the incidence matrix of a non-2-DP-colorable
k-uniform hypergraph with ` edges. Consequently, we have the following statement.

Proposition 8. A k-uniform hypergraph with ` edges and n vertices is non-2-DP-colorable
if and only if its incidence matrix corresponds to a k-covering of Qn

2 by ` pairs of antipodal
(n− k)-faces.

Moreover, Proposition 8 implies the following statement.

Corollary 9. There exists a non-2-DP-colorable k-uniform hypergraph with 2k−1 edges if
and only if there exists an antipodal k-splitting of Qn

2 .

A non-2-DP-colorable 3-uniform hypergraph with 4 edges that corresponds to the
antipodal 3-splitting E3 is presented in [1]. By Theorem 7 and Corollary 9, we obtain the
following statement.

Corollary 10. If k > 3 is odd there exists a non-2-DP-colorable k-uniform hypergraph
with 2k−1 edges.

Since a union of at most 2` (n − k)-faces contains `2n−k+1 vertices, we obtain the
following corollary.

Corollary 11 ([1]). Every k-uniform hypergraph with ` < 2k−1 edges is 2-DP-colorable.
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