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Abstract

Let G be an n-vertex oriented graph. Let t(G) (respectively i(G)) be the prob-
ability that a random set of 3 vertices of G spans a transitive triangle (respectively
an independent set). We prove that t(G) + i(G) > 1

9 − on(1). Our proof uses the
method of flag algebras that we supplement with several steps that make it more
easily comprehensible. We also prove a stability result and an exact result. Namely,
we describe an extremal construction, prove that it is essentially unique, and prove
that if H is sufficiently far from that construction, then t(H) + i(H) is significantly
larger than 1

9 .
We go to greater technical detail than is usually done in papers that rely on

flag algebras. Our hope is that as a result this text can serve others as a useful
introduction to this powerful and beautiful method.
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1 Introduction

More than sixty years ago, Goodman [8] proved a quantitative Ramsey-type result for
triangles. He determined the minimum over all n-vertex (undirected) graphs of the number
of triples of vertices which form a triangle or an independent set. It readily follows from
his result that the density of triangles plus the density of independent triples in a graph
is asymptotically at least 1

4
. It is natural to look for an analogous statement for directed

graphs. Goodman’s Theorem clearly applies for directed graphs if one considers both
transitive triangles and cyclic triangles. Since, moreover, a transitive tournament admits
no cyclic triangles and no independent triples, the only related quantity which may be
of interest is the minimum over all n-vertex directed graphs of the number of triples of
vertices which form a transitive triangle or an independent set.

We start with the asymptotic version of the problem. For simplicity we consider
only oriented graphs, i.e., directed graphs having no loops and no multiple (parallel or
anti-parallel) edges. For an oriented graph G, denote by t(G) (respectively i(G)) the
probability that a randomly chosen set of 3 vertices of G induces a transitive triangle
(respectively an independent set). For every positive integer n, let

τ(n) = min{t(G) + i(G) : G is an oriented graph on n vertices}.

Observation 1. (τ(n))∞n=3 is a non-decreasing sequence.

Proof. Let n > 3 be an integer and let G = (V,E) be an oriented graph on n+ 1 vertices
for which t(G) + i(G) = τ(n+ 1). Then

τ(n+ 1) = t(G) + i(G) = 1
n+1

∑
v∈V (t(G \ v) + i(G \ v)) > τ(n) .

Since the sequence (τ(n))∞n=3 is non-decreasing and is bounded from above by 1, it has
a limit which we denote by τ . Our main result is the following Goodman-type inequality.

Theorem 2. τ = 1
9
. That is, every n-vertex oriented graph G satisfies

t(G) + i(G) > 1
9
− on(1)

and, moreover, this bound is tight.

The tightness of the bound stated in Theorem 2 follows from the following observation.

Observation 3. For every positive integer n, let Bn = (V,E) be the balanced blowup of
a cyclic triangle, where V is the disjoint union of sets V0, V1, V2 with |Vi| = b(n+ i)/3c for
every 0 6 i 6 2, and E is comprised of all directed edges from Vi to Vi+1 mod 3 for every
0 6 i 6 2. For every positive integer n, it holds that

t(Bn) + i(Bn) < 1
9
.

Consequently, τ 6 1
9
.
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Proof. Clearly, the oriented graph Bn contains no transitive triangles and so t(Bn) = 0.
Moreover, Bn contains exactly

(bn/3c
3

)
+
(b(n+1)/3c

3

)
+
(b(n+2)/3c

3

)
independent triples and so

t(Bn) + i(Bn) = i(Bn) =

(bn/3c
3

)
+
(b(n+1)/3c

3

)
+
(b(n+2)/3c

3

)(
n
3

) <
1

9
.

In order for our methods to succeed, we must find all the asymptotically optimal
oriented graphs. There are earlier examples in the flag-algebra literature where certain
slight variations of the construction must be considered optimal as well, a phenomenon
that is called phantom edge in [10] and [13].

Concretely, it is possible to delete a few edges from Bn without creating any new
independent triples. Clearly no transitive triangles are created. Let Bεn be the random
oriented graph that results upon randomly deleting each edge of Bn independently with
probability ε > 0. This oriented graph clearly contains no transitive triangles, and with
high probability only O(ε2n3) new independent triples emerge (this follows, e.g., from
Azuma’s inequality). Hence, with ε→ 0, this oriented graph is optimal up to the second
order term. It will be crucial to consider this altered construction as well to derive some
necessary information.

We also prove a stability version of Theorem 2. As usual, we say that two n-vertex
oriented graphsG andH are ε-close if there are sets E1, E2 ⊆

(
V (G)

2

)
such that |E1|+|E2| 6

εn2 and (G \ E1) ∪ E2 is isomorphic to H.

Theorem 4. For every ε > 0, there exist n0 and δ > 0 such that if

t(G) + i(G) 6 1
9

+ δ,

for some n-vertex oriented graph G with n > n0, then G is ε-close to Bn.

Building on Theorem 4 we can prove that Bn in essentially the unique extremal con-
struction. This is in stark contrast to Goodman’s inequality for which the family of
extremal constructions is very rich. More precisely, we prove that a sufficiently large
oriented graph is extremal for the number of transitive triangles plus the number of inde-
pendent triples if and only if it belongs to the rigid family En which we will now describe.
LetMn denote the family of all triangle-free n-vertex oriented graphs which are the union
of three matchings: one between V0 and V1, one between V1 and V2, and one between V2

and V0. Let En = {Bn \H : H ∈Mn}. It is evident that t(G) + i(G) = t(Bn) + i(Bn) for
every G ∈ En. It remains to prove that every large extremal oriented graph lies in En.

Theorem 5. There exists an integer n0 such that for every n > n0, if G minimizes
t(G) + i(G) among all n-vertex oriented graphs, then G ∈ En.

The statement of Theorem 5 need not apply for small n. Consider the oriented graph
with vertex set V = {0, 1, 2, 3, 4, 5, 6}, where for every 0 6 i 6 6 vertex i has a directed
edge to i + 1 mod 7 and to i + 3 mod 7. This oriented graph has no independent triple
nor a transitive triangle, whereas every G ∈ E7 has an independent triple. Similarly, the
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oriented graph with vertex set {0, 1, 2, 3, 4, 5, 6, 7} and all directed edges (i, i + 2 mod 8)
and (i, i + 3 mod 8) for 0 6 i 6 7, has no independent triples and no transitive triangle,
whereas every G ∈ E8 has two independent triples.

Our proof of Theorem 2 follows mostly the flagmatic workflow [13]. We find it worth-
while to describe the entire process, even though most of it is not new. Our objective
is to depend as little as possible on computer calculations, and rely on theoretical argu-
ments whenever possible. We also chose to write a self-contained paper since we could
not find a comprehensive accessible documentation of flagmatic’s entire computational
process. Even the standard flag algebra arguments are not easy to understand from, e.g.,
[11], and are couched in logic and algebra terminology beyond what is required to prove
Theorem 2 and other similar results in local combinatorics. Also, while [7] provides much
of the necessary information, we believe there is need for a more accessible source. Hence,
to carry out the more technical parts of this research we had to pave our own path. The
only available guide to this process that we managed to find was the flagmatic code which
is only partially documented and is hard to penetrate. We hope that readers can use
this paper as a simpler and fully self-contained case study, of proving inequalities in local
combinatorics using flag algebra techniques.

We should mention the paper [10] which provides some further details on the practice
of the flag algebra method. Moreover, results in [10] and, independently, [5] yield a special
case of our Theorem 2; namely, that i(G) > 1

9
− on(1) for every n-vertex oriented graph

G with t(G) = 0. Indeed, both papers prove that every K4-free n-vertex undirected graph
has at least (1

9
− on(1))

(
n
3

)
independent triples and this is tight. The relevant conclusion

follows, since every orientation of K4 contains a transitive triangle, so that the underlying
graph of an oriented graph with no transitive triangles must be K4-free. Both [10] and [5],
use the flag algebra method.

1.1 Flag algebras for the uninitiated

This subsection deals with graphs as archetypical combinatorial objects, though every-
thing we discuss here applies just as well to a whole range of mathematical objects. In
fact, in this paper we apply this framework to oriented graphs. Let H be a fixed k-vertex
graph and let G be a (typically large) graph. We denote by p(H,G) the probability that
a randomly chosen set of k vertices in G induces a subgraph that is isomorphic to H.
Let H1, . . . , Hm be finite graphs and let H = {H1, . . . , Hm}. The H-profile of G is the
vector ΦH(G) = (p(H1, G), . . . , p(Hm, G)). Understanding H-profiles of large graphs is
a key challenge of modern combinatorics. It is usually considered within the framework
of extremal graph theory, or what one might call local combinatorics. Flag algebras of-
fer a systematic approach to the study of such questions. As previously mentioned, this
methodology applies to various combinatorial structures, and in the present paper we fo-
cus on oriented graphs. In order to apply the flag algebras method, one must first choose
some collection F of t-flagged graphs, i.e., graphs in which some t vertices are labeled
1, . . . , t. Associated with F and a graph Z is the flag probability matrix AFZ whose rows
and columns are indexed by F . Let H1, . . . , Hm be an arbitrary ordering of all k-vertex
graphs and let H = {H1, . . . , Hm}. Suppose that the vector (pH1 , . . . , pHm) is a limit
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point of H-profiles ΦH(G) of graphs G whose orders tend to infinity. The key feature
of these matrices is that the matrix

∑m
i=1 pHi · AFHi is positive semi-definite (abbreviated

henceforth PSD). By a well-known property of PSD matrices, its inner product with any
PSD matrix Q is non-negative. By choosing Q (called below a certificate) cleverly, we can
obtain interesting linear inequalities in the numbers pH1 , . . . , pHm . As we explain below,
it is the proper choice of Q that is the main technical challenge here and in many other
papers that rely on the method of flag algebras.

To prove Theorem 2, it suffices to find a 1/9-certificate. That is, for some choice of k
and F , we wish to find a PSD matrix Q that satisfies the linear inequality
〈Q,AFHi〉 6 t(Hi) + i(Hi) − 1/9 for every 1 6 i 6 m. In the linear space of symmet-
ric |F| × |F| matrices we find an affine subspace that contains all the 1/9-certificates.
In order to find a 1/9-certificate, we run a semidefinite programming (SDP) solver on a
computer. Such solvers output a solution of the SDP up to an additive error. This error
term can be made arbitrarily small, but decreasing it increases the running time of the
solver program. We then carefully ‘round‘ the matrix found by the SDP solver and obtain
the desired 1/9-certificate.

Rounding must be carried out with special care for those indices i for which
〈Q,AFHi〉 ≈ t(Hi)+i(Hi)−1/9. For other i’s, the inequality is strict and we may hope that
it will remain true after some perturbation. Similarly, positive eigenvalues of the approx-
imate matrix will hopefully remain positive after perturbation, but near-zero eigenvalues
must be treated more carefully for the result to remain PSD.

The rest of this paper is organized as follows. In Section 2 we introduce some of the
foundations of the flag algebras method. In Section 3 we present a family of semidefinite
programs. An appropriate solution of such an SDP would imply Theorem 2. We also
define the notion of a certificate. Section 4 is a warm-up for the actual proof, where
we illustrate the methodology through two different proofs of the asymptotic version
of Goodman’s Theorem. In addition we provide several proofs of weaker versions of
Theorem 2. In Section 5 we start working on our proof of Theorem 2. Using a computer,
we verify that τ is very close to 1/9. The next four sections are dedicated to finding a
1
9
-certificate matrix. It turns out that every 1

9
-certificate matrix has a nontrivial kernel,

and that, in fact, the intersection of all such kernels (over all 1
9
-certificates) is a nonempty

linear space. In Section 6 we determine this space. In Section 7 we use certain 4-vertex
oriented graphs which are abundant in Bεn to impose additional restrictions on the entries
of Q. In Section 8 we use the common kernel space of Section 6 to project the problem to
a space of lower dimension. In Section 9 we complete the proof of Theorem 2 by finding an
approximate certificate for the projected problem with the aid of the computer, rounding
it, and pulling it back to a certificate for the original problem. In Section 10 we prove
Theorem 4. In Section 11 we use Theorem 4 to prove Theorem 5. Finally, in Section 12
we consider possible directions for future research.
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2 Flags

A t-vertex type is an oriented graph whose vertices are labeled 1, . . . , t. A flag F over the
t-vertex type σ with ` petals is an oriented graph on t + ` vertices with an isomorphic
embedding ϕ : σ → F . Two flags are isomorphic if they have the same type and there
exists an isomorphism between them which preserves the type as well as the labeling of
the type’s vertices. Occasionally, we will view an oriented graph as a flag over the empty
type.

For flags F1, F2 over σ, define p(F1, F2) as follows. Choose uniformly at random a set L
of |F1|− |σ| vertices in F2 \S2, where S2 is the image of σ’s vertex set in F2. Consider the
flag F induced by F2 on S2∪L and accompany it with F2’s embedding of σ. Now, p(F1, F2)
is defined to be the probability that F is isomorphic to F1. Observe that p(F1, F2) = 0
when |F1| > |F2|. For convenience, we also define p(F1, F2) to be zero if F1, F2 are flags
over different types. A σ-rooting of an oriented graph G (also called a rooting of G over
σ) is a flag over σ whose underlying oriented graph (i.e., just the oriented graph, without
the embedding of σ) is G. For an oriented graph G and a flag F over σ, define p(F,G) to
be the mean of p(F, F̃ ) where F̃ is chosen uniformly at random from the set of σ-rootings
of G. If there is no embedding of σ into G, we define p(F,G) to be zero.

Let F1, F2 be flags over σ and let G = (V,E) be an oriented graph such that there is
an embedding of σ into G. We define p(F1, F2;G) as follows. Choose uniformly at random
a rooting of G over σ, and denote by S the image of σ’s vertex set in G. Now, choose
uniformly at random two disjoint sets of vertices L1, L2 ⊆ V \S such that |Li| = |Fi|− |σ|
for i ∈ {1, 2}. Finally, define p(F1, F2;G) to be the probability that the induced flag on
Li ∪ S is isomorphic to Fi for i ∈ {1, 2}. We also define p̃(F1, F2;G) in a similar way,
where the sets L1 and L2 are chosen, uniformly and independently, at random (we still
require L1, L2 ⊆ V \ S but allow L1 ∩ L2 6= ∅). For convenience, in all cases where this
process is ill-defined (namely, if F1 and F2 have different types, or if σ does not embed
into G, or if there is no such pair of disjoint sets L1, L2), we define p(F1, F2;G) to be zero.

As an example, consider σ, F1, F2, and G in Figure 1. There are 6 σ-rootings of G (one
per edge), one of which is shown in Figure 2, along with the three flags of order 3 over
σ which appear with positive probability in that rooting. A straightforward calculation
shows that p(F1, G) = 1/9 and p(F2, G) = 1/6. Similarly, p(F1, F2;G) = p̃(F1, F2;G) =
p(F1, F1;G) = p(F2, F2;G) = 0, p̃(F1, F1;G) = 1/27 and p̃(F2, F2;G) = 1/18.

1

2

1

2

1

2

Figure 1: An example of (left to right) a type σ, two flags F1, F2 over σ and an oriented
graph G.
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1

2

1

2

1

2

1

2

Figure 2: An example of a rooting of G over σ, and the three flags over σ with one petal
which appear with positive probability in that rooting.

2.1 The flag probability matrix

Let Σ be a finite set of types and let F be a finite set of flags over types in Σ. For
an oriented graph G we define the matrix AG (which depends on Σ and F as well) as
follows. It is an |F| × |F| matrix whose (F1, F2) entry is p(F1, F2;G). It readily follows
from the definition of p(F1, F2;G) that the entries of AG are rational numbers and that it
is a block-diagonal matrix, with one block corresponding to each type σ ∈ Σ. Similarly,
we define the |F| × |F| matrix ÃG whose (F1, F2) entry is p̃(F1, F2;G).

The following simple example, that we also use later, demonstrates how to compute
the matrices AG and ÃG. Consider the 1-vertex type, and the three different flags with one
petal over it (see Figure 3). With respect to this family of flags, the flag probability matrix

1 1 1

Figure 3: The three 2-vertex flags over the 1-vertex type.

AG is a symmetric 3×3 matrix which is defined by six numbers as follow. Sample uniformly
at random a vertex from a large oriented graph (in our terminology, a random σ-rooting,
where σ is the 1-vertex type), and calculate the expectations of the probabilities of two
random distinct vertices having any particular “relationship” with the chosen vertex. For
example, the contribution of any root vertex to the (3, 3) entry of AG, is the probability
that the two randomly chosen vertices are both non-neighbors of that root vertex. Clearly,
these probabilities can be expressed as averages of quadratic terms in the degrees of a
vertex, namely, its out-degree d+, its in-degree d−, and its non-degree d0. Therefore

AG =
1

n(n− 1)(n− 2)

 2
∑

v

(
d+(v)

2

) ∑
v d+(v)d−(v)

∑
v d+(v)d0(v)∑

v d+(v)d−(v) 2
∑

v

(
d−(v)

2

) ∑
v d−(v)d0(v)∑

v d+(v)d0(v)
∑

v d−(v)d0(v) 2
∑

v

(
d0(v)

2

)
 . (1)
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Similarly,

ÃG =
1

n(n− 1)2

 ∑
v d+(v)2

∑
v d+(v)d−(v)

∑
v d+(v)d0(v)∑

v d+(v)d−(v)
∑

v d−(v)2
∑

v d−(v)d0(v)∑
v d+(v)d0(v)

∑
v d−(v)d0(v)

∑
v d0(v)2


=

1

n(n− 1)2

∑
v

d+(v)
d−(v)
d0(v)

 (d+(v), d−(v), d0(v)).

This matrix is clearly PSD, since it has the form BTB.
Our real interest is in AG, whereas ÃG is merely a supporting actor, as the following

lemma illustrates.

Lemma 6. Let Σ be a set of types, let F be a set of flags over types from Σ, and let
G = (V,E) be an n-vertex oriented graph. Then

1. For a type σ in Σ, let Rσ be the set of all rootings of G over σ, let Fσ be the set of
flags in F over the type σ and let Bσ be the |Fσ| × |Rσ| matrix such that for every
rooting r ∈ Rσ and every flag F in Fσ, the (F, r) entry of Bσ is p(F, r).

For every σ in Σ, the block of ÃG which corresponds to σ equals 1
|Rσ |BσB

T
σ . Conse-

quently, the matrix ÃG is PSD.

2. For F1, F2 ∈ F , if F1, F2 are flags over the same t-vertex type with t < n, then

|p(F1, F2;G)− p̃(F1, F2;G)| 6 (|F1| − t)(|F2| − t)
n− t

,

and otherwise |p(F1, F2;G)− p̃(F1, F2;G)| = 0. Consequently,

‖AG − ÃG‖∞ 6
CF
n
,

where || · ||∞ is the max norm and CF is a positive constant depending only on F .

Proof. 1. For every two flags F1, F2 ∈ F over the same type σ, clearly

p̃(F1, F2;G) =
1

|Rσ|
∑
r∈Rσ

p(F1, r)p(F2, r).

Our claim readily follows.

2. By definition, p(F1, F2;G) = p̃(F1, F2;G) = 0 if F1, F2 are flags over different types
or max{|F1|, |F2|} > n. If F1, F2 are flags over the same t-vertex type such that
t > n and |F1|, |F2| 6 n, then necessarily |F1| = |F2| = t and hence p(F1, F2;G) =
p̃(F1, F2;G).

Therefore, assume that F1, F2 are flags over the same t-vertex type σ with t < n
and |F1|, |F2| 6 n. Choose uniformly at random a rooting of G over σ and denote

the electronic journal of combinatorics 29(3) (2022), #P3.39 8



the image of σ’s vertex set in G by S. Now, choose uniformly and independently at
random two sets of vertices L1, L2 ⊆ V \S such that |Li| = |Fi|−t for i ∈ {1, 2}. Let
Ω denote the event that the induced flag on Li∪S is isomorphic to Fi for i ∈ {1, 2}.
Note that

p(F1, F2;G) = Pr(Ω | L1 ∩ L2 = ∅)

and

p̃(F1, F2;G) = Pr(Ω)

= Pr(L1 ∩ L2 = ∅) Pr(Ω | L1 ∩ L2 = ∅) + Pr(L1 ∩ L2 6= ∅) Pr(Ω | L1 ∩ L2 6= ∅).

It follows that

p(F1, F2;G)− p̃(F1, F2;G)

= (1− Pr(L1 ∩ L2 = ∅)) Pr(Ω | L1 ∩ L2 = ∅)− Pr(L1 ∩ L2 6= ∅) Pr(Ω | L1 ∩ L2 6= ∅)

= Pr(L1 ∩ L2 6= ∅) Pr(Ω | L1 ∩ L2 = ∅)− Pr(L1 ∩ L2 6= ∅) Pr(Ω | L1 ∩ L2 6= ∅)

= Pr(L1 ∩ L2 6= ∅) (Pr(Ω | L1 ∩ L2 = ∅)− Pr(Ω | L1 ∩ L2 6= ∅)) .

Hence

|p(F1, F2;G)− p̃(F1, F2;G)|
= Pr(L1 ∩ L2 6= ∅) |Pr(Ω | L1 ∩ L2 = ∅)− Pr(Ω | L1 ∩ L2 6= ∅)|
6 Pr(L1 ∩ L2 6= ∅).

For every v ∈ V it holds that

Pr(v ∈ L1 and v ∈ L2) = Pr(v /∈ S) Pr(v ∈ L1 and v ∈ L2 | v /∈ S)

=
n− t
n
· |F1| − t
n− t

· |F2| − t
n− t

.

A union bound then implies that

|p(F1, F2;G)− p̃(F1, F2;G)| 6 Pr(L1 ∩ L2 6= ∅)

6 n · n− t
n
· |F1| − t
n− t

· |F2| − t
n− t

=
(|F1| − t)(|F2| − t)

n− t
.

Note that Lemma 6 appears implicitly in [11] and is proved in [9].

3 Applying flags to prove graph inequalities

In this section we explain how to obtain lower bounds on the densities of fixed oriented
graphs in large oriented graphs, using flags. To make the presentation simpler and more
concrete, we concentrate on the problem at hand, i.e., bounding τ .
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3.1 An SDP problem

Let k > 3 be an integer and let G1, . . . , Gm be the complete list of all k-vertex oriented
graphs, up to isomorphism. First, we restate the quantity t(G)+ i(G) in terms of k-vertex
subgraphs. For every 1 6 i 6 m, let

ci = t(Gi) + i(Gi).

Observation 7. For every oriented graph G it holds that

t(G) + i(G) =
m∑
i=1

cip(Gi, G).

Proof. The quantities t(G), i(G) are defined by sampling 3 vertices of G uniformly at
random. Instead, we can first sample k vertices of G uniformly at random and then
sample 3 vertices uniformly at random out of these k. The two resulting expressions are
equal by the law of total probability.

Let Σ be a set of types and let F be a set of flags over Σ. For an oriented graph G, let
AG be the flag probability matrix of G with respect to the set F of flags over the types
in Σ.

Observation 8. Let G be an oriented graph and let F be a family of flags. If |F1|+ |F2|−
|σ| 6 k for all flags F1, F2 ∈ F over the same type σ, then

AG =
m∑
i=1

p(Gi, G)AGi .

Proof. For every two flags F1, F2 ∈ F , it follows by the law of total probability that

p(F1, F2;G) =
m∑
i=1

p(Gi, G)p(F1, F2;Gi).

Our claim readily follows.

Theorem 9. Let F be a family of flags satisfying the assumption of Observation 8.
Suppose that

∑m
i=1 pici > α for every non-negative real numbers p1, . . . , pm that sum up

to 1 for which the matrix
∑m

i=1 piAGi is PSD. Then τ > α.

Proof. Recall that for every positive integer n,

τ(n) = min{t(G) + i(G) : G is an oriented graph on n vertices}

Let G(n) be an oriented graph on n vertices for which t(G(n))+ i(G(n)) = τ(n). By passing
to a subsequence of (G(n))∞n=1 if needed, we may assume that for every 1 6 i 6 m, the
sequence (p(Gi, G

(n)))∞n=1 converges to a limit which we denote by pi. Clearly, the real
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numbers p1, . . . , pm are non-negative and
∑m

i=1 pi = 1. We will show that the matrix∑m
i=1 piAGi is PSD.
Fix a vector v ∈ R|F| and a positive integer n. Then

vT

(
m∑
i=1

p(Gi, G
(n))AGi

)
v = vTAG(n)v = vT

(
AG(n) − ÃG(n)

)
v + vTÃG(n)v

> vT
(
AG(n) − ÃG(n)

)
v > −||v||21 · ||AG(n) − ÃG(n) ||∞

= −||v||21 ·O(1/n).

The first equality holds by Observation 8. The first inequality holds since ÃG(n) is PSD,
see Lemma 6, part 1. For the last equality we use Lemma 6 part 2. It thus follows that

vT

(
m∑
i=1

piAGi

)
v = lim

n→∞
vT

(
m∑
i=1

p(Gi, G
(n))AGi

)
v > 0,

and thus the matrix
∑m

i=1 piAGi is indeed PSD, as claimed.
We conclude that

τ = lim
n→∞

τ(n) = lim
n→∞

t(G(n)) + i(G(n)) = lim
n→∞

m∑
i=1

cip(Gi, G
(n)) =

m∑
i=1

cipi > α,

where the third equality holds by Observation 7, and the inequality holds by the assump-
tion of the theorem and the proven fact that

∑m
i=1 piAGi is PSD.

In other words, Theorem 9 shows that τ is bounded from below by the optimum of
the following semidefinite program.

Variables: p1, . . . , pm

Goal: minimize
m∑
i=1

pici

Constraints:

p1, . . . , pm > 0
m∑
i=1

pi = 1

m∑
i=1

piAGi � 0 (this inequality means that the matrix is PSD.)

(2)

This is a key idea of the flag algebra method. An asymptotic inequality about graph
densities can be proved by solving an SDP problem that seems hardly related to graphs.

How should one choose the set of types Σ and the set of flags F? For any fixed
k, there are finitely many types and finitely many flags over them that induce non-zero
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blocks in the matrices AGi . We would like to use Theorem 9 and thus also Observation 8.
Therefore, flags over a type σ should be of size at most `σ := b(k + |σ|)/2c. Since we
would like to gain as much information as possible, it makes sense to use all flags of size
at most `σ over every type σ of size at most k. However, it is in fact sufficient to use only
flags of size precisely `σ over every type σ such that |σ| < k and |σ| ≡ k mod 2, since they
carry the same information. In hindsight, and after some trial and error, it transpires
that one can actually give up some additional flags and still obtain the same results.

Finally, we need to choose k. As k grows, we gain more information, but the calcu-
lations become more complex. We therefore seek the smallest k that yields the desired
results. As expected, k = 1, 2 yield nothing. With k = 3 we already obtain a non-trivial
lower bound, but not the desired inequality τ > 1/9. Finally, k = 4 delivers the goods.
We still present the analysis for k = 3 in Section 4, since we think that it is insightful.

3.2 Certificate matrices

The inner product of two N × N real matrices A = (ai,j) and B = (bi,j) is defined as
usual to be

〈A,B〉 := Tr(ABT) =
∑

16i6N, 16j6N

ai,jbi,j.

For a symmetric B clearly, 〈A,B〉 = Tr(AB). We recall a standard fact from linear
algebra.

Lemma 10. A matrix is PSD if and only if its inner product with every PSD matrix is
non-negative.

Definition 11. For α > 0, an α-certificate for the SDP (2) is an |F| × |F| PSD matrix
Q such that for every 1 6 i 6 m there holds

ci > 〈Q,AGi〉+ α.

Applying SDP weak duality to (2) yields the following useful proposition. For the sake
of completeness, we include its (short and simple) proof.

Proposition 12. If SDP (2) has an α-certificate, then its optimum is at least α, whence
τ > α by Theorem 9.

Proof. Let Q be an α-certificate for (2). Suppose that the matrix
∑m

i=1 piAGi is PSD,
where p1, . . . , pm > 0 and

∑m
i=1 pi = 1. Then

m∑
i=1

pici =
m∑
i=1

pi(ci − 〈Q,AGi〉) +

〈
Q,

m∑
i=1

piAGi

〉
>

m∑
i=1

pi(ci − 〈Q,AGi〉) >
m∑
i=1

piα = α,

where the first inequality follows from Lemma 10 and the second inequality holds since
Q is an α-certificate and p1, . . . , pm > 0.
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4 A slight digression

We start with two proofs of Goodman’s bound for undirected graphs, which we then
adjust to derive the (suboptimal) bound τ > 1/10.

4.1 A toy example – Goodman’s bound for undirected graphs

In this subsection we deal with undirected graphs, not with oriented ones. We do not
detail the slight necessary terminological changes.

For 1 6 i 6 4, let Ui be the unique (up to isomorphism) undirected graph with 3
vertices and i− 1 edges (see Figure 4). We denote by ∆ = p(U4, G) (resp., ∆̄ = p(U1, G))
the density of triangles (resp., independent triples) in an undirected graph G.

U1 U2 U3 U4

Figure 4: The four 3-vertex undirected graphs.

We recall two of the many proofs of Goodman’s Theorem [8].

Theorem 13 (Goodman). For every n-vertex undirected graph G = (V,E) we have

∆ + ∆̄ > 1
4
− on(1).

First proof. Let m = |E| denote the number of edges of G. Observe that

1(
n
3

)∑
v∈V

d(v)(n− 1− d(v)) = 2p(U2, G) + 2p(U3, G) (3)

and therefore

∆ + ∆̄ = p(U1, G) + p(U4, G) = 1− p(U2, G)− p(U3, G)

= 1− n− 1

2
(
n
3

) ∑
v∈V

d(v) +
1

2
(
n
3

)∑
v∈V

d(v)2

= 1− 6m

n(n− 2)
+

1

2
(
n
3

)∑
v∈V

d(v)2. (4)

It follows by the Cauchy-Schwarz inequality that

1

n

∑
v∈V

d(v)2 >

(
1

n

∑
v∈V

d(v)

)2

=
4m2

n2
. (5)
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Combining (4) and (5) we obtain

∆ + ∆̄ > 1− 6m

n(n− 2)
+

2m2

n
(
n
3

) = 1− 6m

n2
+

12m2

n4
−O

(
1

n

)
=

1

4
+

3(n2 − 4m)2

4n4
−O

(
1

n

)
>

1

4
−O

(
1

n

)
.

Second proof. We apply the framework from Section 3 to undirected graphs, with k = 3.
As was elaborated in Subsection 3.1, we consider the two different one-petal flags over
the 1-vertex type (see Figure 5).

1 1 1

Figure 5: The 1-vertex type, and the two 2-vertex flags over it.

For every 1 6 i 6 4, let ci = p(U1, Ui) + p(U4, Ui). Clearly,

c1 = 1, c2 = 0, c3 = 0, c4 = 1.

For every 1 6 i 6 4 let Ai = AUi . A straightforward calculation then shows that

A1 =

(
0 0
0 1

)
, A2 =

(
0 1

3
1
3

1
3

)
, A3 =

(
1
3

1
3

1
3

0

)
, A4 =

(
1 0
0 0

)
.

An undirected analog of Proposition 12 then implies that, for every n-vertex undirected
graph G = (V,E), the quantity ∆+∆̄ is bounded from below, up to on(1), by the optimum
of the following semidefinite program.

Variables: p1, p2, p3, p4

Goal: minimize p1 + p4

Constraints:

p1, p2, p3, p4 > 0

p1 + p2 + p3 + p4 = 1(
1
3
p3 + p4

1
3
p2 + 1

3
p3

1
3
p2 + 1

3
p3 p1 + 1

3
p2

)
� 0

(6)

In order to complete this proof of Theorem 13 it suffices to show that the optimum of
SDP (6) is at least 1

4
; this can be done by finding a 1

4
-certificate for this SDP. In fact, the

optimum of the SDP (6) is exactly 1
4
; the upper bound can be proved, e.g., by taking

(p1, p2, p3, p4) := lim
n→∞

(p(U1, Kn,n), p(U2, Kn,n), p(U3, Kn,n), p(U4, Kn,n)) =
(

1
4
, 0, 3

4
, 0
)
.
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In order for a matrix (
α β
β γ

)
to be a 1

4
-certificate for SDP (6), it should be PSD and satisfy the following inequalities

γ 6 3
4
, 2

3
β + 1

3
γ 6 −1

4
, 1

3
α + 2

3
β 6 −1

4
, α 6 3

4
.

Choosing α = γ = 3
4

and β = −3
4

satisfies all of the above inequalities as equalities, and
the resulting matrix (

3
4
−3

4

−3
4

3
4

)
is indeed PSD.

Remark 14. For every v ∈ V (G), let d0(v) = n − 1 − d(v) denote the number of non-
neighbours of v in G. Note that (similarly to the derivation of (1)), it holds that

AG =
1

3
(
n
3

) ( ∑
v∈V

(
d(v)

2

)
1
2

∑
v∈V d(v)d0(v)

1
2

∑
v∈V d0(v)d(v)

∑
v∈V

(
d0(v)

2

) )
.

It then follows, by stripping off the flag algebra terminology, that the second proof of
Theorem 13 assumes the form of the following direct argument. For every v ∈ V , we have(

d0(v)

2

)
+

(
d(v)

2

)
=
d0(v)2 + d(v)2

2
− n− 1

2
> d(v)d0(v)− n− 1

2
. (7)

Therefore,

(3p(U1, G) + p(U2, G)) + (p(U3, G) + 3p(U4, G)) =
1(
n
3

)∑
v∈V

(
d0(v)

2

)
+

1(
n
3

)∑
v∈V

(
d(v)

2

)
>

1(
n
3

)∑
v∈V

d(v)d0(v)− 1(
n
3

)nn− 1

2
= 2p(U2, G) + 2p(U3, G)− 3

n− 2
,

where the inequality holds by (7) and the second equality holds by (3). We conclude that

∆ + ∆̄ = p(U1, G) + p(U4, G)

>
p(U1, G) + p(U2, G) + p(U3, G) + p(U4, G)

4
− 3

4(n− 2)
=

1

4
−O

(
1

n

)
.

4.2 Back to oriented graphs

Recall that we want to prove that τ > 1
9
. We now show how the two proofs of Goodman’s

Theorem we presented can be easily adjusted to yield a weaker, albeit nontrivial, bound.

Proposition 15.
τ > 1

10
,

i.e., every n-vertex oriented graph G satisfies

t(G) + i(G) > 1
10
− on(1).
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First proof. As in the first proof of Goodman’s inequality, we denote the number of edges
in G by m. Also, let c(G) denote the probability that a randomly chosen set of 3 vertices
of G induces a cyclic triangle. It is easy to see that

c(G) 6
1

3
(
n
3

)∑
v∈V

d+(v)d−(v) 6
1

3
(
n
3

)∑
v∈V

(
d+(v) + d−(v)

2

)2

=
1

12
(
n
3

)∑
v∈V

d(v)2. (8)

Combining (4), (5) and (8) we obtain,

t(G) + i(G) = ∆ + ∆̄− c(G) > 1− 6m

n(n− 2)
+

5

12
(
n
3

)∑
v∈V

d(v)2

> 1− 6m

n(n− 2)
+

5m2

3n
(
n
3

) = 1− 6m

n2
+

10m2

n4
−O

(
1

n

)
=

1

10
+

(3n2 − 10m)2

10n4
−O

(
1

n

)
>

1

10
−O

(
1

n

)
.

Second proof. As in the second proof of Goodman’s Theorem, we follow the framework
of Section 3, with k = 3, but this time for oriented graphs.

Let D1, D2, D3, D4, D5, D6, D7 be the different oriented graphs on 3 vertices, up to
isomorphism (see Figure 6).

D1 D2 D3 D4

D5 D6 D7

Figure 6: The 7 isomorphism types of oriented graphs of order 3.

For every 1 6 i 6 7, let ci = t(Di) + i(Di). Clearly,

c1 = 1, c2 = 0, c3 = 0, c4 = 0, c5 = 0, c6 = 1, c7 = 0.

Each 3-vertex type corresponds to a 1×1 block which is trivially PSD and bears no value
for our purposes. Therefore, we only consider the 1-vertex type, and the three different
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flags with one petal over it (see Figure 3). Using (1) we obtain

A1 =

0 0 0
0 0 0
0 0 1

 , A2 =

0 0 1
6

0 0 1
6

1
6

1
6

1
3

 , A3 =

0 0 1
3

0 1
3

0
1
3

0 0

 ,

A4 =

0 1
6

1
6

1
6

0 1
6

1
6

1
6

0

 , A5 =

1
3

0 0
0 0 1

3

0 1
3

0

 , A6 =

1
3

1
6

0
1
6

1
3

0
0 0 0

 , A7 =

0 1
2

0
1
2

0 0
0 0 0

 .

By Theorem 9, τ is bounded from below by the optimum of the following SDP:

Variables: p1, p2, p3, p4, p5, p6, p7

Goal: minimize p1 + p6

Constraints:

p1, p2, p3, p4, p5, p6, p7 > 0

p1 + p2 + p3 + p4 + p5 + p6 + p7 = 1 1
3
p5 + 1

3
p6

1
6
p4 + 1

6
p6 + 1

2
p7

1
6
p2 + 1

3
p3 + 1

6
p4

1
6
p4 + 1

6
p6 + 1

2
p7

1
3
p3 + 1

3
p6

1
6
p2 + 1

6
p4 + 1

3
p5

1
6
p2 + 1

3
p3 + 1

6
p4

1
6
p2 + 1

6
p4 + 1

3
p5 p1 + 1

3
p2

 � 0

(9)

If we take
(p1, p2, p3, p4, p5, p6, p7) := 1

100
(10, 18, 27, 0, 27, 0, 18),

then p1, p2, p3, p4, p5, p6, p7 > 0, p1 + p2 + p3 + p4 + p5 + p6 + p7 = 1, and 1
3
p5 + 1

3
p6

1
6
p4 + 1

6
p6 + 1

2
p7

1
6
p2 + 1

3
p3 + 1

6
p4

1
6
p4 + 1

6
p6 + 1

2
p7

1
3
p3 + 1

3
p6

1
6
p2 + 1

6
p4 + 1

3
p5

1
6
p2 + 1

3
p3 + 1

6
p4

1
6
p2 + 1

6
p4 + 1

3
p5 p1 + 1

3
p2

 =
1

100

 9 9 12
9 9 12
12 12 16


=

 3
10
3
10
4
10

( 3

10
,

3

10
,

4

10

)
� 0.

Therefore the optimum of SDP (9) is at most p1 + p6 = 1
10

, that is, this proof technique
with k = 3 cannot yield a lower bound larger than 1

10
. Next, we use Proposition 12 to

show that this bound is tight, by finding a 1
10

-certificate for SDP (9). The symmetries
of the problem indicate that it might suffice (and, as the proof shows, it does suffice) to
consider matrices of the form

Q =

α β γ
β α γ
γ γ δ

 .

For this matrix to be a 1
10

-certificate for SDP (9), it must satisfy all of the following
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inequalities

δ 6 9
10
, (10)

1
3
δ + 2

3
γ 6 − 1

10
, (11)

1
3
α + 2

3
γ 6 − 1

10
, (12)

1
3
β + 2

3
γ 6 − 1

10
, (13)

2
3
α + 1

3
β 6 9

10
, (14)

β 6 − 1
10
. (15)

In addition, Q must be PSD. In particular, |β| 6 α must hold and thus inequality (12)
implies (13). Choosing

α = 9
10
, β = − 1

10
, γ = − 6

10
, δ = 9

10

satisfies inequality (14), whereas (10), (11), (12), (15) hold as equalities. Moreover, the
resulting matrix

Q =
1

10

 9 −1 −6
−1 9 −6
−6 −6 9

 (16)

is PSD.

Remark 16. As with the second proof of Theorem 13, the following direct argument strips
off the flag algebra terminology from the second proof of Proposition 15. For simplicity,
we denote pi = p(Di, G) for every 1 6 i 6 7. For every v ∈ V (G), it holds that

9

(
d0(v)

2

)
+ 9

(
d−(v)

2

)
+ 9

(
d+(v)

2

)
=

(3d0(v))2 + (2d−(v) + 2d+(v))2

2
− 4d−(v)d+(v) + 5

d−(v)2 + d+(v)2

2
− 9

2
(n− 1)

> 3d0(v)(2d−(v) + 2d+(v))− 4d−(v)d+(v) + 5d−(v)d+(v)− 9

2
(n− 1)

= 6d0(v)d−(v) + 6d0(v)d+(v) + d−(v)d+(v)− 9

2
(n− 1).

Therefore

9(3p1 + p2) + 9(p3 + p6) + 9(p5 + p6)

=
9(
n
3

)∑
v∈V

(
d0(v)

2

)
+

9(
n
3

)∑
v∈V

(
d−(v)

2

)
+

9(
n
3

)∑
v∈V

(
d+(v)

2

)
>

6(
n
3

)∑
v∈V

d0(v)d−(v) +
6(
n
3

)∑
v∈V

d0(v)d+(v) +
1(
n
3

)∑
v∈V

d−(v)d+(v)− 1(
n
3

)n9

2
(n− 1)

= 6(p2 + p4 + 2p5) + 6(p2 + 2p3 + p4) + (p4 + p6 + 3p7)− 27

n− 2
,
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implying that

p1 + 2
3
p6 > 1

10

(
p1 + p2 + p3 + 13

3
p4 + p5 + p6 + p7

)
− 9

10(n−2)
. (17)

We conclude that

t(G) + i(G) = p1 + p6 > p1 + 2
3
p6 > 1

10

(
p1 + p2 + p3 + 13

3
p4 + p5 + p6 + p7

)
− 9

10(n−2)

> 1
10

(p1 + p2 + p3 + p4 + p5 + p6 + p7)− 9
10(n−2)

= 1
10
−O

(
1
n

)
,

where the second inequality holds by (17).

The arguments used in both proofs of Proposition 15 can be refined to yield the
following better bound.

Proposition 17. Every n-vertex oriented graph G satisfies

2
3
t(G) + i(G) > 1

10
− on(1).

Proof. It is easy to verify that the matrix (16) is also a 1
10

-certificate for the following
SDP:

Variables: p1, p2, p3, p4, p5, p6, p7

Goal: minimize p1 + 2
3
p6

Constraints:

p1, p2, p3, p4, p5, p6, p7 > 0

p1 + p2 + p3 + p4 + p5 + p6 + p7 = 1 1
3
p5 + 1

3
p6

1
6
p4 + 1

6
p6 + 1

2
p7

1
6
p2 + 1

3
p3 + 1

6
p4

1
6
p4 + 1

6
p6 + 1

2
p7

1
3
p3 + 1

3
p6

1
6
p2 + 1

6
p4 + 1

3
p5

1
6
p2 + 1

3
p3 + 1

6
p4

1
6
p2 + 1

6
p4 + 1

3
p5 p1 + 1

3
p2

 � 0

and the result follows exactly as in the second proof of Proposition 15 (see also Re-
mark 16). Alternatively, we can prove Proposition 17 by slightly modifying the first proof
of Proposition 15. First, observe the following simple improvement of (8):

1

3
t(G) + c(G) 6

1

3
(
n
3

)∑
v∈V

d+(v)d−(v)

6
1

3
(
n
3

)∑
v∈V

(
d+(v) + d−(v)

2

)2

=
1

12
(
n
3

)∑
v∈V

d(v)2. (18)

Similarly to the first proof of Proposition 15, combining (18) with (4) and (5) we obtain

2

3
t(G) + i(G) = ∆ + ∆̄−

(
1

3
t(G) + c(G)

)
> 1− 6m

n(n− 2)
+

5

12
(
n
3

)∑
v∈V

d(v)2

> 1− 6m

n(n− 2)
+

5m2

3n
(
n
3

) = 1− 6m

n2
+

10m2

n4
−O

(
1

n

)
=

1

10
+

(3n2 − 10m)2

10n4
−O

(
1

n

)
>

1

10
−O

(
1

n

)
.
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As noted in the introduction

i(G̃) > 1
9
− on(1) (19)

for every undirected K4-free n-vertex graph G̃. This was proved in [5] and, independently,
in [10] using flag algebras. Combined with Proposition 17, this yields the following slight
improvement of Proposition 15.

Proposition 18. τ > 1
10
.

Proof. Let Gn be an oriented graph that attains the minimum of t(G) + i(G) among all
n-vertex oriented graphs; namely, t(Gn) + i(Gn) = τ(n).

By the graph removal lemma [1] (see also [3] and the many references therein), there
is a positive integer n0 and a real number δ0 > 0 such that every (undirected) graph H on

n > n0 vertices for which p(K4, H) < δ0, can be made K4-free by deleting at most n(n−1)
1080

edges.
Choose some 0 < δ < min{δ0,

1
15
} and suppose for a contradiction that τ 6 1

10
+ 1

12
δ.

It follows by Proposition 17 that there is a positive integer n1 such that for every oriented
graph G on n > n1 vertices,

2
3
t(G) + i(G) > 1

10
− 1

12
δ.

For every n > max{n0, n1}, it holds that

1
3
t(Gn) = (t(Gn) + i(Gn))−

(
2
3
t(Gn) + i(Gn)

)
= τ(n)−

(
2
3
t(Gn) + i(Gn)

)
6 τ −

(
1
10
− 1

12
δ
)
6
(

1
10

+ 1
12
δ
)
−
(

1
10
− 1

12
δ
)

= 1
6
δ.

Let G
(0)
n be the underlying undirected graph of Gn. Since every orientation of K4 contains

at least two transitive triangles, it follows that

p(K4, G
(0)
n ) 6 2t(Gn) 6 δ < δ0.

Therefore, by the graph removal lemma, there is an undirected K4-free graph G
(1)
n , ob-

tained from G
(0)
n by deleting at most n(n−1)

1080
edges. Therefore

i(G(1)
n ) 6 i(G(0)

n ) + 6 1
1080

= i(Gn) + 1
180

6 t(Gn) + i(Gn) + 1
180

= τ(n) + 1
180

6 τ + 1
180

6 1
10

+ 1
12
δ + 1

180
= 1

9
− 1

12

(
1
15
− δ
)

contrary to (19). We conclude that, τ > 1
10

+ 1
12
δ > 1

10
.

5 Back to the main track

Running flagmatic with k = 3 yields τ > 1/10, whereas our goal is to prove that τ > 1/9.
Therefore, we try the same proof technique with k = 4. Figure 7 depicts all of the different
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G1 G2 G3 G4 G5 G6

G7 G8 G9 G10 G11 G12

G13 G14 G15 G16 G17 G18

G19 G20 G21 G22 G23 G24

G25 G26 G27 G28 G29 G30

G31 G32 G33 G34 G35 G36

G37 G38 G39 G40 G41 G42

Figure 7: The 42 isomorphism types of oriented graphs of order 4.
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Figure 8: Flags over the empty type.

1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

Figure 9: Flags over the non-edge type.

4-vertex oriented graphs, up to isomorphism, G1, . . . , G42. For convenience we abbreviate
AGi to Ai.

As was elaborated in Subsection 3.1, we use the set of types Σ = {∅, Ē, E}, where the
empty type ∅ has no vertices, the non-edge type Ē has two vertices and no edges, and the
edge type E has two vertices and the edge (1, 2) which is directed from the vertex labelled
1 to the vertex labelled 2 (we will not use the type having two vertices and an edge in
the opposite direction, as it will clearly provide no additional information). Although the
empty type is not really necessary (i.e., we can obtain the same results without it), we
keep it, since it helps in illustrating some of our calculations.

As was further elaborated in Subsection 3.1, the set of flags that we use is F =
F∅ ∪ FĒ ∪ FE, where F∅ is the set of all flags over ∅ with 2 petals (see Figure 8), FĒ is
the set of all flags over Ē with 1 petal (see Figure 9), and FE is the set of all flags over
E with 1 petal (see Figure 10). Observe that |F∅| = 2 and |FĒ| = |FE| = 9. Hence, in
total, |F| = 2 + 9 + 9 = 20.

1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

Figure 10: Flags over the edge type.
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For every 1 6 i 6 42, let ci = t(Gi) + i(Gi). As was explained in Subsection 3.1, we
seek the optimum of the following semidefinite program.

Variables: p1, . . . , p42

Goal: minimize
42∑
i=1

pici

Constraints:

p1, . . . , p42 > 0
42∑
i=1

pi = 1

42∑
i=1

piAi � 0

(20)

Setting pi = limn→∞ p(Gi,Bn) for every 1 6 i 6 42, that is, p1 = 1/27, p7 =
4/27, p10 = 4/27, p27 = 6/27, p32 = 12/27, and pi = 0 for every i ∈ [42]\{1, 7, 10, 27, 32},
shows that the optimum of SDP (20) is at most 1/9.

By Proposition 12, the following theorem implies Theorem 2.

Theorem 19. There is a 1
9
-certificate Q for the SDP (20).

Our goal is thus to prove Theorem 19 by finding such a matrix Q. To this end we ran
the csdp solver [4] on SDP (20). Since this solver is inherently an approximation algorithm,
it does not necessarily output the true optimum (inaccuracies may also be incurred due
to the computational complexity of this task, the computer’s limited numerical precision,
and the fact that it operates with floating point). Given any arbitrarily small constant
η > 0, we can only check whether the optimum is at least 1

9
− η. We chose η = 10−8.

Crucially, the solver’s output includes a rational certificate showing that the optimum is
indeed at least 1

9
−η. We have rounded that certificate to rational numbers with 4 decimal

digits. We use this output as the starting point for the remainder of the proof. We aim
to slightly perturb this certificate so as to make it a 1

9
-certificate. We start by finding

certain constraints that any proper 1
9
-certificate must satisfy.

It clearly suffices to consider certificates Q with the same block structure as the matri-
ces Ai, i.e., block-diagonal matrices with blocks Q∅, QĒ, QE of sizes 2×2, 9×9, and 9×9,
respectively. Since Q is symmetric, we presently have only

(
3
2

)
+ 2
(

10
2

)
= 93 unknowns to

discover. We now prove several auxiliary claims which will serve us in finding additional
restrictions that Q must obey.

Claim 20. If G is an n-vertex oriented graph and M is a real 20× 20 matrix, then

42∑
i=1

p(Gi, G)
(
ci − 〈M,Ai〉 − 1

9

)
= t(G) + i(G)− 1

9
− 〈M,AG〉.
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Proof. The claim readily follows since

t(G) + i(G)− 1
9

=
∑42

i=1 cip(Gi, G)− 1
9

∑42
i=1 p(Gi, G) =

∑42
i=1 p(Gi, G)

(
ci − 1

9

)
,

by Observation 7, and

〈M,AG〉 = 〈M,

42∑
i=1

p(Gi, G)Ai〉 =
42∑
i=1

p(Gi, G)〈M,Ai〉,

by Observation 8.

Claim 21. For every 20× 20 matrix M , there is a positive constant CM such that

|〈M,AG〉 − 〈M, ÃG〉| 6 CM
n

holds for every n-vertex oriented graph G.

Proof. By the second part of Lemma 6, there is a positive constant C such that, for every
n-vertex oriented graph G, it holds that

‖AG − ÃG‖∞ 6 C
n
,

and thus

|〈M,AG〉 − 〈M, ÃG〉| = |〈M,AG − ÃG〉| 6 ‖M‖1‖AG − ÃG‖∞ 6 ‖M‖1C
n

.

Claim 22. Let Q be a 1
9
-certificate for the SDP (20). Then there exists a positive constant

CQ such that

p(Gi, G)
(
ci − 〈Q,Ai〉 − 1

9

)
6 i(G) + t(G)− 1

9
+

CQ
n

holds for every n-vertex oriented graph G and every 1 6 i 6 42.

Proof. Let G be an arbitrary n-vertex oriented graph. By Claim 21 there exists a positive
constant CQ, which depends only on the matrix Q, such that

|〈Q,AG〉 − 〈Q, ÃG〉| 6 CQ
n
.

It thus follows by Lemma 10 that

〈Q,AG〉 > 〈Q, ÃG〉 − CQ
n

> −CQ
n
.

Then, for every 1 6 i 6 42,

p(Gi, G)
(
ci − 〈Q,Ai〉 − 1

9

)
6

42∑
j=1

p(Gj, G)
(
cj − 〈Q,Aj〉 − 1

9

)
= i(G) + t(G)− 1

9
− 〈Q,AG〉 6 i(G) + t(G)− 1

9
+

CQ
n
,

where the first inequality holds since Q is a 1
9
-certificate for the SDP (20) and thus

cj − 〈Q,Aj〉 > 1
9

for every 1 6 j 6 42, and the equality holds by Claim 20.
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6 The Kernel of Q

In this section we investigate the kernel of Qσ for σ ∈ Σ, where Σ = {∅, Ē, E} and Q
is a potential 1

9
-certificate for the SDP (20) which is a block-diagonal matrix with blocks

Q∅, QĒ, QE of sizes 2× 2, 9× 9, and 9× 9, respectively. It will be crucial to find all the
necessary kernel vectors (i.e., those which are in the kernel of every 1

9
-certificate Q). As

will be shown below, our extremal oriented graph Bn yields one kernel vector for each Qσ.
The oriented graphs Bεn mentioned above yield two more kernel vectors for QĒ.

For every type σ in Σ, let Fσ,1, . . . , Fσ,mσ be the flags in Fσ (in our case m∅ = 2 and
mE = mĒ = 9), and for every σ-rooting r, let

vr := (p(Fσ,1, r), . . . , p(Fσ,mσ , r))
T. (21)

Claim 23. For every 1
9
-certificate Q for the SDP (20) and for every type σ in Σ, there

are positive constants C1 and C2 such that the following is true. Let G be an n-vertex
oriented graph, let Rσ be the set of all rootings of G over σ. Then, for every non-empty
R ⊆ Rσ, it holds that∥∥∥Qσ

(
1
|R|
∑

r∈R vr

)∥∥∥
2
6 C1

√
|Rσ |
|R|

√
t(G) + i(G)− 1

9
+ C2

n
, (22)

where C1 may depend only on Q and σ, and C2 may depend only on Q. In particular,∥∥∥Qσ

(
1
|Rσ |

∑
r∈Rσ vr

)∥∥∥
2
6 C1

√
t(G) + i(G)− 1

9
+ C2

n
. (23)

Remark 24. There is an implicit assumption in (22) that t(G) + i(G) > 1/9− o(1), which
seems odd as this is what we are striving to prove. It is thus a good time to emphasize
that in this section as well as the next, we are simply proving that if a 1

9
-certificate exists,

then it must satisfy certain properties.

Proof of Claim 23. Let G be an n-vertex oriented graph. Since Q is a 1
9
-certificate for the

SDP (20), and thus ci − 〈Q,Ai〉 > 1
9

for every 1 6 i 6 42, it follows by Claim 20 that

i(G) + t(G)− 1
9
− 〈Q,AG〉 =

∑42
i=1 p(Gi, G)

(
ci − 〈Q,Ai〉 − 1

9

)
> 0.

It follows by Claim 21 that there exists a positive constant CQ such that

|〈Q,AG〉 − 〈Q, ÃG〉| 6 CQ
n

holds for every n-vertex oriented graph G. Therefore

〈Q, ÃG〉 6 〈Q,AG〉+
CQ
n

6 t(G) + i(G)− 1
9

+
CQ
n
. (24)

Since Qσ is PSD, it can be expressed as Qσ = ST
σ Sσ for some matrix Sσ. Let Bσ be the

|Fσ|× |Rσ| matrix, whose rth column is vr. By the first part of Lemma 6, ÃG is the block
matrix

ÃG =


1
|R∅|B∅B

T
∅ 0 0

0 1
|RĒ |

BĒB
T
Ē

0

0 0 1
|RE |

BEB
T
E

 .
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Hence

1
|Rσ |

∑
r∈Rσ‖Sσvr‖

2
2 = 1

|Rσ |Tr
(
(SσBσ)TSσBσ

)
= 1
|Rσ |Tr

(
BT
σ S

T
σ SσBσ

)
= Tr

(
BT
σQσ

1
|Rσ |Bσ

)
= Tr

(
Qσ

1
|Rσ |BσB

T
σ

)
6 Tr

(
Q∅

1
|R∅|B∅B

T
∅

)
+ Tr

(
QĒ

1
|RĒ |

BĒB
T
Ē

)
+ Tr

(
QE

1
|RE |

BEB
T
E

)
= Tr

(
QÃG

)
= 〈Q, ÃG〉 6 t(G) + i(G)− 1

9
+

CQ
n
, (25)

where the fourth equality holds by the cyclic property of the trace operator, the first
inequality holds by Lemma 10 since both Qσ and 1

|Rσ |BσB
T
σ are PSD matrices, and the

last inequality holds by (24).
Therefore, for every R ⊆ Rσ, we have∥∥∥Sσ ( 1

|R|
∑

r∈R vr

)∥∥∥2

2
=
∥∥∥ 1
|R|
∑

r∈R Sσvr

∥∥∥2

2
6
(

1
|R|
∑

r∈R‖Sσvr‖2

)2

6 1
|R|
∑

r∈R‖Sσvr‖2
2

6 1
|R|
∑

r∈Rσ‖Sσvr‖
2
2 6

|Rσ |
|R|

(
t(G) + i(G)− 1

9
+

CQ
n

)
(26)

where the first inequality is the triangle inequality, the second inequality holds by the
convexity of the function x 7→ x2, and the last inequality holds by (25). Hence∥∥∥Qσ

(
1
|R|
∑

r∈R vr

)∥∥∥
2

=
∥∥∥ST

σ Sσ

(
1
|R|
∑

r∈R vr

)∥∥∥
2
6 ‖ST

σ ‖2

∥∥∥Sσ ( 1
|R|
∑

r∈R vr

)∥∥∥
2

6 ‖ST
σ ‖2

√
|Rσ |
|R|

√
t(G) + i(G)− 1

9
+

CQ
n
,

where the first inequality is a simple corollary of the Cauchy-Schwarts inequality and the
last inequality holds by (26).

Lemma 25. Let Q be a 1
9
-certificate for the SDP (20). Then, with coordinates ordered

as in Figures 8, 10 and 9, respectively, it holds that

(1, 2)T ∈ Ker(Q∅),

(0, 1, 0, 0, 1, 0, 0, 1, 0)T ∈ Ker(QE),

(1, 0, 0, 0, 0, 1, 0, 0, 1)T ∈ Ker(QĒ),

(0, 1, 0, 0, 1, 0, 0, 1, 0)T ∈ Ker(QĒ),

(0, 0, 1, 1, 0, 0, 1, 0, 0)T ∈ Ker(QĒ).

Proof. Applying Claim 23 to the oriented graph B3n, it follows by (23) and Observation 3
that ∥∥∥Q∅

(
1
|R∅|

∑
r∈R∅

vr

)∥∥∥
2
6 CQ,∅√

n
,∥∥∥QE

(
1
|RE |

∑
r∈RE vr

)∥∥∥
2
6 CQ,E√

n
,∥∥∥QĒ

(
1
|RĒ |

∑
r∈RĒ

vr

)∥∥∥
2
6

CQ,Ē√
n
.
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Therefore, since

1
|R∅|

∑
r∈R∅

vr =
(
n−1
3n−1

, 2n
3n−1

)T −−−→
n→∞

1
3

(1, 2)T , (27a)

1
|RE |

∑
r∈RE vr =

(
0, n−1

3n−2
, 0, 0, n−1

3n−2
, 0, 0, n

3n−2
, 0
)T −−−→

n→∞
1
3

(0, 1, 0, 0, 1, 0, 0, 1, 0)T , (27b)

1
|RĒ |

∑
r∈RĒ

vr =
(
n−2
3n−2

, 0, 0, 0, 0, n
3n−2

, 0, 0, n
3n−2

)T −−−→
n→∞

1
3

(1, 0, 0, 0, 0, 1, 0, 0, 1)T , (27c)

it follows that

‖Q∅(1, 2)T‖2 = ‖QE(0, 1, 0, 0, 1, 0, 0, 1, 0)T‖2 = ‖QĒ(1, 0, 0, 0, 0, 1, 0, 0, 1)T‖2 = 0,

and thus

(1, 2)T ∈ Ker(Q∅),

(0, 1, 0, 0, 1, 0, 0, 1, 0)T ∈ Ker(QE),

(1, 0, 0, 0, 0, 1, 0, 0, 1)T ∈ Ker(QĒ).

Next, apply Claim 23 to the oriented graph G = Bε3n for some arbitrary positive integer
n and 0 < ε < 1. Let R ⊆ RĒ be the set of rootings over deleted edges which agree with
their direction, that is, edges ~xy ∈ E(B3n)\E(Bε3n), where x is labelled 1 and y is labelled
2. For every three distinct vertices x, y, z ∈ V and every F ∈ FĒ, let AFx,y,z be the event
that the subgraph of E(Bε3n) induced on the vertices x, y, z, where x is labelled 1 and y
is labelled 2, is isomorphic to F (in particular, the edge ~xy was deleted). Note that for
every F ∈ FĒ,

E

(∑
r∈R

p(F, r)

)
=

∑
06i62,

x∈Vi, y∈Vi+1

1
3n−2

(∑
z∈Vi−1

Pr(AFx,y,z) +
∑

x 6=z∈Vi Pr(AFx,y,z) +
∑

y 6=z∈Vi+1
Pr(AFx,y,z)

)
,

where the expectation and probabilities are taken with respect to the random deletion of
edges which results in Bε3n. It follows that

1
3n2E

(∑
r∈R vr

)
= n

3n−2
(ε3, 0, ε2(1− ε), ε2(1− ε), 0, 0, 0, ε(1− ε)2, 0)

T

+ n−1
3n−2

(2ε2, ε(1− ε), 0, 0, ε(1− ε), 0, 0, 0, 0)
T
.

Therefore
1
n2ε

E
(∑

r∈R vr
)
−−−→
n→∞

(ε2 + 2ε, 1− ε, ε(1− ε), ε(1− ε), 1− ε, 0, 0, (1− ε)2, 0)
T
. (28)

Now, by (22) we have∥∥∥∥∥QĒ

(∑
r∈R

vr

)∥∥∥∥∥
2

6 C1

√
|RĒ|

√
|R|
√
t(Bε3n) + i(Bε3n)− 1

9
+ C2

n

= C1

√
|RĒ|

√
|R|
√
i(Bε3n)− 1

9
+ C2

n

6 3C1n
√
|R|
√
i(Bε3n)− 1

9
+ C2

n
,
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where C1 may depend only on Q and Ē, and C2 may depend only on Q. Hence∥∥QĒ

(
1
n2ε

E
(∑

r∈R vr
))∥∥

2
= 1

n2ε

∥∥E (QĒ

(∑
r∈R vr

))∥∥
2
6 1

n2ε
E
∥∥QĒ

(∑
r∈R vr

)∥∥
2

6 3C1

nε
E
(√
|R|
√
i(Bε3n)− 1

9
+ C2

n

)
6 3C1

nε

√
E|R|

√
E
(
i(Bε3n)− 1

9
+ C2

n

)
= 3C1

nε

√
3n2ε

√
1

(3n
3 )

(
3
(
n
3

)
+ 3
(
n
2

)
2nε2 + ε3n3

)
− 1

9
+ C2

n
−−−→
n→∞

3
√

2C1

√
ε
√

1 + ε/3,

where the first inequality holds by Jensen’s inequality and the convexity of the Euclidean
norm and the third inequality holds by the Cauchy-Schwartz inequality. Therefore, for
every 0 < ε < 1, it follows by (28) that

‖QĒ

(
ε2 + 2ε, 1− ε, ε(1− ε), ε(1− ε), 1− ε, 0, 0, (1− ε)2, 0

)T‖2

= lim
n→∞
‖QĒ

(
1
n2ε

E
(∑

r∈R vr
))
‖2 6 3

√
2C1

√
ε
√

1 + ε/3.

We conclude that
‖QĒ(0, 1, 0, 0, 1, 0, 0, 1, 0)T‖2 = 0

and thus
(0, 1, 0, 0, 1, 0, 0, 1, 0)T ∈ Ker(QĒ).

An analogous argument, this time considering all Ē-rootings over deleted edges in the
opposite direction shows that

(0, 0, 1, 1, 0, 0, 1, 0, 0)T ∈ Ker(QĒ).

Remark 26. The, widely used, method by which we found the first three kernel vectors, and
to some extent also the other two, is general to any flag algebra application. The practical
flag algebra guideline is to check all the near zero eigenvalues of an approximate computer
generated certificate. Before trying to round it, one verifies that all these eigenvalues
match the expected eigenvalues from known extremal constructions. Any unexplained
near zero eigenvalue may hint at the existence of other extremal constructions – either a
completely different graph, or a variation on an existing one, as is the case here. Once we
have all the needed extremal constructions, we can accomodate for all the sharp graph
equations (see the following section). Thus, it is not enough to simply force eigenvectors
corresponding to near-zero eigenvalues to be in the kernel; one must find the constructions
that explain them.

7 Sharp graphs

Let

W∅ = {M∅ ∈M2×2(R) : MT
∅ = M∅, (1, 2)T ∈ Ker(M∅)},

WE = {ME ∈M9×9(R) : MT
E = ME, (0, 1, 0, 0, 1, 0, 0, 1, 0)T ∈ Ker(ME)},

WĒ = {MĒ ∈M9×9(R) : MT
Ē = MĒ, (1, 0, 0, 0, 0, 1, 0, 0, 1)T ∈ Ker(MĒ),

(0, 1, 0, 0, 1, 0, 0, 1, 0)T ∈ Ker(MĒ), (0, 0, 1, 1, 0, 0, 1, 0, 0)T ∈ Ker(MĒ)}.
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G1 G7 G10 G27 G32

G3 G5 G15 G19 G23 G25

Figure 11: The sharp graphs. The graphs in the first row are induced subgraphs of Bn.
The density in Bεn of the graphs in the second row is linear in ε.

Lemma 25 may be rephrased in the following way. Every 1
9
-certificate of the SDP (20)

which is a block-diagonal matrix with blocks of sizes 2× 2, 9× 9, and 9× 9 is a member
of the linear subspace

W :=


M∅ 0 0

0 MĒ 0
0 0 ME

 : M∅ ∈ W∅, MĒ ∈ WĒ, ME ∈ WE


of the space of 20× 20 symmetric matrices. In this section we will find an affine subspace
ofW , of smaller dimension, which still contains all 1

9
-certificates of the SDP (20) with the

aforementioned block structure.
For every 1 6 i 6 42, we say that the 4-vertex oriented graphGi is sharp if E(p(Gi,Bεn)) =

Ω(ε) as ε → 0+, where the expectation is taken with respect to the random deletion of
edges which results in Bεn. It is not hard to check that there are eleven sharp graphs.
Five of which, namely, G1, G7, G10, G27, and G32 are induced subgraphs of Bn, and six
additional graphs, namely, G3, G5, G15, G19, G23, and G25 appear abundantly as induced
subgraphs of Bεn.

Our interest in sharp graphs is due to the following lemma which asserts that every
sharp graph imposes a linear equation which the entries of any 1

9
-certificate must satisfy.

Lemma 27. Let Q be a 1
9
-certificate for the SDP (20). If Gi is sharp, then

ci − 〈Q,Ai〉 = 1
9
.

Proof. For every 1 6 i 6 42, every positive integer n, and every ε > 0, it follows by
Claim 22 that(

ci − 〈Q,AGi〉 − 1
9

)
p(Gi,Bεn) 6 t(Bεn) + i(Bεn)− 1

9
+O

(
1
n

)
= i(Bεn)− 1

9
+O

(
1
n

)
.

Hence(
ci − 〈Q,AGi〉 − 1

9

)
E(p(Gi,Bεn)) 6 E(i(Bεn))− 1

9
+O

(
1
n

)
= i(Bn) +O(ε2)− 1

9
+O

(
1
n

)
6 O(ε2) +O

(
1
n

)
,
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where the last inequality holds by Observation 3. Therefore, if Gi is sharp, then for every
positive integer n and every ε > 0, it holds that

0 6 ci − 〈Q,AGi〉 − 1
9
6 O(ε) +O

(
1
nε

)
and thus

ci − 〈Q,Ai〉 − 1
9

= 0.

Therefore, in addition to the linear constraints that were already found in the previous
section, we have found 11 linear constraints that every 1

9
-certificate of the SDP (20) must

satisfy. Namely, let Isharp = {1, 3, 5, 7, 10, 15, 19, 23, 25, 27, 32}. Then every 1
9
-certificate

of the SDP (20) which is a block-diagonal matrix with blocks of sizes 2 × 2, 9 × 9, and
9× 9 is a member of the affine subspace

W̃ :=
{
M ∈ W : ci − 〈Ai,M〉 = 1

9
for every i ∈ Isharp

}
of the linear space W . We note that dimW − dim W̃ is not 11, as one might hope, but
rather smaller, as is stated in the following lemma.

Lemma 28. Let Iinduced = {1, 7, 10, 27, 32}. Then, for every M ∈ W, it holds that∑
i∈Iinduced

λi
(
ci − 〈Ai,M〉 − 1

9

)
= 0,

where λi = limn→∞ p(Gi,B3n) for every i ∈ Iinduced.

Proof. Let

M =

M∅ 0 0
0 MĒ 0
0 0 ME


be a matrix in W and let n be a positive integer. Then

∑
i∈Iinduced

p(Gi,B3n)
(
ci − 〈Ai,M〉 − 1

9

)
=

42∑
i=1

p(Gi,B3n)
(
ci − 〈Ai,M〉 − 1

9

)
= i(B3n) + t(B3n)− 〈AB3n ,M〉 − 1

9

=
(

1
9

+O
(

1
n

))
−
(
〈ÃB3n ,M〉+O

(
1
n

))
− 1

9

= −〈ÃB3n ,M〉+O
(

1
n

)
, (29)

where the second equality holds by Claim 20 and the third equality holds by Claim 21.
Fix an arbitrary type σ ∈ Σ. Let

vσ,3n =
1

|Rσ|
∑
r∈Rσ

vr
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where Rσ is the set of all rootings of B3n over σ and vr is as in (21). Note that p(F, r1) =
p(F, r2) holds for every flag F in Fσ and every two rootings r1 and r2 in Rσ. Therefore,
it follows by the first part of Lemma 6 that

ÃB3n =

v∅,3nv∅,3nT 0 0
0 vĒ,3nvĒ,3n

T 0
0 0 vE,3nvE,3n

T

 ,

Hence

〈ÃB3n ,M〉 = Tr
(
ÃB3nM

)
=
∑
σ∈Σ

Tr
(
vσ,3nvσ,3n

TMσ

)
=
∑
σ∈Σ

Tr
(
vσ,3n

TMσvσ,3n
)

=
∑
σ∈Σ

vσ,3n
TMσvσ,3n −−−→

n→∞
0, (30)

where the third equality holds by the cyclic property of the trace operator, and the last
sum converges to zero as, by (27), the vectors vσ,3n approach kernel vectors of Mσ as n
tends to infinity. Hence∑

i∈Iinduced

λi
(
ci − 〈Ai,M〉 − 1

9

)
= lim

n→∞

∑
i∈Iinduced

p(Gi,B3n)
(
ci − 〈Ai,M〉 − 1

9

)
= lim

n→∞

(
−〈ÃB3n ,M〉+O

(
1
n

))
= 0,

where the second equality holds by (29) and the third equality holds by (30).

A similar, but somewhat more involved, argument shows that for every M ∈ W , it
also holds that ∑

i∈Isharp\Iinduced

λi
(
ci − 〈Ai,M〉 − 1

9

)
= 0,

where λi = limε→0+
1
ε

limn→∞ E (p(Gi,Bε3n)) for every i ∈ Isharp \ Iinduced.

The above calculations suggest that perhaps dim W̃ = dimW − 9. Straightforward
computer-aided calculations reveal that this is indeed the case.

8 Projection

Recall that our general plan is to use computer software to find a
(

1
9
− δ
)
-certificate for

some small δ > 0 and then round it to a 1
9
-certificate. By now, we are aware of two

conditions that any 1
9
-certificate must satisfy, namely, its kernel must include the five

vectors listed in Lemma 25, and it must satisfy the eleven sharp graphs equations. In
this section, we use the first of these two conditions to reduce the order of the certificate
matrix we seek. This is done via a projection to the orthogonal complement of the linear
space spanned by the five kernel vectors from Lemma 25.

The projection will reduce the order of the matrices Ai from 20 to 15. In fact, the
main benefit of this projection is that it will allow us to find a strictly positive definite

the electronic journal of combinatorics 29(3) (2022), #P3.39 31



certificate for the projected problem; such a matrix may be slightly perturbed without
the risk of generating negative eigenvalues.

For every σ ∈ Σ, let Rσ be a matrix whose columns form an orthonormal basis of the
space perpendicular to the kernel vectors of Qσ that we found in Section 6. In particular,
RT
σRσ is an identity matrix. Observe that R∅ is a 2× 1 matrix, RĒ is a 9× 6 matrix and

RE is a 9× 8 matrix. Let

R =

 R∅ 02×6 02×8

09×1 RĒ 09×8

09×1 09×6 RE


be a 20 × 15 block matrix, where 0k×` denotes the k × ` all-zeros matrix. For every
1 6 i 6 42, let Āi = RTAiR.

Lemma 29. Suppose Q̄ is an α-certificate for the projected SDP:

Variables: p1, . . . , p42

Goal: minimize
42∑
i=1

pici

Constraints:

p1, . . . , p42 > 0
42∑
i=1

pi = 1

42∑
i=1

piĀi � 0

(31)

Then Q := RQ̄RT is an α-certificate for the SDP (20). Moreover, if α = 1
9
, then ci −

〈Q̄, Āi〉 = 1
9

whenever Gi is a sharp graph.

Proof. Both claims follow by observing that, for every 1 6 i 6 42, it holds that

〈Q̄, Āi〉 = Tr(Q̄Āi) = Tr(Q̄(RTAiR)) = Tr((Q̄RTAi)R)

= Tr(R(Q̄RTAi)) = Tr((RQ̄RT )Ai) = Tr(QAi) = 〈Q,Ai〉.

With Lemma 29 in mind, we now turn to seek a 1
9
-certificate Q̄ for the projected

SDP (31). Note that Q̄ will be a symmetric block-diagonal matrix with blocks of sizes
1× 1, 6× 6, and 8× 8.

9 Finding Q̄ by rounding an approximate solution

Using flagmatic to compute Ai and then the SDP solver [4], we have found an approximate
solution to the SDP problem (31). The solver yields a

(
1
9
− 10−8

)
-certificate Q̃ for the

SDP (31) (in particular, verifying that the optimal solution is indeed very close to 1/9).
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Since Q̄ is symmetric and has the block structure described above, there are
(

2
2

)
+(

7
2

)
+
(

9
2

)
= 58 degrees of freedom for the entries of Q̄. As noted in Section 7, the 11 sharp

graphs equations impose 9 additional independent restrictions on the entries of Q̄. This
leaves us with 49 degrees of freedom left.

We chose 49 coordinates to equal the corresponding coordinates of Q̃. Then we cal-
culated the remaining coordinates which are uniquely determined by the sharp graph
equations. We ordered the coordinates lexicographically and chose the values one by one
from the computer generated certificate, as long as the sharp graph equations were not
violated. Otherwise, we chose the only value that would allow for sharp graph equations
to be satisfied.

A word about computational precision is in order at this point. The entries that we
set to equal the ones in Q̃ are taken with 4 digits after the floating point – this is the
part where things are not precise, and we were lucky enough that the method worked and
a reasonable number of digits sufficed; an important boost to this luck comes from the
projection we performed in Section 8 by which, assuming we found all the kernel vectors
in Section 6, it is plausible that Q̃ will have no near-zero eigenvalues. They are then
presented as rationals whose denominator divides 104. The remaining 9 entries are then
uniquely determined by the sharp graph equations, but they are not necessarily rational.
Yet, they reside in a finite extension of the rationals (namely Q[

√
2,
√

3]), which allows
the computations at that point to be infinitely precise. We ran this calculation in the
Mathematica software which resulted in the matrix Q̄ whose blocks appear below.

Q̄∅ =
1

10000

(
337
)
,

Q̄Ē =
1

150000


193934 705 705 1230 1230 0

705 257730 −34095 −45285 −75735 80205
705 −34095 257730 −75735 −45285 80205
1230 −45285 −75735 170280 −86385 −46305
1230 −75735 −45285 −86385 170280 −46305

0 80205 80205 −46305 −46305 153796 + 6480
√

3

 ,

Q̄E =
1

450000

(
M1 + PT

(√
2M2 +

√
3M3 +

√
6M6

)
P
)
,

where

M1 =



527985 0 −315450 −315450 0 −430920 −375705 −430920
0 993198 −268740 150840 −29160 67680 −27090 −186480

−315450 −268740 536490 −42030 0 233550 168435 220815
−315450 150840 −42030 536490 0 220815 168435 233550

0 −29160 0 0 663612 −176265 −46935 −29475
−430920 67680 233550 220815 −176265 638010 313920 281700
−375705 −27090 168435 168435 −46935 313920 542430 313920
−430920 −186480 220815 233550 −29475 281700 313920 638010


,
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P =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0

 ,

M2 =


0 −3690 0 0 209271

−3690 0 0 0 0
0 0 0 0 −93902
0 0 0 0 −586954

209271 0 −93902 −586954 0

 ,

M3 =


0 0 0 0 0
0 0 0 0 −164793
0 0 0 0 190140
0 0 0 0 229440
0 −164793 190140 229440 −19440

 ,

M6 =


0 27442 0 0 −76965

27442 0 0 0 0
0 0 0 0 −72495
0 0 0 0 85455

−76965 0 −72495 85455 0

 .

We have verified by computer software that the matrix Q̄ is PD (positive definite) and
that it satisfies ci − 〈Q̄, Āi〉 > 1

9
for every 1 6 i 6 42. Verifying that a matrix is PD can

be done by calculating its leading principal minors.

Remark 30. Since Q̄ is PD, it follows that the kernel of Q is spanned by the five vectors
that were listed in Lemma 25. This demonstrates that we have indeed found all the
necessary kernel vectors.

Remark 31. If one only wishes to have a formal proof of Theorem 2, one could just present
Q̄ (or the pulled back Q) and show that it is indeed a 1

9
-certificate for the corresponding

SDP. This is common practice in many flag algebra applications, where the certificate Q
is presented without bothering to explain all the details of how it was found.

10 Stability

In this section we prove Theorem 4. It will be obtained by combining several results. Our
proof is quite long, partly because we wish to obtain very specific error terms which will
serve us when proving Theorem 5 in the next section.

Lemma 32. There is a positive constant C1 such that for every δ > 0 there is a positive
integer n1(δ) for which the following statement is true. If G is an n-vertex oriented graph
such that n > n1(δ) and t(G) + i(G) 6 1

9
+ δ, and G(0) is the underlying undirected graph

of G, then p(K4, G
(0)) 6 C1δ.
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Proof. Let Q be the 1
9
-certificate that we found for the SDP (20). A straightforward albeit

tedious calculation (which can be performed by computer software) shows that

ηi := ci − 〈Q,AGi〉 − 1
9
> 0

holds for every 39 6 i 6 42. By Claim 22, there is a positive integer n1(δ) such that for
every n-vertex oriented graph G with n > n1(δ), and every 1 6 i 6 42, we have

p(Gi, G)
(
ci − 〈Q,AGi〉 − 1

9

)
6 t(G) + i(G)− 1

9
+ δ.

Therefore, if G is an n-vertex oriented graph such that n > n1(δ) and t(G)+ i(G) 6 1
9

+δ,
then for every 39 6 i 6 42, it holds that

ηip(Gi, G) = p(Gi, G)
(
ci − 〈Q,AGi〉 − 1

9

)
6 t(G) + i(G)− 1

9
+ δ 6 2δ.

Hence, if G(0) is the underlying undirected graph of G, then

p(K4, G
(0)) = p(G39, G) + p(G40, G) + p(G41, G) + p(G42, G)

6

(
1

η39

+
1

η40

+
1

η41

+
1

η42

)
2δ.

The following is a reformulation of Theorem 5.1 from [5] (proved, incidentally, by using
flag algebras), for the complement graph.

Theorem 33 (Theorem 5.1 in [5]). Any n-vertex K4-free (undirected) graph G satisfies

i(G)− 47

4036n

∑
v∈V

(
dG(v)

n− 1
− 2

3

)2

>
1

9
− on(1).

As in [5], we will also make use of the following result.

Theorem 34 ([2]). Any n-vertex Kr-free (undirected) graph, whose minimum degree is
larger than 3r−7

3r−4
n, is (r − 1)-partite.

Combining Theorem 33 and Theorem 34 yields the following corollary.

Corollary 35. For every 0 < ε < 1
13

there is a positive integer n2(ε) such that the
following statement is true. Let G be an n-vertex K4-free (undirected) graph such that
n > n2(ε) and i(G) 6 1

9
+ ε6, and let B be the set of vertices of G whose degree is less

than
(

2
3
− 5ε2

)
n. Then

1. |B| 6 5ε2n;

2. The graph obtained from G by deleting the vertices of B (and the edges incident to
those vertices) is 3-partite.
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Proof. Starting with 1, it follows from Theorem 33 that there is a positive integer n0(ε)
such that for every n > n0(ε), if G is an n-vertex K4-free (undirected) graph, then

i(G)− 47

4036n

∑
v∈V

(
dG(v)

n− 1
− 2

3

)2

>
1

9
− 1

6
ε6. (32)

Let

n2(ε) = max

{
n0(ε),

4− 27ε2

3ε2

}
.

Let G be an n-vertex K4-free undirected graph with n > n2(ε) and i(G) 6 1
9

+ ε6. Let B
be the set of vertices of G whose degree is smaller than

(
2
3
− 5ε2

)
n. First, note that for

every v ∈ B, it holds that

dG(v) <

(
2

3
− 5ε2

)
n =

(
2

3
− 9

2
ε2

)
(n− 1)− 1

2
ε2

(
n− 4− 27ε2

3ε2

)
6

(
2

3
− 9

2
ε2

)
(n− 1). (33)

Therefore

47

4036n
|B|
(

9

2
ε2

)2

6
47

4036n

∑
v∈V

(
dG(v)

n− 1
− 2

3

)2

6 i(G)− 1

9
+

1

6
ε6 6

7

6
ε6,

where the first inequality holds by (33) and the second inequality holds by (32). Hence

|B| 6 4036

47

(
2

9

)2
7

6
ε2n < 5ε2n.

Next, we prove 2. Let H be the graph obtained from G by deleting all the vertices of
B. Since G is K4-free, then clearly so is H. Moreover, for every vertex v of H, it holds
that

dH(v) > dG(v)− |B| = dG(v)− 3
8
|B| − 5

8
|B| >

(
2
3
− 5ε2

)
n− 3

8
5ε2n− 5

8
|B|

= 55
8

(
1

165
− ε2

)
n+ 5

8
(n− |B|) > 5

8
(n− |B|).

Therefore, H is 3-partite by Theorem 34.

Lemma 36. Let ε > 0, let G = (V,E) be an n-vertex oriented graph, let B be the set of
vertices of G whose degree is less than

(
2
3
− 5ε2

)
n, and suppose that |B| 6 5ε2n and that

V \B is the disjoint union of three independent sets V0, V1, V2. Then

1. For every 0 6 i 6 2, it holds that(
1
3
− 15ε2

)
n 6 |Vi| 6

(
1
3

+ 5ε2
)
n;
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2. Assume that, additionally, ε < 1
360

, n > 2
ε2

and t(G)+i(G) 6 1
9
+ε6. For all integers

0 6 i 6= j 6 2, let E(Vi, Vj) denote the set of edges of G which are directed from a
vertex of Vi to a vertex of Vj. Then, either

|E(V0, V1)|+ |E(V1, V2)|+ |E(V2, V0)| 6 12εn2

or
|E(V1, V0)|+ |E(V2, V1)|+ |E(V0, V2)| 6 12εn2.

Moreover, in the former case, for every 0 6 i 6 2, it holds that

|{u ∈ Vi : d+
G(u, Vi−1) <

(
1
3
− 4ε− 15ε2

)
n}| 6 15

2
εn

and
|{u ∈ Vi : d−G(u, Vi+1) <

(
1
3
− 4ε− 15ε2

)
n}| 6 15

2
εn,

(where the indices are reduced modulo 3) and in the latter case, for every 0 6 i 6 2,
it holds that

|{u ∈ Vi : d+
G(u, Vi+1) <

(
1
3
− 4ε− 15ε2

)
n}| 6 15

2
εn

and
|{u ∈ Vi : d−G(u, Vi−1) <

(
1
3
− 4ε− 15ε2

)
n}| 6 15

2
εn.

Note that the part of the statement of Lemma 36 referring to the number of vertices
whose degrees are atypically small (a similar statement will be made in Proposition 37 as
well), is not needed for the proof of Theorem 4; it will be used in the next section when
we will prove Theorem 5.

Proof of Lemma 36. Starting with 1, fix some integer 0 6 i 6 2 and some vertex vi ∈ Vi.
Since Vi is an independent set, it follows that

|Vi| 6 n− dG(vi) 6 n−
(

2
3
− 5ε2

)
n =

(
1
3

+ 5ε2
)
n. (34)

Therefore, for all integers 0 6 i 6= j 6 2 and for every vj ∈ Vj, it holds that

dG(vj, Vi) > dG(vj)− |V3−i−j| − |B| >
(

2
3
− 5ε2

)
n−

(
1
3

+ 5ε2
)
n− 5ε2n

=
(

1
3
− 15ε2

)
n. (35)

In particular, for every 0 6 i 6 2, it holds that

|Vi| >
(

1
3
− 15ε2

)
n. (36)

Next, we prove 2. It follows by (36) that

i(G) >
1(
n
3

) [(|V0|
3

)
+

(
|V1|
3

)
+

(
|V2|
3

)]
>

(
|V0| − 2

n

)3

+

(
|V1| − 2

n

)3

+

(
|V2| − 2

n

)3

> 3
(

1
3
− 15ε2 − 2

n

)3
> 3

(
1
3
− 16ε2

)3
= 1

9
− 16ε2 + 3 · 162

(
1
ε2
− 16

)
ε6

> 1
9
− 16ε2 + ε6.
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Hence
t(G) = t(G) + i(G)− i(G) <

(
1
9

+ ε6
)
−
(

1
9
− 16ε2 + ε6

)
= 16ε2. (37)

Since 1
3
− 15ε2 > 2 · 4ε, it follows by (35) that, for all integers 0 6 i 6= j 6 2, the set Vi is

the disjoint union of the sets

V +
i,j := {v ∈ Vi : d−G(v, Vj) 6 4εn},
V −i,j := {v ∈ Vi : d+

G(v, Vj) 6 4εn},
Ṽi,j := {v ∈ Vi : d+

G(v, Vj) > 4εn, d−G(v, Vj) > 4εn}.

We would now like to show that Ṽi,j is fairly small. Let vi be some vertex of Ṽi,j (if
Ṽi,j = ∅, then there is nothing to prove) and let k = 3 − i − j. By (35), either
d+
G(vi, Vk) >

(
1
6
− 15

2
ε2
)
n or d−G(vi, Vk) >

(
1
6
− 15

2
ε2
)
n. Without loss of generality, as-

sume that d+
G(vi, Vk) >

(
1
6
− 15

2
ε2
)
n. For every vk ∈ N+

G (vi, Vk) we have

|Vj \NG(vk, Vj)| 6 |(V \ Vk) \NG(vk)| = n− |Vk| − dG(vk)

6 n−
(

1
3
− 15ε2

)
n−

(
2
3
− 5ε2

)
n = 20ε2n, (38)

where the second inequality holds by (36). Hence

|N+
G (vi, Vj) ∩NG(vk, Vj)| > d+

G(vi, Vj)− |Vj \NG(vk, Vj)| > 4εn− 20ε2n > 11
3
εn,

where the penultimate inequality holds by the definition of Ṽi,j and by (38). It follows
that vi participates in at least

(
1
6
− 15

2
ε2
)
n · 11

3
εn transitive triangles, implying that

t(G) >
1(
n
3

) |Ṽi,j| (1
6
− 15

2
ε2
)
n · 11

3
εn > 6

(
1
6
− 15

2
ε2
)

11
3
· ε
n
|Ṽi,j| > 32ε

9n
|Ṽi,j|.

It thus follows by (37) that
|Ṽi,j| 6 9n

32ε
t(G) < 9

2
εn. (39)

Let
E+ = {(i, j) ∈ {0, 1, 2}2 : i 6= j, |V +

i,j | 6 3εn}

and let
E− = {(i, j) ∈ {0, 1, 2}2 : i 6= j, |V −i,j | 6 3εn}.

For every (i, j) ∈ E+, it holds that

|E(Vi, Vj)| =
∑
v∈Vi

d+(v, Vj) =
∑
v∈V −i,j

d+(v, Vj) +
∑

v∈V +
i,j∪Ṽi,j

d+(v, Vj)

6 |Vi| · 4εn+ (|V +
i,j |+ |Ṽi,j|) · |Vj|

6
(

1
3

+ 5ε2
)
n · 4εn+

(
3εn+ 9

2
εn
) (

1
3

+ 5ε2
)
n

= 23
2

(
1
3

+ 5ε2
)
εn2 < 4εn2, (40)
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where the second inequality holds by (34) and (39). Furthermore, for every (i, j) ∈ E+,
it holds that

|{u ∈ Vi : d−G(u, Vj) <
(

1
3
− 4ε− 15ε2

)
n}| 6 |Vi \ V −i,j | = |V +

i,j |+ |Ṽi,j| 6 15
2
εn, (41)

where the first inequality holds by (35) and the last inequality holds by (39). Similarly,
for every (i, j) ∈ E−, it holds that

|{u ∈ Vi : d+
G(u, Vj) <

(
1
3
− 4ε− 15ε2

)
n}| 6 |Vi \ V +

i,j | = |V −i,j |+ |Ṽi,j| 6 15
2
εn. (42)

Fix some i 6= j such that (i, j) ∈ {0, 1, 2}2 \ E+, and let k = 3 − i − j. For every vertex
vk ∈ V +

k,j, we have

|NG(vk, Vi) ∩ V +
i,j | > dG(vk, Vi) + |V +

i,j | − |Vi| >
(

1
3
− 15ε2

)
n+ 3εn−

(
1
3

+ 5ε2
)
n

= (3− 20ε)εn > 53
18
εn,

where the second inequality holds by (34) and (35). Moreover, for every vi ∈ NG(vk, Vi)∩
V +
i,j , we have

|N+
G (vk, Vj) ∩N+

G (vi, Vj)| > d+
G(vk, Vj) + d+

G(vi, Vj)− |Vj|
= dG(vk, Vj)− d−G(vk, Vj) + dG(vi, Vj)− d−G(vi, Vj)− |Vj|
> 2

((
1
3
− 15ε2

)
n− 4εn

)
−
(

1
3

+ 5ε2
)
n

=
(

1
3
− 8ε− 35ε2

)
n > 16

53
n,

where the second inequality holds by (34) and (35), and since vk ∈ V +
k,j and vi ∈ V +

i,j . It
thus follows by (37) that

16

6
ε2n3 >

(
n

3

)
t(G) >

∑
vk∈V +

k,j

∑
vi∈NG(vk,Vi)∩V +

i,j

|N+
G (vk, Vj) ∩N+

G (vi, Vj)|

>
∑

vk∈V +
k,j

|NG(vk, Vi) ∩ V +
i,j | ·

16

53
n > |V +

k,j| ·
53

18
εn · 16

53
n =

16

6
ε2n3
|V +
k,j|

3εn
,

implying that (k, j) ∈ E+. Moreover, for all integers 0 6 i 6= j 6 2, it follows by (35)
and (36) that

|E(Vi, Vj)|+ |E(Vj, Vi)| =
∑
v∈Vi

dG(v, Vj) >
((

1
3
− 15ε2

)
n
)2
> 2 · 4εn2.

Therefore, by (40), we cannot have both (i, j) ∈ E+ and (j, i) ∈ E+.
It follows that either E+ = {(0, 1), (1, 2), (2, 0)} or E+ = {(1, 0), (2, 1), (0, 2)}. Sim-

ilarly, either E− = {(0, 1), (1, 2), (2, 0)} or E− = {(1, 0), (2, 1), (0, 2)}. Moreover, for
all integers 0 6 i 6= j 6 2, we cannot have both (i, j) ∈ E+ and (i, j) ∈ E−, as
|V +
i,j | + |V −i,j | = |Vi| − |Ṽi,j| > (1

3
− 15ε2)n − 9

2
εn > 2 · 3εn. We conclude that either

E+ = {(0, 1), (1, 2), (2, 0)}, E− = {(1, 0), (2, 1), (0, 2)} or E+ = {(1, 0), (2, 1), (0, 2)}, E− =
{(0, 1), (1, 2), (2, 0)}. Part 2 of the lemma now readily follows by (40), (41) and (42).
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Proposition 37. For every 0 < ε < 1
360

, there exist a positive integer n0(ε) and δ(ε) > 0
such that the following holds for every n > n0(ε). If G is an n-vertex oriented graph
satisfying

t(G) + i(G) 6 1
9

+ δ(ε),

then the set of vertices of G is the disjoint union of four sets B, V0, V1, V2, and there is an
oriented graph G̃ obtained from G by deleting at most 1

12
ε6n2 edges such that the following

hold.

1. The oriented graph G̃ has at least 1
3
n2 − 1

15
εn2 edges and

|EG̃(V1, V0)|+ |EG̃(V2, V1)|+ |EG̃(V0, V2)| 6 12εn2.

2. For every 0 6 i 6 2, it holds that Vi is independent in G̃, and(
1
3
− 15ε2

)
n 6 |Vi| 6

(
1
3

+ 5ε2
)
n;

3. |B| 6 5ε2n and for every 0 6 i 6 2, it holds that

|{u ∈ Vi : d+

G̃
(u, Vi+1) <

(
1
3
− 4ε− 15ε2

)
n}| 6 15

2
εn

and
|{u ∈ Vi : d−

G̃
(u, Vi−1) <

(
1
3
− 4ε− 15ε2

)
n}| 6 15

2
εn,

where the indices are reduced modulo 3.

Proof. By the (undirected) graph removal lemma [1] (see also [3] and the many references
therein) there is a δ0 > 0 and a positive integer n4 such that for every (undirected) graph
G on n > n4 vertices for which p(K4, G) 6 δ0, we can delete at most 1

12
ε6n(n− 1) edges

of G to obtain an undirected K4-free graph. Let C1 be as in Lemma 32 and let

δ = min

{
1

C1

δ0,
1

2
ε6

}
.

Let n1(δ) be as in Lemma 32, let n2(ε) be as in Corollary 35, and let

n0 = max

{
n1(δ), n2(ε),

2

ε2
, n4

}
.

LetG be an oriented graph on n > n0 vertices such that t(G)+i(G) 6 1
9
+δ. LetG(0) be the

underlying undirected graph of G. It follows by Lemma 32 that p(K4, G
(0)) 6 C1δ 6 δ0,

and therefore, we can delete at most 1
12
ε6n2 edges of G(0) to obtain an undirected K4-free

graph G(1). Note that

i(G(1)) 6 i(G(0)) + 6
1

12
ε6 = i(G) +

1

2
ε6 6

1

9
+ δ +

1

2
ε6 6

1

9
+ ε6.
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By Corollary 35, the set B of vertices of G(1) whose degree is less than
(

2
3
− 5ε2

)
n is

of size at most 5ε2n and V \ B is the disjoint union of three independent sets V0, V1, V2.
Let G̃ be the oriented graph obtained from G(1) by orienting each of its edges as it was
oriented in G. Clearly, G̃ is obtained from G by deleting at most 1

12
ε6n2 edges, and the

number of edges in G̃ is at least

1
2
|V \B|

(
2
3
− 5ε2

)
n > 1

2
(n− 5ε2n)

(
2
3
− 5ε2

)
n > 1

3
n2 − 25

6
ε2n2 > 1

3
n2 − 1

15
εn2.

Observe also that t(G̃) 6 t(G) and that i(G̃) = i(G(1)) 6 i(G) + 1
2
ε6, implying that

t(G̃) + i(G̃) 6 t(G) + i(G) + 1
2
ε6 6 1

9
+ δ + 1

2
ε6 6 1

9
+ ε6.

Without loss of generality, it then follows by Lemma 36 that

|EG̃(V1, V0)|+ |EG̃(V2, V1)|+ |EG̃(V0, V2)| 6 12εn2,

and that, for every 0 6 i 6 2, we have(
1
3
− 15ε2

)
n 6 |Vi| 6

(
1
3

+ 5ε2
)
n,

|{u ∈ Vi : d+

G̃
(u, Vi+1) <

(
1
3
− 4ε− 15ε2

)
n}| 6 15

2
εn

and
|{u ∈ Vi : d−

G̃
(u, Vi−1) <

(
1
3
− 4ε− 15ε2

)
n}| 6 15

2
εn.

Proof of Theorem 4. Let ε0 be a real number satisfying

0 < ε0 < min

{
ε

25
,

1

360

}
,

and let n0 = n0(ε0) and δ = δ(ε0) be as in Proposition 37. Let G be an oriented graph
on n > n0 vertices such that t(G) + i(G) 6 1

9
+ δ. By Proposition 37, the set of vertices

of G is the disjoint union of four sets B, V0, V1, V2 and there exists an oriented graph G′

which is obtained from G by deleting at most 1
12
ε6

0n
2 edges, and it satisfies the following

properties:

1. |E(G′)| > 1
3
n2 − 1

15
ε0n

2;

2. |EG′(V1, V0)|+ |EG′(V2, V1)|+ |EG′(V0, V2)| 6 12ε0n
2;

3. for every 0 6 i 6 2, it holds that Vi is independent and(
1
3
− 15ε2

0

)
n 6 |Vi| 6

(
1
3

+ 5ε2
0

)
n.

For every 0 6 i 6 2, let Ṽi ⊆ Vi be an arbitrary set of size
⌈(

1
3
− 15ε2

0

)
n
⌉
. Let G′′ be

the oriented graph obtained from G′ by deleting all edges in EG′(V1, V0) ∪ EG′(V2, V1) ∪
EG′(V0, V2) and all edges with an endpoint in V \

(
Ṽ0 ∪ Ṽ1 ∪ Ṽ2

)
. Altogether, at most

12ε0n
2 +

(
n− 3

(
1
3
− 15ε2

0

)
n
)

(n− 1) < (12ε0 + 45ε2
0)n2 6

(
12 + 1

8

)
ε0n

2
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edges were deleted. Hence the oriented graph G′′ has at least 1
3
n2− 1

15
ε0n

2−
(
12 + 1

8

)
ε0n

2

edges, all of which are direced from Ṽ0 to Ṽ1, from Ṽ1 to Ṽ2, or from Ṽ2 to Ṽ0. Finally, we

turn G′′ into Bn by distributing the vertices of V \
(
Ṽ0 ∪ Ṽ1 ∪ Ṽ2

)
among the sets Ṽ0, Ṽ1, Ṽ2

in a way which forms a balanced partition, and then adding all absent edges. Note that
we need to add at most

1
3
n2 −

(
1
3
n2 − 1

15
ε0n

2 −
(
12 + 1

8

)
ε0n

2
)

=
(
12 + 1

8
+ 1

15

)
ε0n

2

edges. To summarize, we have turned G into Bn by deleting or adding at most

1
12
ε6

0n
2 +

(
12 + 1

8

)
ε0n

2 +
(
12 + 1

8
+ 1

15

)
ε0n

2 < 25ε0n
2 6 εn2

edges.

11 An exact result

In this section we use the stability result we proved in the previous section, to prove
Theorem 5. Our argument builds on the proof of Theorem 5.4 in [5], but also requires
several new ideas.

First, let us introduce some additional notation. For an oriented graph G = (V,E)
and a set S ⊆ V , let T3(S,G) denote the number of transitive triangles in G that contain
all the vertices of S and let I3(S,G) denote the number of independent triples in G that
contain all the vertices of S. We abbreviate T3(∅, G) to T3(G) and I3(∅, G) to I3(G).
Moreover, for every u ∈ V we abbreviate T3({u}, G) to T3(u,G) and I3({u}, G) to I3(u,G).

Proof of Theorem 5. Fix ε > 0 to be sufficiently small so as to handle all the calculations
that are spread throughout the proof and let n0 = n0(ε) be as in Proposition 37. Let n
and G = (V,E) be as in the statement of the theorem. In order to prove Theorem 5, we
will prove that G satisfies the following five properties:

(i) V0 ∪ V1 ∪ V2 is an equipartition of V , i.e., bn/3c 6 |V0|, |V1|, |V2| 6 dn/3e;

(ii) Vi is independent for every 0 6 i 6 2;

(iii) There are no directed edges from Vi to Vi−1 for any 0 6 i 6 2 (where the indices are
reduced modulo 3).

(iv) For every 0 6 i 6= j 6 2, every vertex in Vi has at most one non-neighbour in Vj.

(v) E ∩ { ~xy, ~yz, ~zx} 6= ∅ for every x ∈ V0, y ∈ V1 and z ∈ V2.

It follows from Observation 3 that t(G) + i(G) < 1/9. Therefore, by Proposition
37, the set of vertices of G is the disjoint union of four sets B̃, Ṽ0, Ṽ1, Ṽ2 and there is an
oriented graph G̃ obtained from G by deleting some edges such that |B̃| 6 5ε2n and for
every 0 6 i 6 2, it holds that(

1
3
− 15ε2

)
n 6 |Ṽi| 6

(
1
3

+ 5ε2
)
n,
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|{u ∈ Ṽi : d+

G̃
(u, Ṽi+1) <

(
1
3
− 4ε− 15ε2

)
n}| 6 15

2
εn

and
|{u ∈ Ṽi : d−

G̃
(u, Ṽi−1) <

(
1
3
− 4ε− 15ε2

)
n}| 6 15

2
εn.

For every 0 6 i 6 2, let

Ai =
{
u ∈ Ṽi : min{d−G(u, Ṽi−1), d+

G(u, Ṽi+1)} >
(

1
3
− 4ε− 15ε2

)
n
}

and let
B0 = B̃ ∪ (Ṽ0 \ A0) ∪ (Ṽ1 \ A1) ∪ (Ṽ2 \ A2).

Observe that |Ṽi \ Ai| 6 15εn holds for every 0 6 i 6 2, and thus, for every 0 6 i 6 2
and every u ∈ Ai, it holds that

min{d−G(u,Ai−1), d+
G(u,Ai+1)} > min{d−

G̃
(u,Ai−1), d+

G̃
(u,Ai+1)}

> min{d−
G̃

(u, Ṽi−1)− |Ṽi−1 \ Ai−1|, d+

G̃
(u, Ṽi+1)− |Ṽi+1 \ Ai+1|}

>
(

1
3
− 4ε− 15ε2

)
n− 15εn =

(
1
3
− 19ε− 15ε2

)
n.

Therefore, A0 ∪ A1 ∪ A2 ∪B0 is a partition of V for which the following conditions hold.

(1’) (1/3− 15ε− 15ε2)n 6 |A0|, |A1|, |A2| 6 (1/3 + 5ε2)n;

(2’) min{d+
G(u,Ai+1), d−G(u,Ai−1)} > (1/3 − 19ε − 15ε2)n for every 0 6 i 6 2 and every

u ∈ Ai;

(3’) |B0| 6 45εn+ 5ε2n;

For as long as there exists a vertex u ∈ B0 and an index 0 6 i 6 2 such that

min{d+
G(u,Ai+1), d−G(u,Ai−1)} > (1/3− 3

√
ε)n,

remove u from B0 and add it to Ai (observe that if such an i exists, then it is unique, since
for every 0 6 j 6 2 it holds that min{d+

G(u,Aj), d
−
G(u,Aj)} 6 |Aj|/2 < (1/3− 3

√
ε)n, for a

sufficiently small ε > 0). Note that the Ai’s are updated in every step of this process and
min{d+

G(u,Ai+1), d−G(u,Ai−1)} is considered with respect to those updated sets. Once this
process is over, denote the resulting partition of V by V0∪V1∪V2∪B, where B ⊆ B0 and
Vi ⊇ Ai for every i ∈ {0, 1, 2}. Observe that, for sufficiently small ε, this new partition
satisfies the following properties:

(1) (1/3− 20ε)n 6 |V0|, |V1|, |V2| 6 (1/3 + 48ε)n;

(2) min{d+
G(u, Vi+1), d−G(u, Vi−1)} > (1/3− 3

√
ε)n for every 0 6 i 6 2 and every u ∈ Vi;

(3) |B| 6 48εn;

(4) For every u ∈ B and every i ∈ {0, 1, 2} it holds that d+
G(u, Vi+1) < (1/3 − 3

√
ε)n or

d−G(u, Vi−1) < (1/3− 3
√
ε)n.
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Using the minimality of G, we will prove that in fact this partition satisfies stronger
conditions.

Lemma 38. Let G, V0, V1, V2, and B be as above. Then

(a) Vi is independent in G for every 0 6 i 6 2;

(b) ~xy /∈ E for every 0 6 i 6 2, x ∈ Vi, and y ∈ Vi−1;

(c) B = ∅.

Proof. Starting with (a), suppose for a contradiction that Vi is not independent for some
0 6 i 6 2. Fix an arbitrary directed edge ~xy ∈ E(G[Vi]). Let Z = {z ∈ V : z /∈
NG(x) ∪NG(y)} denote the set of common non-neighbours of x and y. Observe that

I3(G \ ~xy) = I3(G) + |Z| 6 I3(G) + |Vi|+ |B|+ 2(48ε+ 3
√
ε)n

6 I3(G) + (1/3 + 48ε)n+ 48εn+ 2(48ε+ 3
√
ε)n

< I3(G) + (1/3 + 3 3
√
ε)n, (43)

where the first inequality holds by properties (1) and (2), the second inequality holds by
properties (1) and (3), and the last inequality holds for a sufficiently small ε > 0.

On the other hand, let W1 = N+
G (x, Vi+1) ∩ N+

G (y, Vi+1) and let W2 = N−G (x, Vi−1) ∩
N−G (y, Vi−1). Then

T3(G \ ~xy) 6 T3(G)− |W1| − |W2| 6 T3(G)− 2[(1/3− 3
√
ε)n− (48ε+ 3

√
ε)n]

< T3(G)− (1/3 + 3 3
√
ε)n, (44)

where the second inequality holds by properties (1) and (2) and the last inequality holds
for a sufficiently small ε > 0.

Combining (43) and (44) we conclude that

T3(G \ ~xy) + I3(G \ ~xy) < T3(G) + I3(G)

contrary to the assumed minimality of G.
Next, we prove (b). Let E ′ = { ~xy ∈ E : x ∈ V0, y ∈ V2} ∪ { ~xy ∈ E : x ∈ V1, y ∈

V0} ∪ { ~xy ∈ E : x ∈ V2, y ∈ V1}. Suppose for a contradiction that E ′ 6= ∅. Let ~xy ∈ E ′
be arbitrary and let G′ be the oriented graph obtained from G by reversing the direction
of ~xy, that is, G′ = (G \ ~xy) ∪ ~yx. Clearly

I3(G′) = I3(G). (45)

Assume without loss of generality that x ∈ V1 and y ∈ V0. It follows by properties (1)
and (2) that, for a sufficiently small ε > 0,

T3({x, y}, G) > |N+
G (x, V2)∩NG(y, V2)| > (1/3− 3

√
ε)n−(48ε+ 3

√
ε)n > (1/3−3 3

√
ε)n. (46)
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On the other hand, it follows by (a) and by properties (1), (2) and (3) that, for a sufficiently
small ε > 0,

T3({x, y}, G′) 6 |B|+d−G(x, V2)+d+
G(y, V2) 6 48εn+2(48ε+ 3

√
ε)n < (1/3−3 3

√
ε)n. (47)

Combining (45), (46) and (47) we conclude that

T3(G′) + I3(G′) < T3(G) + I3(G)

contrary to the assumed minimality of G.
Finally, we prove (c). We will first prove the following simple claim.

Claim 39. T3(u,G) + I3(u,G) 6
(|Vi|+|B|

2

)
for every vertex u ∈ V and every i ∈ {0, 1, 2}.

Proof. Suppose for a contradiction that there exists some vertex u ∈ V and an i ∈ {0, 1, 2}
such that T3(u,G) + I3(u,G) >

(|Vi|+|B|
2

)
. Let G′ be the oriented graph which is obtained

from G \ {u} by adding a new vertex u′ such that N+
G′(u

′) = Vi+1 and N−G′(u
′) = Vi−1.

Note that

T3(u′, G′) + I3(u′, G′) 6 |{ ~xy ∈ E : x ∈ Vi−1, y ∈ Vi+1}|+
(
|Vi|+ |B|

2

)
=

(
|Vi|+ |B|

2

)
,

where the inequality holds by (a) and the equality holds by (b). Hence

T3(G′) + I3(G′) = T3(G) + I3(G)− (T3(u,G) + I3(u,G)) + (T3(u′, G′) + I3(u′, G′))

< T3(G) + I3(G)

contrary to the assumed minimality of G.

Now, suppose for a contradiction that B 6= ∅. In the remainder of the proof, we will
use the notation

(
x
2

)
for any real x, not necessarily a non-negative integer, in the sense

of x(x − 1)/2. Note that for every 0 6 i 6 2 and any real number α > 0, it follows by
Property (1) that(
|Vi|+ 48εn

2

)
−
(
|Vi| − αn

2

)
= (α + 48ε)n (2|Vi|+ (48ε− α)n− 1) /2

< (α + 48ε)n (|Vi|+ 24εn) 6 (α + 48ε) (1/3 + 72ε)n2

and hence, by Property (3),(
|Vi| − αn

2

)
+ (α + 48ε) (1/3 + 72ε)n2 >

(
|Vi|+ 48εn

2

)
>

(
|Vi|+ |B|

2

)
. (48)

Let u ∈ B be an arbitrary vertex. Let 0 6 i 6 2 be such that

dG(u, Vi) = min{dG(u, V0), dG(u, V1), dG(u, V2)}.

We distinguish between the following three cases.
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Case 1: dG(u, Vi) < 100εn.

It follows by Property (4) that min{d+
G(u, Vi+1), d−G(u, Vi−1)} < (1/3− 3

√
ε)n. Assume

that d+
G(u, Vi+1) < (1/3− 3

√
ε)n (the complementary case d−G(u, Vi−1) < (1/3− 3

√
ε)n

can be handled similarly). We further divide this case into the following three
sub-cases.

Case a: dG(u, Vi−1) 6 n/6. Then, using (a) and properties (1) and (3), we obtain

T3(u,G) + I3(u,G) > I3(u,G) >

(
|Vi| − dG(u, Vi)

2

)
+

(
|Vi−1| − dG(u, Vi−1)

2

)
>

(
|Vi| − 100εn

2

)
+

(
(1/6− 20ε)n

2

)
.

Hence, for a sufficiently small ε > 0,

T3(u,G) + I3(u,G) >

(
|Vi| − 100εn

2

)
+ 148ε

(
1

3
+ 72ε

)
n2 >

(
|Vi|+ |B|

2

)
,

where the second inequality holds by (48) for α = 100ε; this contradicts the
assertion of Claim 39.

Case b: dG(u, Vi−1) > n/6 and d−G(u, Vi+1) > 1000εn.

Let Ai−1 = NG(u, Vi−1). It follows by properties (1) and (2) that, for a suffi-
ciently small ε > 0,

d+
G(w,Ai−1) > |Ai−1| − |Vi−1|+ d+

G(w, Vi−1)

> n/6− (1/3 + 48ε)n+
(
1/3− 3

√
ε
)
n >

(
1/6− 2 3

√
ε
)
n

holds for every w ∈ N−G (u, Vi+1). Hence

T3(u,G) + I3(u,G) >
∑

w∈N−G (u,Vi+1)

d+
G(w,Ai−1) +

(
|Vi| − dG(u, Vi)

2

)

> 1000ε(1/6− 2 3
√
ε)n2 +

(
|Vi| − 100εn

2

)
.

Therefore, for a sufficiently small ε > 0,

T3(u,G) + I3(u,G) >

(
|Vi| − 100εn

2

)
+ 148ε

(
1

3
+ 72ε

)
n2 >

(
|Vi|+ |B|

2

)
,

where the second inequality holds by (48) for α = 100ε; this contradicts the
assertion of Claim 39.

Case c: d−G(u, Vi+1) 6 1000εn. Then, using Property (1) and our assumption that
d+
G(u, Vi+1) < (1/3− 3

√
ε)n, we obtain, for a sufficiently small ε > 0,

dG(u, Vi+1) = d−G(u, Vi+1) + d+
G(u, Vi+1) <

(
1/3− 3

√
ε+ 1000ε

)
n

6 |Vi+1| − ( 3
√
ε− 20ε− 1000ε)n < |Vi+1| − 3

√
εn/2.
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Hence

T3(u,G) + I3(u,G) > I3(u,G) >

(
|Vi| − dG(u, Vi)

2

)
+

(
|Vi+1| − dG(u, Vi+1)

2

)
>

(
|Vi| − 100εn

2

)
+

(
3
√
εn/2

2

)
.

Therefore, for a sufficiently small ε > 0,

T3(u,G) + I3(u,G) >

(
|Vi| − 100εn

2

)
+ 148ε

(
1

3
+ 72ε

)
n2 >

(
|Vi|+ |B|

2

)
,

where the second inequality holds by (48) for α = 100ε; this contradicts the
assertion of Claim 39.

Case 2: 100εn 6 dG(u, Vi) < 10−4n.

We further divide this case into the following three sub-cases.

Case a: dG(u, Vi−1) 6 |Vi−1| − n/100 or dG(u, Vi+1) 6 |Vi+1| − n/100. Assume
without loss of generality that dG(u, Vi−1) 6 |Vi−1|−n/100 (the complementary
case dG(u, Vi+1) 6 |Vi+1| − n/100 is analogous). Then, using Property (1), we
obtain

T3(u,G) + I3(u,G) > I3(u,G) >

(
|Vi| − dG(u, Vi)

2

)
+

(
|Vi−1| − dG(u, Vi−1)

2

)
>

(
|Vi| − 10−4n

2

)
+

(
n/100

2

)
.

Hence, for a sufficiently small ε > 0,

T3(u,G)+I3(u,G) >

(
|Vi| − 10−4n

2

)
+(10−4+48ε)

(
1

3
+ 72ε

)
n2 >

(
|Vi|+ |B|

2

)
,

where the second inequality holds by (48) for α = 10−4; this contradicts the
assertion of Claim 39.

Case b: d−G(u, Vi+1) > n/100 or d+
G(u, Vi−1) > n/100. Assume without loss of

generality that d−G(u, Vi+1) > n/100 (the complementary case d+
G(u, Vi−1) >

n/100 is analogous). Let Ai−1 = NG(u, Vi−1). By Case (a) we may assume that
|Ai−1| > |Vi−1| − n/100. It then follows by Property (2) that, for a sufficiently
small ε > 0,

d+
G(w,Ai−1) > |Ai−1| − |Vi−1|+ d+

G(w, Vi−1)

> |Vi−1| − n/100− |Vi−1|+ (1/3− 3
√
ε)n > n/4
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holds for every w ∈ N−G (u, Vi+1). Hence

T3(u,G) + I3(u,G) >
∑

w∈N−G (u,Vi+1)

d+
G(w,Ai−1) +

(
|Vi| − dG(u, Vi)

2

)

>
n

100
· n

4
+

(
|Vi| − 10−4n

2

)
.

Therefore, for a sufficiently small ε > 0,

T3(u,G)+I3(u,G) >

(
|Vi| − 10−4n

2

)
+(10−4+48ε)

(
1

3
+ 72ε

)
n2 >

(
|Vi|+ |B|

2

)
,

where the second inequality holds by (48) for α = 10−4; this contradicts the
assertion of Claim 39.

Case c: d+
G(u, Vi+1) > |Vi+1|−n/50 and d−G(u, Vi−1) > |Vi−1|−n/50. It then follows

by Property (2) that, for a sufficiently small ε > 0,

d+
G(w,N+

G (u, Vi+1)) > |N+
G (u, Vi+1)| − |Vi+1|+ d+

G(w, Vi+1)

> |Vi+1| − n/50− |Vi+1|+ (1/3− 3
√
ε)n > 2n/7

and, similarly,
d−G(w,N−G (u, Vi−1)) > 2n/7

hold for every w ∈ NG(u, Vi). It then follows by Property (1) that

T3(u,G) + I3(u,G) > dG(u, Vi) · 2n/7 + dG(u, Vi) · 2n/7 +

(
|Vi| − dG(u, Vi)

2

)
=

(
|Vi|
2

)
+

(
4n

7
− |Vi|+

dG(u, Vi) + 1

2

)
dG(u, Vi)

>

(
|Vi|
2

)
+

(
4n

7
−
(

1

3
+ 48ε

)
n

)
100εn.

Hence, for a sufficiently small ε > 0,

T3(u,G) + I3(u,G) >

(
|Vi|
2

)
+ 48ε

(
1

3
+ 72ε

)
n2 >

(
|Vi|+ |B|

2

)
,

where the second inequality holds by (48) for α = 0; this contradicts the
assertion of Claim 39.

Case 3: dG(u, Vi) > 10−4n.

Denote

d∗ =
1

2
(dG(u, Vi−1) + dG(u, Vi+1)) .
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It follows by the minimality of dG(u, Vi) that

dG(u, Vi)
(
d+
G(u, V0)d−G(u, V1) + d+

G(u, V1)d−G(u, V2) + d+
G(u, V2)d−G(u, V0)

)
6dG(u, V2)d+

G(u, V0)d−G(u, V1) + dG(u, V0)d+
G(u, V1)d−G(u, V2)

+ dG(u, V1)d+
G(u, V2)d−G(u, V0)

=dG(u, V0)dG(u, V1)dG(u, V2)− d+
G(u, V0)d+

G(u, V1)d+
G(u, V2)

− d−G(u, V0)d−G(u, V1)d−G(u, V2)

6dG(u, V0)dG(u, V1)dG(u, V2)

and thus

d+
G(u, V0)d−G(u, V1) + d+

G(u, V1)d−G(u, V2) + d+
G(u, V2)d−G(u, V0)

6 dG(u, Vi−1)dG(u, Vi+1). (49)

For every 0 6 i 6 2, let

Di,i+1 := {(x, y) ∈ (NG(u, Vi)×NG(u, Vi+1)) \ (N+
G (u, Vi)×N−G (u, Vi+1)) : ~xy ∈ E}.

For every 0 6 i 6 2, it follows by properties (1) and (2) that

|Vi| |Vi+1| − |EG(Vi, Vi+1)| =
∑
v∈Vi

(
|Vi+1| − d+

G(v, Vi+1)
)
6 |Vi|(48ε+ 3

√
ε)n

and thus

|Di,i+1| > dG(u, Vi)dG(u, Vi+1)− d+
G(u, Vi)d

−
G(u, Vi+1)− |Vi|(48ε+ 3

√
ε)n.

Therefore, using (49), we obtain

T3(u,G) >|D0,1|+ |D1,2|+ |D2,0|
> (dG(u, V0)dG(u, V1) + dG(u, V1)dG(u, V2) + dG(u, V2)dG(u, V0))

−
(
d+
G(u, V0)d−G(u, V1) + d+

G(u, V1)d−G(u, V2) + d+
G(u, V2)d−G(u, V0)

)
− (|V0|+ |V1|+ |V2|)(48ε+ 3

√
ε)n

>2dG(u, Vi)d∗ − (48ε+ 3
√
ε)n2 (50)

It follows by the convexity of the function x 7→
(
x
2

)
that

I3(u,G) >

(
|Vi| − dG(u, Vi)

2

)
+

(
|Vi−1| − dG(u, Vi−1)

2

)
+

(
|Vi+1| − dG(u, Vi+1)

2

)
>

(
|Vi| − dG(u, Vi)

2

)
+ 2

(
1
2
(|Vi−1|+ |Vi+1|)− d∗

2

)
. (51)
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Combining (50) and (51), and using Property (1), we conclude that

T3(u,G) + I3(u,G)

>

(
|Vi| − dG(u, Vi)

2

)
+ 2

(
1
2
(|Vi−1|+ |Vi+1|)− d∗

2

)
+ 2dG(u, Vi)d∗ − (48ε+ 3

√
ε)n2

=

(
|Vi|
2

)
+ 2

(
1
2
(|Vi−1|+ |Vi+1|)− d∗ − dG(u, Vi)

2

)
+ dG(u, Vi)

(
|Vi−1|+ |Vi+1| − |Vi| − 1

2
dG(u, Vi)− 1

2

)
− (48ε+ 3

√
ε)n2

>

(
|Vi|
2

)
− 1

4
+ 10−4n

(
1

6
n− 112εn− 1

2

)
− (48ε+ 3

√
ε)n2.

Hence, for a sufficiently small ε > 0,

T3(u,G) + I3(u,G) >

(
|Vi|
2

)
+ 48ε

(
1

3
+ 72ε

)
n2 >

(
|Vi|+ |B|

2

)
,

where the second inequality holds by (48) for α = 0; this contradicts the assertion
of Claim 39.

Lemma 40. G satisfies properties (i), (iv) and (v).

Proof. Recall that V0 ∪ V1 ∪ V2 = V holds by Lemma 38(c). Let

m1 =

(
|V0|
3

)
+

(
|V1|
3

)
+

(
|V2|
3

)
and let

m2 =

(
bn/3c

3

)
+

(
b(n+ 1)/3c

3

)
+

(
b(n+ 2)/3c

3

)
.

Observe that m1 > m2 and that m1 = m2 if and only if G satisfies Property (i). Since G
satisfies Property (ii) by Lemma 38(a), it follows that

T3(G) + I3(G) > I3(G) > m1.

Moreover
T3(Bn) + I3(Bn) = I3(Bn) = m2.

It thus follows by the assumed minimality of G that it satisfies Property (i).
Now suppose for a contradiction that G does not satisfy Property (iv). That is, there

exist two distinct indices i, j ∈ {0, 1, 2} and three vertices u ∈ Vi and v, w ∈ Vj such that
both v and w are non-neighbours of u. Since G satisfies Property (ii), u, v, w form an
independent triple in G. Hence

T3(G) + I3(G) > I3(G) > 1 +m1 > m2 = T3(Bn) + I3(Bn)

contrary to the assumed minimality of G.
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Finally, suppose for a contradiction that G does not satisfy Property (v). By Lemma
38(b), this implies that there exist vertices x ∈ V0, y ∈ V1 and z ∈ V2 such that x, y, z
form an independent triple in G. Hence

T3(G) + I3(G) > I3(G) > 1 +m1 > m2 = T3(Bn) + I3(Bn)

contrary to the assumed minimality of G.

Since B = ∅ by Lemma 38(c), G satisfies properties (i), (iv) and (v) by Lemma 40,
G satisfies Property (ii) by Lemma 38(a), and G satisfies Property (iii) by Lemma 38(b),
the assertion of Theorem 5 follows.

12 Concluding remarks

The problems that were considered in this paper can be extended in various directions.
For example, it would be interesting to determine all possible pairs (t(G), i(G)). More
formally, let S̄ be the set of all ordered pairs (t, i) ∈ [0, 1]2 for which there exists a
sequence of oriented graphs (Gn)∞n=1 such that limn→∞ |V (Gn)| = ∞, limn→∞ t(Gn) = t
and limn→∞ i(Gn) = i. We would like to determine the set S̄. Note first that the set S
which corresponds to the undirected case (i.e., it is defined the same as S̄ except that
Gn is undirected for every n and t(Gn) stands for the number of triangles in Gn) was
completely determined in [9]. Determining S̄ seems to be more challenging, but we are
able to prove some partial results. First, since every undirected graph has an acyclic
orientation, it immediately follows that S̄ ⊇ S. Trying to determine the lower envelope
of S̄, for every n-vertex oriented graph G, it follows by Theorem 2 that

t(G) + i(G) > 1
9
− on(1),

and by Proposition 17 that

2
3
t(G) + i(G) > 1

10
− on(1).

Moreover, Observation 3 and Theorem 2 imply that

min{i(G) : G is an oriented graph on n vertices for which t(G) = 0} = 1
9
− on(1).

Note that, using the removal lemma, one can also deduce the latter result from results
in [5] and [10].

Finally, using a similar argument to the one used in the proof of Theorem 2 (but with
oriented graphs on 5 vertices instead of 4) we believe that it is possible to show that

min{t(G) : G is an oriented graph on n vertices for which i(G) = 0} > 3
16
− on(1).

Note that this bound is tight asymptotically as is demonstrated by the disjoint union of
Kbn/2c and Kdn/2e, where each edge is oriented independently at random with probability
1/2 for each direction. A quick check with flagmatic (with oriented graphs on 5 vertices)
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yields an approximate bound which is very close to 3/16. Rounding it to a precise bound
(and possibly also proving stability and uniqueness) is left for future work.

Similarly to the case of undirected graphs (as in, e.g., [5] and [10]), all the problems that
were considered in this paper can be extended to larger independent sets and transitive
tournaments. In particular, consider the following problems. Let G = (V,E) be an
oriented graph on n vertices and let k > 2 be an integer. Let Tk(G) denote the family of
all k-sets X ∈

(
V
k

)
for which G[X] is a transitive tournament and let tk(G) = |Tk(G)|/

(
n
k

)
.

Similarly, let Ik(G) denote the family of all independent k-sets X ∈
(
V
k

)
and let ik(G) =

|Ik(G)|/
(
n
k

)
. Let

f(k, `, n) = min{tk(G) : G is an oriented graph on n vertices with i`(G) = 0}

and let

g(k, `, n) = min{ik(G) : G is an oriented graph on n vertices with t`(G) = 0}.

It is not hard to see that the limits

f(k, `) := lim
n→∞

f(k, `, n)

and
g(k, `) := lim

n→∞
g(k, `, n)

exist for all k and `. The last two results listed in the previous paragraph can then be
restated as g(3, 3) = 1/9 and f(3, 3) ≈ 3/16. Moreover, it is evident that g(k, 2) = 1 for
every k and, using Turán’s Theorem and the removal lemma, it is not hard to prove that
g(2, `) = 1/d, where d = d(`) is the so-called Ramsey number of the transitive tournament
on ` vertices, i.e., it is the largest integer for which there exists an orientation D of Kd

such that |T`(D)| = 0. Note that the bounds 2`/2 6 d(`) 6 2` are known, but determining
d(`) is, in general, an open problem (see, e.g., [6, 12]). Similarly, it is an easy consequence
of Turán’s Theorem and the removal lemma that f(2, `) = 1/(` − 1) for every ` > 2.

Moreover, it is not hard to prove by induction on k that f(k, 2) = k! · 2−(k2) for every
k > 2. It would be interesting to study f(k, `) and g(k, `) for additional values of k and
`. It would also be interesting to study

lim
n→∞

min{tk(G) + ik(G) : G is an oriented graph on n vertices}

for every k > 4.
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