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Abstract

Previous work by Mora and Sala provides the reduced Groebner basis of the
ideal formed by the elementary symmetric polynomials in n variables of degrees
k = 1, . . . , n, 〈e1,n(x), . . . , en,n(x)〉. Haglund, Rhoades, and Shimonozo expand
upon this, finding the reduced Groebner basis of the ideal of elementary symmetric
polynomials in n variables of degree d for d = n − k + 1, . . . , n for k ! n. In
this paper, we further generalize their findings by using symbolic computation and
experimentation to conjecture the reduced Groebner basis for the ideal generated
by the elementary symmetric polynomials in n variables of arbitrary degrees and
prove that it is a basis of the ideal.

Mathematics Subject Classifications: 05E05

1 Introduction

In their paper [6], Mora and Sala use computational and algebraic means to find the
reduced Groebner basis of the ideal generated by the elementary symmetric polynomials
in n variables of degrees d = 1, . . . , n. Haglund, Rhoades, and Shimonozo expand upon
this, finding the reduced Groebner basis of the ideal of elementary symmetric polynomials
in n variables of degree d for d = n − k + 1, . . . , n for k ! n [4]. In this paper, we
further generalize their findings by using symbolic computation and experimentation to
conjecture the reduced Groebner basis for the ideal generated by the elementary symmetric
polynomials in n variables of arbitrary degrees and prove that it is in fact a basis of the
ideal.
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Definition 1. Let k and n be natural numbers. The elementary symmetric polynomial
of degree k in n variables x1, . . . , xn is

ek,n(x) =
!

1!i1<···<ik!n

xi1 . . . xik .

Definition 2. The homogeneous symmetric polynomial of degree k in n variables
x1, . . . , xn is

hk,n(x) =
!

1!i1!...!ik!n

xi1 . . . xik .

Given a set or multiset S with elements in {1, . . . , n}, define the weight of S to be

wt(S) =
"

s∈S

xm(s)
s ,

where m(s) is the multiplicity of s in S. For example,

wt({1, 2, 5}) = x1x2x5, and wt({1, 1, 3, 4}) = x2
1x3x4.

Then, ek,n(x) (respectively, hk,n(x)) is the weight enumerator of the sets (respectively,
multisets) with cardinality k whose elements are in {1, . . . , n}. Moreover, considering
subsets of {1, . . . , n} which do and do not contain n separately, we have the following
recursive definition

ek,n(x) =

#
$%

$&

0, if n < k

1, if k = 0

ek,n−1(x) + xnek−1,n−1(x), otherwise.

Similarly, when looking at multisets, we get

hk,n(x) =

#
$%

$&

0, if n = 0 and k > 0

1, if k = 0

hk,n−1(x) + xnhk−1,n(x), otherwise.

We use the recursive definitions to write Maple functions eknS(x,k,n) and hknS(x,k,n),
which output ek,n(x) and hk,n(x), respectively. These functions – along with others used to
investigate the Groebner basis of ideals generated by elementary symmetric polynomials
– can be found in the accompanying Maple package Solomon.txt, written by AJ Bu and
Doron Zeilberger.

In [6], Mora and Sala proved that {h1,n(x), h2,n−1(x), . . . , hn,1(x)} is a Groebner basis
of the ideal 〈e1,n(x), . . . , en,n(x)〉. Using the accompanying package to efficiently generate
the reduced Groebner bases of many specific ideals, we can extend their findings. We
first use experimental methods to deduce a pattern for the reduced Groebner bases of
the ideals 〈e1,n(x), . . . , ek,n(x)〉 and 〈e1,n(x), ek,n(x)〉 for arbitrary k ! n, and prove them
by combinatorial means. We then investigate other cases to expand upon our results to
the ideal 〈ek1,n(x), . . . , ekm,n(x)〉. We find a basis for this general case, proving that it
generates the ideal, and show empirically that it is a Groebner basis.
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1.1 Groebner Bases

Let the monomial xa1
1 . . . xan

n ∈ k[x1, . . . , xn] be denoted by xα where α = (a1, . . . , an).

Definition 3. Amonomial order on k[x1, . . . , xn] is any relation> on the set of monomials
xα ∈ k[x1, . . . , xn] such that

1. > is a total linear ordering relation

2. If xα > xβ and xγ is any monomial, then

xαxγ = xα+γ > xβ+γ = xβxγ

3. > is a well ordering.

Definition 4. The leading term of a nonzero polynomial

f =
!

α

aαx
α

is the term LT (f) = aαx
α, such that xα is the largest monomial appearing in f in the

ordering >. The leading monomial of f is LM(f) = xα, and the leading coefficient of f
is aα.

In this paper, we use lexicographical order, where xn > xn−1 > · · · > x1. More
precisely, if xα and xβ are monomials in k[x1, . . . , xn], then

xα > xβ

if the rightmost nonzero entry of the difference vector α− β ∈ Zn is positive.

Definition 5. A Groebner basis of an ideal I ⊂ k[x1, . . . , xn] (with respect to a given
monomial order) is a finite subset G = {g1, . . . , gt} of I such that for that every nonzero
polynomial f in I, the leading term of f is divisible by the leading term of gi for some i.

Moreover, it is reduced if, for all distinct elements g, p ∈ G, the leading coefficient of g
is 1 and no monomial appearing in g is a multiple of LT (p). Any ideal I ⊂ k[x1, . . . , xn]
has a unique reduced Groebner basis for a given monomial order.

Theorem 6 (The Division Algorithm in k[x1, . . . , xn]). Let > be a fixed monomial order
in k[x1, . . . , xn]. Let F := (f1, . . . , fm) be an ordered list of polynomials in k[x1, . . . , xn].
Then for any f ∈ k[x1, . . . , xn], there exists a1, . . . , am, r ∈ k[x1, . . . , xn] such that

1. f = a1f1 + · · ·+ amfm + r,
2. for all i, either aifi = 0 or LT (f) " LT (aifi), and
3. r is a sum of monomials, none of which are divisible by any LT (fi).

We call r the remainder of f on r.
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If the monomial order and the order on F are fixed, the polynomials a1, . . . , am, r are
unique. These polynomials can change, however, if different monomial orders or orders
on F are selected.

In order to efficiently determine whether or not a given basis is a Groebner basis, we
use Buchberger’s Criterion. The S-polynomial of two polynomials f and g is

S(f, g) =
LCM(LM(f), LM(g))

LT (f)
f − LCM(LM(f), LM(g))

LT (g)
g.

Theorem 7 (Buchberger’s Criterion). G = {g1, . . . , gt} is a Groebner basis of I with
respect to a given monomial order if and only if G generates I and, for any distinct gi
and gj in G,

S(gi, gj)
G
= 0,

where S(fi, fj)
G
denotes the remainder of the S-Polynomial of fi and fj upon division by

G.

2 The Ideal 〈e1,n(x), . . . , ek,n(x)〉

The procedure Gkn(k,n,x) in Solomon.txt outputs the reduced Groebner basis (with re-
spect to lexicographical order where xn > xn−1 > · · · > x1) for the ideal
〈e1,n(x), . . . , ek,n(x)〉. After running the procedure for multiple values k and n, we can
conjecture that the reduced Groebner basis is {hi,n−i+1(x)|i = 1 . . . k}. Indeed, for the
case k = n, this agrees with the Groebner basis that Mora and Sala proved in their paper
[6]. In order to prove our conjecture, we use the following two relations between the
elementary and homogeneous symmetric polynomials. This is essentially a well-known
classical identity that can be found in [5], Eq. (2.6’). It has a very quick proof using
generating functions, which is left to the reader. Nevertheless, we prefer the following
somewhat longer, but more insightful combinatorial proof, inspired by Zeilberger’s proof
[8].

Lemma 8. Let k and n be natural numbers. Then

hk,n−k+1(x) =
k!

i=1

(−1)i+1ei,n(x)hk−i,n−k+1(x)

Proof. This is equivalent to proving

k!

i=0

(−1)iei,n(x)hk−i,n−k+1(x) = 0.

This is trivial when k > n because hk−i,n−k+1(x) = 0 when 0 ! i ! k − 1, and ek,n = 0.
So, assume k ! n. Then, the left-hand side is the weight enumerator of the set Sk,n of
pairs (A,B), where
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• A is a subset of {1, . . . , n} of order |A|,

• B is a multiset with cardinality k − |A| whose elements are in {1, . . . , n− k + 1},

and the weight of (A,B) is

w(A,B) = (−1)|A|wt(A)wt(B).

Let f : Sk,n → Sk,n be defined as

f(A,B) =

'
(A ∪ {min(B)}, B − {min(B)}), if min(B) < min(A)

(A! {min(A)}, B + {min(A)}), otherwise.

Note that this mapping is defined for all possible pairs of sequences, and it changes sign
since the size of the first subset is either increasing or decreasing by 1. Moreover, if
min(A) > min(B) then

f(A,B) = (A ∪ {min(B)}, B − {min(B)}) =: (A′, B′), and

f(A′, B′) = (A,B),

since clearly min(A′) = min(B) ! min(B′). If min(A) ! min(B) then

f(A,B) = (A! {min(A)}, B + {min(A)}) =: (A′, B′), and

f(A′, B′) = (A,B),

since min(B′) = min(A) < min(A′). Thus, all elements of Sk,n can be paired up into
mutually cancelling pairs, concluding our proof.

Lemma 9. For any n, k ∈ N,

ek,n(x) =
k!

i=1

(−1)i+1hi,n−i+1(x)ek−i,n−i(x).

Proof. Note that this is equivalent to

k!

i=0

(−1)ihi,n−i+1(x)ek−i,n−i(x) = 0.

Again, this is trivial for k > n, so assume k ! n. The left-hand side is the weight
enumerator of the set Sk,n of ordered pairs (A,B), where

• A is a multiset with elements in {1, . . . , n− |A|+1}, where |A| is the cardinality of
A,

• B is a subset of {1, . . . , n− |A|} of order |B| := k − |A|,
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and the weight of (A,B) is

w(A,B) = (−1)|A|wt(A)wt(B).

Let f : Sk,n → Sk,n be defined as

f(A,B) =

'
(A+ {min(B)}, B ! {min(B)}), if min(B) < min(A)

(A− {min(A)}, B ∪ {min(A)}), otherwise.

As in the previous proof, this involution pairs all elements of Sk,n into mutually cancelling
pairs.

We use the polynomial identities in the preceding lemmas to construct the Groebner
basis of the ideal 〈e1,n(x), . . . , ek,n(x)〉 generated by the elementary symmetric polynomials
of low degree. To start, we determine a basis of this ideal.

Lemma 10. Let k and n be natural numbers such that k ! n.

〈e1,n(x), . . . , ek,n(x)〉 = 〈h1,n(x), h2,n−1(x), . . . , hk,n−k+1(x)〉.

Proof. For i = 1, . . . , k, we have

hi,n−i+1(x) ∈ 〈e1,n(x), . . . , ek,n(x)〉, and ei,n(x) ∈ 〈h1,n(x), h2,n−1(x), . . . , hk,n−k+1(x)〉

by Lemmas 8 and 9, respectively. It immediately follows that

〈e1,n(x), . . . , ek,n(x)〉 = 〈h1,n(x), h2,n−1(x), . . . , hk,n−k+1(x)〉.

Proposition 11. Let k and n be natural numbers. The set G := {hi,n−i+1(x) | 1 !
i ! k} is the reduced Groebner basis of the ideal 〈e1,n(x), . . . , ek,n(x)〉 with respect to
lexicographical order, where xn > xn−1 > · · · > x1.

Proof. By Lemma 10, the set G generates the ideal I := 〈e1,n(x), . . . , ek,n(x)〉. The S-
polynomial of any two distinct elements hi,n−i+1(x) and hj,n−j+1(x) in G is

S(hi,n−i+1(x), hj,n−j+1(x)) = xj
n−j+1hi,n−i+1(x)− xi

n−i+1hj,n−j+1(x)

= hj,n−j+1(x)
i−1!

ℓ=0

xℓ
n−i+1hi−ℓ,n−i(x)

− hi,n−i+1(x)

j−1!

ℓ=0

xℓ
n−j+1hj−ℓ,n−j(x).

To prove the second equality, note that it is equivalent to

hi,n−i+1(x)

j!

ℓ=0

xℓ
n−j+1hj−ℓ,n−j(x) = hj,n−j+1(x)

i!

ℓ=0

xℓ
n−i+1hi−ℓ,n−i(x).
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xℓ
n−j+1hj−ℓ,n−j(x) is the weight enumerator of all multisets of cardinality j with elements

taken from {1, . . . , n− j + 1}, where n− j + 1 appears exactly ℓ times. Thus, it is clear
that

j!

ℓ=0

xℓ
n−j+1hj−ℓ,n−j(x) = hj,n−j+1(x).

It follows that

S(hi,n−i+1(x), hj,n−j+1(x)) = hj,n−j+1(x)
i−1!

ℓ=0

xℓ
n−i+1hi−ℓ,n−i(x)

− hi,n−i+1(x)

j−1!

ℓ=0

xℓ
n−j+1hj−ℓ,n−j(x).

Moreover, for i ∕= j

LT

(
hi,n−j+1(x)

i−1!

ℓ=0

xℓ
n−i+1hi−ℓ,n−i(x)

)
= xj

n−j+1x
i−1
n−i+1xn−i

∕= xi
n−i+1x

j−1
n−j+1xn−j

= LT

(
hi,n−i+1(x)

j−1!

ℓ=0

xℓ
n−j+1hj−ℓ,n−j(x)

)
.

Hence,

LT (S(hi,n−i+1(x), hj,n−j+1(x))) = max(xj
n−j+1x

i−1
n−i+1xn−i, x

i
n−i+1x

j−1
n−j+1xn−j)

and, by the division algorithm,

S(hi,n−i+1(x), hj,n−j+1(x))
G
= 0.

Therefore, G is a Groebner basis of I by Buchberger’s Criterion. Furthermore, G is a
reduced Groebner basis because, for any distinct i, j, LT (hi,n−i+1(x)) = xi

n−i+1 cannot
divide the terms in hj,n−j+1(x). This follows from the fact that the terms of hj,n−j+1(x)
have lower degree if i > j, and they cannot be multiples of xn−i+1 if i < j.

3 Investigation into the General Case

The procedure GSn(S,n,x) in Solomon.txt inputs a set S = {k1, . . . , km}, a non-negative
integer n, and a variable x. It outputs the reduced Groebner basis (with respect to lexico-
graphical order where xn > xn−1 > · · · > x1 ) for the ideal 〈ek1,n(x), . . . , ekm,n(x)〉. Using
this procedure to analyze the reduced Groebner bases for various ideals, we conjecture
the following basis for arbitrary S and n.
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Proposition 12. Let k1, . . . , km, and n be positive integers such that 1 ! k1 < · · · <
km ! n. Let I be the ideal

I := 〈ek1,n(x), . . . , ekm,n(x)〉,

and let M be the set of matrices of the form
*

+,
ekm−im−1,n−im−1(x) . . . ekm−i1,n−i1(x) ekm,n(x)

... . . .
...

ek1−im−1,n−im−1(x) . . . ek1−i1,n−i1(x) ek1,n(x)

-

./ ,

where i1 ∈ {1, 2, . . . , k1, k2} and ij ∈ {ij−1 + 1, ij−1 + 2, . . . , kj, kj+1} for j > 1. Then the
set

G := {det(m) | m ∈ M}
is a basis of I.

Proof. Note that the entries of the last column of any matrix in M are the elementary
symmetric polynomials

ek1,n(x), . . . , ekm,n(x)

that generate I. It immediately follows that 〈G〉 ⊆ I.
For the other containment, let m1 be the matrix in M where ij = kj+1. Then,

det(m1) = det

0

111112

*

+++++,

1 ekm−km−1,n−km−1(x) . . . ekm−k2,n−k2(x) ekm,n(x)
0 1 . . . ekm−1−k2,n−k2(x) ekm−1,n(x)
... 0

. . .
...

...
...

...
. . . 1 ek2,n(x)

0 0 . . . 0 ek1,n(x)

-

...../

3

444445

= ek1,n(x).

Therefore, ek1,n(x) ∈ 〈G〉. Now suppose that for L > 1, ekℓ,n(x) ∈ 〈G〉 for all 1 ! ℓ < L.
Let mL denote the matrix in M such that ij = kj for j < L and ij = kj+1 for j " L.
Then,

mL =

6
AL BL

0 CL

7
,

where A is an (m−L)× (m−L) triangular matrix with whose diagonal entries are all 1,
and 0 is an L× (m−L) zero matrix. Therefore, detmL = detCL, where CL is the L×L
matrix

*

+++++,

ekL−kL−1,n−kL−1
(x) ekL−kL−2,n−kL−2

(x) . . . ekL−k1,n−k1(x) ekL,n(x)
1 ekL−1−kL−2,n−kL−2

(x) . . . ekL−1−k1,n−k1(x) ekL−1,n(x)

0 1
. . .

...
...

...
. . . . . . ek2−k1,n−k1(x) ek2,n(x)

0 . . . 0 1 ek1,n(x)

-

...../
.
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Define ci to be the (L− 1)× (L− 1) matrix formed by removing the i− th row and the
last column from CL. Then,

det(CL) =
L!

i=1

(−1)i+1eki,n(x) det(cL+1−i).

Since det c1 = 1, it follows that

detM = detCL

= (−1)L+1ekL,n(x) +
L−1!

i=1

(−1)i+1eki,n(x) det(cL+1−i).

Since detM ∈ 〈G〉 and, by our inductive hypothesis, eki,n(x) ∈ 〈G〉 for 1 ! i ! L − 1,
it follows ekL,n(x) is in the ideal as well. Thus, eki,n(x) ∈ 〈G〉 for i = 1, . . . ,m, and
I = 〈G〉.

Since we found this basis by studying specifically the reduced Groebner bases of var-
ious ideals, we further conjecture that it is the reduced Groebner basis for arbitrary S
and n. Indeed, the following proposition states that this conjecture holds for the ideal
〈e1,n(x), ek,n(x)〉.

Proposition 13. Let k and n be natural numbers such that n " k. Let I be the ideal
〈e1,n(x), ek,n(x)〉, and let M be the set of matrices

M =

86
1 ek,n(x)
0 e1,n

7
,

6
ek−1,n−1(x) ek,n(x)

1 e1,n(x)

79
.

Then the set
G := {det(m) | m ∈ M}

is the reduced Groebner basis of I with respect to lexicographical order, where xn > xn−1 >
· · · > x1.

Proof. By Proposition 12, G generates I := 〈e1,n(x), ek,n(x)〉. Note that by evaluating
the determinants and then using the recursive properties of the elementary symmetric
polynomials, we can rewrite G as

G = {e1,n(x), e1,n−1(x)ek−1,n−1(x)− ek,n−1(x)}.

Taking the S-polynomial of the elements in G, we have

S(e1,n(x),e1,n−1(x)ek−1,n−1(x)− ek,n−1(x))

= x2
n−1xn−2 . . . xn−k+1e1,n(x)− xn

:
e1,n−1(x)ek−1,n−1(x)− ek,n−1(x)

;

=
:
e1,n−1(x)ek−1,n−1(x)− ek,n−1(x)

;
e1,n−1(x)

− e1,n(x)
:
e1,n−1(x)ek−1,n−1(x)− ek,n−1(x)− x2

n−1xn−2 . . . xn−k+1

;

the electronic journal of combinatorics 29(3) (2022), #P3.4 9



Note that the second equality obviously holds since it can be rewritten as

e1,n(x)
:
e1,n−1(x)ek−1,n−1(x)− ek,n−1(x)) =

:
e1,n−1(x)ek−1,n−1(x)− ek,n−1(x))e1,n(x).

It is also clear that

LT
:
(e1,n−1(x)ek−1,n−1(x)− ek,n−1(x))e1,n−1(x)

;

< LT
:
e1,n(x)(e1,n−1(x)ek−1,n−1(x)− ek,n−1(x)− x2

n−1xn−2 . . . xn−k+1)
;
,

since the latter is a multiple of xn. Hence,

S(e1,n(x), e1,n−1(x)ek−1,n−1(x)− ek,n−1(x))
G
= 0,

and G is a Groebner basis. It is clearly reduced since no term in e1,n−1(x)ek−1,n−1(x) −
ek,n−1(x) is divisible by xn and no term in e1,n(x) is divisible by x2

n−1.

Upon further investigation, we can show that our basis for the general case also gives
the reduced Groebner basis of the ideal 〈e1,n(x), . . . , ek,n(x)〉. We show that this is true
in the following proposition, which is equivalent to Proposition 11.

Proposition 14. Let k and n be positive integers such that 1 ! k ! n. Let I be the ideal

I := 〈e1,n(x), . . . , ek,n(x)〉,

and let M be the set of matrices of the form
*

+,
ek−ik−1,n−ik−1

(x) . . . ek−i1,n−i1(x) ek,n(x)
... . . .

...
...

e1−ik−1,n−ik−1
(x) . . . e1−i1,n−i1(x) e1,n(x)

-

./ ,

where 1 ! i1 < · · · < ik−1 ! k. Then the set

G := {det(m) | m ∈ M}

is the reduced Groebner basis of I.

Proof. By Proposition 12, G is a basis of I. Moreover, by Proposition 11, the reduced
Groebner basis of I is G′ := {hi,n−i(x) | 1 ! i ! k}. Thus, it suffices to prove that
G = G′.

For any positive integer L, let mL denote the matrix such that no ij = L. Then, as
shown in the proof of Proposition 12,

detmL = detCL,n,

where

CL,n =

*

+++++,

e1,n−L+1(x) e2,n−L+2(x) . . . eL−1,n−1(x) eL,n(x)
1 e1,n−L+2(x) . . . eL−2,n−1(x) eL−1,n(x)

0 1
. . .

...
...

...
. . . . . . e1,n−1(x) e2,n(x)

0 . . . 0 1 e1,n(x)

-

...../
.
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For any positive integers L and n where L ! n, we claim

detCL,n = hL,n−L+1(x).

To prove this claim, we use induction over L, where for each L ∈ N, we will show that
the claim holds for all n. We begin with the base case; for any positive integer n, we have
C1,n =

<
e1,n(x)

=
, so clearly

detC1,n = e1,n(x)

= h1,n(x).

Now suppose that for any given L " 2, we have detCℓ,N = hℓ,N−ℓ+1(x) for any
0 < ℓ < L and N > ℓ. Since

detCL,n =
L!

i=1

(−1)i+1ei,n(x) det(cL+1−i),

where ci is formed by removing the i − th row and the last column from CL,n, and we
have shown that

hk,n−k+1(x) =
k!

i=1

(−1)i+1ei,n(x)hk−i,n−k+1(x),

it is enough to show that det ci = hi−1,n−L+1. Since c1 is a triangular matrix whose diagonal
entries are 1, it is obvious that

det c1 = 1

= h0,n−L+1.

For i > 1, ci can be written as

ci =

6
ai bi
0 di,

7

where di is an (L − i) × (L − i) triangular matrix whose diagonal entries are all 1, and
ai = Ci−1,n−L+i−1. Therefore,

det ci = detCi−1,n−L+i−1

= hi−1,n−L+1,

by our inductive hypothesis. Thus,

detCL,n =
L!

i=1

(−1)i+1ei,n(x) det(cL+1−i)

=
L!

i=1

(−1)i+1ei,n(x)hL−i,n−L+1(x)

= hL,n−L+1(x),

as desired.
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4 Conclusion

We have given a formal proof for a basis of 〈ek1,n(x), . . . , ekm,n(x)〉, the ideal generated by
an arbitrary set of elementary symmetric functions of degree n, and we proved that it is the
reduced Groebner basis for ideals of the form 〈e1,n(x), ek,n(x)〉 and 〈e1,n(x), . . . , ek,n(x)〉.
Using the procedure CheckConjGSn(S,n,x) in Solomon.txt, we can verify that the
generalized basis given in Proposition 12 is the reduced Groebner basis of the ideal
〈ek1,n(x), . . . , ekm(x)〉 for a given set S = {k1, . . . , km} and positive integer n. Verify-
ing that this is the case for many S and n, we can empirically show that this basis is
the reduced Groebner basis for the ideal generated by an arbitrary set of elementary
symmetric functions.

One direction for further research is to formally prove that the basis we have found for
the general case is the reduced Groebner basis. We can also try to find similar identities
for other ideals, such as those generated by various power sum symmetric polynomials or
homogeneous symmetric polynomials of arbitrary degrees.
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