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Abstract

We give a characterization of shattering-extremal set systems in terms of forbid-
den projections, in the spirit of Dietrich’s characterization of antimatroids. Apart
from that, we prove several metric and topological properties of such systems,
which, however, do not amount to a characterization. The ideas for all these results
come from the similar characterizations of antimatroids and convex geometries and
due to the fact that both of them are special cases of shattering-extremal systems.

Mathematics Subject Classifications: 05D05, 05B35

1 Introduction

This paper is about shattering-extremal systems, that is, about set families that shatter as
many sets as they have, thus achieving an exact bound in Sauer-Shelah-Perles inequality.

Shattering-extremal systems have been studied, for example, in connection with the
unlabeled sample compression scheme conjecture of Littlestone and Warmuth [17], see
also [4] and [19] for the recent progress in this direction. On the other hand, the study
of such systems naturally falls under the category of extremal problems about traces of
sets, see [13], Chapter 8, for a survey of recent results. One of the first systematic studies
of shattering-extremal systems was done by Bollobás and Radcliffe [3]; they, in particu-
lar, have given several alternative characterizations of such systems. These descriptions,
however, are not very descriptive and can hardly be used to construct nontrivial exam-
ples of such systems or to classify some special subclasses; see, for example, [21] for an
example of such classification. There is, thus, a certain lack of a good characterization of
shattering-extremal systems, although some attempts have been made in [20] and [16].

Convex geometries are a particular class of shattering-extremal systems, namely, they
are precisely shattering-extremal closure systems [5]. In contrast with shattering-extremal
systems in general, they are famous for admitting multiple different yet equivalent char-
acterizations. It is thus natural to try and extend some of these characterizations from
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convex geometries to shattering-extremal systems. As it turns out, in at least one case
it can be done. Namely, in Section 3 we prove Theorem 5, which is a characterization of
shattering-extremal families in terms of forbidden projections. It is a direct counterpart
of Dietrich’s characterization of convex geometries in terms of implications [8], which we
discuss in Section 2.

What about extending other characterizations? Unfortunately, there are certain ob-
structions to that. Some of those characterizations are formulated in terms of lattices; for
example, F is a convex geometry iff it is meet-distributive as a lattice [9], which is equiv-
alent to it being join semidistributive and lower semimodular [2]. As shattering-extremal
systems lack the lattice structure, adapting these results for them is problematic. More-
over, shattering-extremal systems also lack the order in general: even though sets are
ordered by inclusion, it can be shown that shattering-extremal systems are stable under
bit flips, that is, the system remains shattering-extremal after taking a symmetric differ-
ence of every its set with some fixed set X. Due to the simple nature of this operation,
it makes sense to distinguish shattering-extremal systems only up to a bit-flip. How-
ever, bit flips obviously do not preserve the inclusion. This makes it hard to generalize
any characterizations relying on this order, like, for example, the canonic anti-exchange
property, which is formulated in terms of a closure operator.

What is preserved under bit-flips is the Hamming distance between the sets. Thus, in
Section 4, we reformulate the characterization of convex geometries in terms of maximal
chains (Theorem 11) for shattering-extremal systems (Lemma 13). The resulting property
then states that in a shattering-extremal system F any two sets at distance d can be
connected by a path of length d in F , that is, that the internal metric on F coincides
with the one induced by the Hamming distance. However, unlike Theorem 11, which
is a characterization, Lemma 13 turns out to be just a property that is far from being
sufficient. Going further into this direction, we prove, in Theorem 16, that shattering-
extremal systems are, in a way, simply connected. In particular, Theorem 16 states that
any two maximal paths between the same endpoints can be deformed into each other,
which, to an extent, is reminiscent of Theorem 2 in [14]. However, a rather simple example
given at the end of Section 4 is sufficient to show that even together, these two properties
do not give a sufficient condition.

Finally, in Section 5, we outline some open problems and related questions.

2 Preliminaries

If not mentioned otherwise, all objects that we consider in this paper are finite. In a
poset L, an antichain A over L is a subset A ⊆ L such that no two distinct elements
from A are comparable in L; moreover, A is maximal if A ∪ {x} is not an antichain for
any x ∈ L − A. A subset S ⊆ L is hereditary (upward closed) if for any x ∈ S and any
y 6 x (y > x) it follows that y ∈ S. There is a natural bijection between antichains
and upward closed sets in L: for an antichain A its upward closure Au = {x ∈ L | x >
a for some a ∈ A} is, as expected, upward closed. Conversely, for an upward closed set I,
the set of its minimal elements Im = {x ∈ I | y 6< x for every y ∈ I} is an antichain.
Moreover, these two operations are mutually inverse. We denote an operation of taking
a minimal antichain by Min: 2L → 2L.

For two subsets Q,R ⊆ L we say that Q refines R, denoted Q� R, if for any q ∈ Q
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there is r ∈ R such that q 6 r; and we say that Q dually refines R denoted Q �d R,
if for any r ∈ R there is q ∈ Q such that q 6 r. In this paper, we will deal exclusively
with the dual refinement, and the former definition is given simply for compliance with
the standard lattice theory terminology.

Dual refinement relation is a preorder on 2L, however, when restricted to antichains
in L, it becomes a partial order. It is easy to see that Q�d R iff Qu ⊇ Ru, in particular,
an antichain of minimal elements of a set dually refines this set. Similarly, Q � R iff
Ql ⊆ Rl, where Ql and Rl are the downward closures of Q and R.

For A,B ⊆ U , we denote the set difference of A and B by A−B and the symmetric
difference by A4B. For A ⊆ U and x ∈ U we write A − x for A − {x} and A + x for
A ∪ {x}. For ϕ : X → Y and A ⊆ X, ϕ[A] denotes the image of X under ϕ.

Our primary object of study will be a set family F (which we also call a system) over
a fixed base set U , that is, F ⊆ 2U ; we consider 2U to be a poset ordered by set inclusion.
A system F shatters a set X ⊆ U (alternatively, X is shattered by F) if for any Y ⊆ X
there is F ∈ F such that F ∩ X = Y . We denote the family of sets shattered by F
by Str(F). Trivially, for any F , Str(F) is hereditary. Also, by the Sauer-Shelah-Perles
(SSP) lemma [23–25], it holds:

|F| 6 | Str(F)|, (1)

and we say that F is shattering-extremal if it attains equality in (1), that is, if |F| =
| Str(F)|. Every hereditary system H is shattering-extremal with Str(H) = H.

We say that F is a closure system if it is intersection closed and contains U ; in this
case, for any X ⊆ U there is the smallest set in F , containing U , which we denote
by X. It is typical, for example, in formal concept analysis, see [12], to study closure
systems using implications. Formally, an implication is a tuple (A, a), for A ⊆ U and
a ∈ U −A, denoted by A→ a. We assume that the implications are partially ordered by
A → a 6 B → b if a = b and A ⊆ B. A set X satisfies an implication A → a if A 6⊆ X
or if a ∈ X. We note that then A → a 6 B → b iff B → b satisfies all sets satisfied
by A → a. For example, for U = {1, 2, 3}, ∅ → 3 6 12 → 3, and the former satisfies
all subsets of U containing 3, while the latter satisfies all sets except for 23. Here and
further on we drop the curly brackets in the notation for the subsets of U , that is, 12
and 23 stand for {1, 2} and {2, 3} respectively. A family of all subsets of U satisfying a
fixed set of implications is always a closure system. Conversely, any closure system can
be defined by a set of implications that it satisfies.

A system F is a convex geometry if it is a closure system and satisfies an anti-exchange
property :

if x ∈ F + y then y /∈ F + x,

for all F ∈ F and x, y /∈ F , x 6= y. Alternatively, a closure system is a convex geometry iff
it is shattering-extremal [5]. A system F is an antimatroid if the family of its complements
{U−F | F ∈ F} is a convex geometry; this is trivially equivalent to F being a shattering-
extremal union closed system containing ∅.

Let us now recall a well-known characterization of convex geometries by Dietrich [8,
Theorem 7]; the original theorem is about antimatroids, its reformulation for convex
geometries is straightforward.
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Theorem 1 (Dietrich). Let P be a set of pairwise incomparable implications (that is, as
implications, they form an antichain). Additionally, suppose P satisfies:

for every A → a and B → b in P such that a 6= b and
a ∈ B, there is C → b ∈ P such that C ⊆ A ∪B − a.

(2)

Then the system F = F(P) of all sets satisfying P is a convex geometry. Moreover, if F
satisfies an implication D → d, then there is A→ a ∈ P such that A→ a 6 D → d.

Conversely, for a convex geometry F let P = P(F) be the set of minimal implications
satisfied by F , then P satisfies (2).

As we have mentioned, our goal is to generalize Theorem 1 from the characterization
of shattering-extremal closure systems to arbitrary shattering-extremal families. As the
first step in this direction, we will now introduce forbidden projections, which generalize
implications.

We call a tuple (P, hP ), where P ⊆ U and hP : P → {0, 1} a projection, where P
is called the support and hP the pattern of the projection. Alternatively, a projection
can be given by a tuple (P,HP ), HP ⊆ P ⊆ U . Two definitions are obtained from each
other by identifying HP with its characteristic function hP (x). If no confusion arises, we
will drop hP (or HP ) when mentioning a projection. For a function h : P → {0, 1} and
Q ⊆ P we define a function h|Q : Q→ {0, 1} as h|Q(x) = h(x), for x ∈ Q. We define PRJ
to be a poset of all projections with the following partial order: for projections (P, hP )
and (Q, hQ), (P, hP ) 6 (Q, hQ) if P ⊆ Q and hP = hQ|P ; empty projection (∅,∅) is a
minimal element of PRJ.

Almost exclusively we talk about projections in the context of them being forbidden,
in particular, we say that F ⊆ U satisfies a projection P if HP 6= P ∩ F , otherwise F
invalidates P . Similarly, a system F satisfies a set of projections P if F satisfies P , for all
F ∈ F , P ∈ P . Note that for all P,Q ∈ PRJ, P 6 Q iff Q satisfies all sets satisfied by P ;
alternatively, for any F ⊆ U , if Q invalidates F then so does P . It is now easy to see that
forbidden projections are a generalization of implications. Indeed, by associating A→ a
with a forbidden projection (A + a,A) it can be seen that the order and the notion
of satisfiability for implications coinsides with the one for their forbidden projections
counterparts. Moreover, implications correspond precisely to forbidden projections of
the form (P,HP ), for |P −HP | = 1.

For an arbitrary system F , we define Pu
F as a set of all projections satisfied by F , that

is, Pu
F = {P ∈ PRJ | HP 6= P ∩ F for all F ∈ F}, and define PF as PF = Min(Pu

F). The
latter is called the set of forbidden projections of F . Note that, in general, Pu

F and PF
can have projections with the same supports (but with different patterns). In fact, save
for some degenerate cases, Pu

F will have a lot of them. The situation with PF is, to an
extent, similar: although in some cases, which are of particular interest to us, supports
of PF will all be different and form an antichain (in 2U), in general, supports of PF can
coincide or be comparable to each other.

In the opposite direction, we define PRJ∗ to be the poset of all antichains over PRJ,
ordered by dual refinement; its maximal element is an empty set of projections and its
minimal element is a one-element antichain {(∅,∅)}. For P ∈ PRJ∗ we define FP as a
system of sets satisfying P , that is, FP = {F ⊆ U | HP 6= P ∩ F for all (P,HP ) ∈ P}.
Sometimes we will write F(P) and P(F) instead of FP and PF . Note that the definition
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of FP does not require P to be an antichain. However, including other projection sets
does not add to the expressiveness of this definition. We justify this in Proposition 2
below, together with some other basic properties of operations P and F .

Proposition 2.

1. For any set of projections P, F(P) = F(Min(P)) = F(Pu);

2. Both P and F operations are monotone, that is, for F ,G ⊆ 2U and P ,Q ⊆ 2PRJ,
F ⊆ G implies P(F)�d P(G) and P �d Q implies F(P) ⊆ F(Q);

3. For any system F , F(P(F)) = F ;

4. For any P ∈ PRJ∗, P(F(P)) �d P, and there are antichains of projections for
which this inequality is strict;

5. For any P ∈ PRJ∗, P(F(P)) = P(F(P(F(P)))).

Proof. 1. As Min(P) ⊆ P , F(Min(P)) ⊇ F(P), because the former is the family of sets
satisfying a smaller family of projections than the latter. And if F /∈ F(P), then there
is P ∈ P , invalidating F . Take Q ∈ Min(P), Q 6 P . Then Q also invalidates F , hence
F /∈ F(Min(P)). So, F(P) = F(Min(P)); the second equality follows from the fact that
Min(P) = Min(Pu).

2. Let F and G be families of subsets such that F ⊆ G. Then Pu(F) ⊇ Pu(G). By
the definition of the dual refinement, this implies P(F) �d P(G). Conversely, P �d Q
is equivalent to Pu ⊇ Qu, which implies F(P) = F(Pu) ⊆ F(Qu) = F(Q).

3. Let us define F ′ = F(P(F)). Thus, F ′ is a family of all subsets satisfying PF .
As all elements of F satisfy PF , F ′ ⊇ F . On the other hand, for any N /∈ F , (U,N) is
satisfied by F and hence (U,N) ∈ Pu

F . Then there is P ∈ PF such that P 6 (U,N). As
(U,N) invalidates N then so does P . But then N /∈ F ′.

4. Let F = F(P), P ′ = P(F), and P ′u and Pu be upward closures of P ′ and P . Note
that F = F(P) = F(Pu), and hence Pu is satisfied by F . Also note that, by definition,
P ′u = Pu

F , and hence P ′u is the set of all projections satisfied by F . But then P ′u ⊇ Pu,
which holds iff P ′ �d P .

For an example of the strict inequality, let U be a one element set, U = {1}, and let P
be a two-element antichain of projections, P = {(1,∅), (1, 1)}. Then F(P) is empty and
hence P(F(P)) = {(∅,∅)} 6= P .

5. This is a consequence of part 3.

One way of looking at the connection between the families of sets and of forbidden
projections is to treat the projections as statements and sets as models which satisfy or do
not satisfy certain statements. Thus, projection families in PRJ∗ correspond to theories
and set families to families of models. Then the operation F constructs a collection of
models, satisfying certain theory, and P constructs a theory for a collection of models.

Let us note that Proposition 2 implies that P ◦F : PRJ∗ → PRJ∗ is a closure operator,
and we define PRJ� ( PRJ∗ as its image, that is, PRJ� = P ◦ F [PRJ∗]. Note that by
Proposition 2, part 5, P ∈ PRJ� iff P = P(F(P)). Then the application of P ◦ F is
somewhat similar to semantic inference, that is, we can say P |= P iff P ∈ P(F(P)).
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This parallel is justified by the fact that then P is satisfied by all models that satisfy P .
We emphasize that all parallels with logic are only referential.

We can now reformulate Dietrich’s characterization using the newly developed termi-
nology.

Theorem 3 (Dietrich, reformulated). Let P ∈ PRJ∗ be such that every projection in P
is an implication, that is, has a form (P + p, P ), for p /∈ P . Additionally, suppose P
satisfies:

for every (A+a,A) and (B+b, B) in P, such that a ∈ B,
there is (C + b, C) ∈ P such that C ⊆ A ∪B − a.

(†)

Then P ∈ PRJ� and the system F(P) is a convex geometry.
Conversely, for a convex geometry F , every projection in P(F) ∈ PRJ� is an impli-

cation, and P(F) satisfies (†).

Let us formulate the following remark on Theorem 3.

Proposition 4. Let P be as in Theorem 3. Then all supports of the projections from P
are distinct and form an antichain.

Proof. Suppose not, and let A′ = (A+a,A), B′ = (B+ b, B) be two distinct implications
from P such that A + a ⊆ B + b. Notice that a 6= b as otherwise A′ 6 B′. But this
implies a ∈ B and, by (†), there is (C + b, C) ∈ P such that C ⊆ A ∪ B − a. Note that
as A+ a ⊆ B + b and b /∈ C, this implies C ⊆ B − a ( B. Then (C + b, C) < (B + b, B),
a contradiction.

Finally, let us note that Theorem 3 does not rule out the possibility that P ∈ PRJ∗,
whose projections are implications, does not satisfy (†), yet F(P) is a convex geom-
etry; however, it follows that in that case P(F(P)) 6= P . An example of this sit-
uation is U = {0, 1, 2} and P = {0→ 1, 1→ 2}. Then F(P) = {2, 12, 012} and
P(F(P)) = {0→ 1, 1→ 2, 0→ 2} �d P .

3 Forbidden projections characterization of shattering-extremal
systems

For projections (P, hP ) and (Q, hQ), let us call the set P ∪ Q the support of P and Q,
denoted sup(P,Q); the set {x ∈ P ∩ Q | hP (x) 6= hQ(x)} the disagreement set of P
and Q, denoted dis(P,Q); and the set sup(P,Q) − dis(P,Q) the agreement set of P
and Q, denoted agr(P,Q). We say that P and Q agree if dis(P,Q) = ∅ (alternatively, if
agr(P,Q) = sup(P,Q)); and that P and Q agree on x ∈ U (on X ⊆ U) if x ∈ agr(P,Q)
(X ⊆ agr(P,Q)). Thus, P and Q automatically agree on a symmetric difference of their
supports and disagree on any point outside of P ∪ Q, although the latter will not be
of importance throughout the paper. Now, we can formulate the forbidden projections
characterization of shattering-extremal systems in general.
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Theorem 5. If P ∈ PRJ∗ satisfies:

for any A,B ∈ P and x ∈ dis(A,B) there is C ∈ P
such that C ⊆ sup(A,B)− x and C agrees with A and
B on agr(A,B) ∩ C,

(‡)

then P ∈ PRJ� and the system F(P) is shattering-extremal.
Conversely, for a shattering-extremal family F , PF ∈ PRJ� satisfies (‡).

It is a straightforward exercise to show that Theorem 3 is a particular case of Theo-
rem 5 in case all forbidden projections are implications. We do not prove this connection
as it serves little purpose in the context of this paper. Prior to going to the proof of
Theorem 5, we will set up some terminology and intermediate results. The following
proposition is an analog of Proposition 4.

Proposition 6. If P ∈ PRJ∗ satisfies (‡) then all supports of the projections from P are
distinct and form an antichain.

Proof. Suppose P has different projections with comparable supports, and let us pick
(A, hA) 6= (B, hB) ∈ P such that A ⊆ B, and |dis(A,B)| is minimal among such pairs.
Notice that dis(A,B) 6= ∅, as otherwise (A, hA) �d (B, hB), and let x ∈ dis(A,B).
Then by (‡) there is (C, hC) ∈ P such that C ⊆ A ∪ B − x = B − x, and that C agrees
with B on agr(A,B) ∩ C, in particular, C agrees with B on any x ∈ B − A. But then
dis(C,B) ⊆ dis(A,B)− x, contradicting the minimality of |dis(A,B)|.

Recall that for a family of projection P , the statement P ∈ P(F(P)) is somewhat
similar to semantic inference. Along with it, it is convenient to have a syntactic one,
that is, one or several rules of the form P ′ ⊆ P implies Q = Q(P ′) ∈ P(F(P)), where
both P ′ and the construction of Q(P ′) is relatively simple. As it turns out, there is a
simple syntactic rule of this form that is both sound and complete in the following sense.

Lemma 7. Let A,B ∈ P ∈ PRJ∗ be two projections that disagree on a single element x.
Then there is C ∈ P(F(P)) such that C ⊆ sup(A,B) − x and C agrees with both A
and B.

Conversely, let P ∈ PRJ∗ be such that for any A,B ∈ P that disagree on a single
element x there is C ∈ P such that C ⊆ sup(A,B)−x and C agrees with both A and B.
Then P ∈ PRJ�.

We note that the condition in this lemma is similar to (‡), but, in contrast, applies to
pairs of projections that disagree on one element only. Additionally, it is easy to see that
Lemma 7 is equivalent to a well-known fact that the DavisPutnamLogemannLoveland
(DPLL) algorithm is complete for the satisfiability of CNF formulas [6, 7]. However,
making this parallel explicit would require too much off the point effort, so we will not
follow this lead.

Proof. (⇒). Without losing generality, assume hA(x) = 0 and hB(x) = 1. Let us define
a projection (C ′, h′C) where C ′ = A ∪B − x and h′C(y) = hA(y) for y ∈ A− x and hB(y)
for y ∈ B − x. Note that hA(y) = hB(y) for y ∈ A ∩ B − x makes sure that h′C is well
defined. Also, thus defined, C ′ agrees with both A and B.
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Now, for any W ⊆ U such that W invalidates C ′, either x /∈ W or x ∈ W . It is
then easy to see that in the first case W invalidates A, and in the second B, and hence
W /∈ F(P). Thus, no set from F(P) invalidates C ′, and so C ′ ∈ Pu(F(P)). Then there
is C ∈ P(F(P)) such that C 6 C ′, and such C obviously is contained in sup(A,B)− x
and agrees with both A and B.

(⇐). Suppose P satisfies the stated condition. We want to show that P(F(P)) = P .
By Proposition 2, part 4, P(F(P))�d P , that is, Pu(F(P)) ⊇ Pu, and we only need to
show the inverse inclusion Pu(F(P)) ⊆ Pu.

Contrapositively, we are going to show that P /∈ Pu implies P /∈ Pu(F(P)), where
the latter means that there is X ⊆ U such that X invalidates P , but satisfies any P ′ ∈ P .
We are going to define X by defining its characteristic function hX : U → {0, 1}. Let us
enumerate the elements of U − X, in an arbitrary way, as {y1, . . . , yn}. Let X0 = X,
Xi = Xi−1+yi, for i = 1, . . . , n, in particular, Xn = U . Also, let Pi = {P ′ ∈ P | P ′ ⊆ Xi},
i = 0, . . . , n, in particular, Pn = P . Finally, we are going to define a family of partial
characteristic functions hi : Xi → {0, 1}, where h0 = hP , and hi+1 is obtained from hi
by defining the latter on xi+1, that is, hi+1(x) = hi(x) for x ∈ Xi, for i = 0, . . . , n − 1.
Then hn is defined on the whole U , and we are going to put hX = hn. Let us note that
then hX |P = hP , and hence X invalidates P .

Now, we are going to inductively define hi+1 from hi by picking the value for hi+1

on xi+1 with the inductive hypothesis: hi|P ′ 6= hP ′ for any P ′ ∈ Pi. Note that this would
prove that X satisfies all forbidden projections from Pn = P and thus the statement of
the lemma holds. For the base of induction, let us take P ′ ∈ P0. Then P ′ ⊆ P , and if
h0|P ′ = hP ′ then this means precisely that P ‘ 6 P . But this is impossible as P ∈ P and
P /∈ Pu.

So suppose the inductive hypothesis holds for i. We claim that it is possible to pick the
value for hi+1(xi+1) such that it would be satisfied for i+1. Suppose not, that is, for both
potential values 0 and 1 there are forbidden projections P0, P1 ∈ Pi+1, invalidating the
hypothesis for h0i+1 and h1i+1, where the latter are the two possible extensions of hi. Note
that xi+1 ∈ P0, as otherwise hP0 = h0i+1|P0 = h0i |P0 , invalidating the induction hypothesis;
similarly, xi+1 ∈ P1. Also, hP0(xi+1) = h0i+1|P0(xi+1) = 0, and similarly hP1(xi+1) = 1.
Additionally, for any y ∈ Xi+1 − xi+1 = Xi, if y ∈ P0 ∩ P1 then hP0(y) = hP1(y) = hi(y).
So, P0 and P1 disagree on exactly one element, and, by the condition on P , there is Q ∈ P
such that Q ⊆ sup(P0, P1) − xi+1 ⊆ Xi such that Q agrees with both P0 and P1. But
then Q agrees with hi, which contradicts the induction hypothesis.

For x ∈ U , the downshift operation Dx : 2U → 2U is defined as:

Dx(F) =
{
F − x | F ∈ F

}
∪
{
F | F ∈ F , x ∈ F, F − x ∈ F

}
.

Notice that Dx(F) might be regarded as an image of injective map Φ: F → 2U , defined
as:

Φ(F ) =


F, x /∈ F ;

F, x ∈ F, F − x ∈ F ;

F − x, x ∈ F, F − x /∈ F ;

(3)

thus, |Dx(F)| = |F|. The definition of Dx is from [18, Definition 2.30], however it goes
back to at least Frankl’s proof of SSP lemma [11]. Downshifts are known to preserve
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shattering-extremality [18]. With an abuse of notation, we define downshifts also for
families of forbidden projections in the following way. For X ⊆ U , x ∈ U , h : X → {0, 1},
and v ∈ {0, 1} we define h[x 7→ v] : X → {0, 1} as h[x 7→ v](y) = h(y) for y ∈ X − x
and h[x 7→ v](x) = v; in particular, for x /∈ X, h = h[x → v]. And Dx : PRJ∗ → PRJ∗ is
defined as:

Dx(P) = Min
({

(P, hP [x 7→ 1]) | P ∈ P
})
.

Also, on occasion, we write P [x 7→ v], for P ∈ PRJ, to denote P [x 7→ v] = (P, hP [x 7→ v]).
The family Str(F) of shattered sets of F can be trivially defined via PF . ForQ ∈ PRJ∗

(or for Q ⊆ 2PRJ) let us define Asup(Q) as an antichain (in 2U) of minimal supports of the
projections of Q; note that it is different from the set of supports of minimal projections,
which, in general, is not an antichain. The following proposition is trivial.

Proposition 8. For a system F ,

Str(F) = {S ⊆ U | S 6⊇ P, for any (P, hP ) ∈ PF}
= {S ⊆ U | S 6⊇ P, for any P ∈ Asup(PF)}.

Lemma 9.

1. For any family of forbidden projections P, F ⊆ 2U , and x ∈ U , it holds

P(Dx(FP))�d Dx(P), (4)

P(Dx(F))�d Dx(PF), (5)

Dx(FP) ⊆ F(Dx(P)), (6)

Dx(F) = F(Dx(PF)). (7)

Moreover, for a shattering-extremal F :

2. Dx(F) is shattering-extremal;

3. Asup(P(Dx(F))) = Asup(Dx(PF)).

Prior to the proof, let us discuss the statements of this lemma. Recalling our logic
parallel, we note that the operation Dx is defined both semantically, that is, on set
families, and syntactically, that is, as a simple rewriting rule on projections. This parallel
gets a little stretched here, as we can note that Dx is not defined on individual sets, that
is, on models, but rather on set families. Let us note that in equations (4)–(6) the left
hand side corresponds to semantical, and the right hand side to syntactical application
of Dx. Thus, in a way, part 1 says that Dx preserves soundness, that is, the application
of Dx to both a theory P and a model family F , satisfying this theory, results in a
modified model family satisfying the modified theory.

Let us give a name to the following relaxation of (7):

Dx(F) ⊆ F(Dx(PF)). (7∗)

In the proof of part 1, we will note that the equations (4)–(6) and (7∗) can be inferred
from each other with the following implications: (6)⇔(4)⇒(7∗)⇔(5). We will not state
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it explicitly, but from the proof of part 1, it is straightforward that, for a given P the
equality in (4) implies the equality in (6), but not the other way round. Similarly, for
a given F , the equality in (5) implies the equality in (7∗). It will take a separate line
of argument to prove (7), that is, that (7∗) case actually achieves equality. In all other
cases, as we are going to show, the inequality can be strict.

Now, for the shattering-extremal systems, part 4 is a proxy for the equality in (5). As
it turns out, shattering-extremal systems obtain the equality in (5) in general. Indeed,
assuming Theorem 5, for a shattering-extremal F , both P(Dx(F)) and PF satisfy (‡),
and hence, by Proposition 6, the supports of the projections from both of these pro-
jection families are distinct and form an antichain; this statement also trivially extends
to Dx(PF). But, with this condition in place, P(Dx(F)) �d Dx(PF) together with
Asup(P(Dx(F))) = Asup(Dx(PF)) easily imply P(Dx(F)) = Dx(PF). However, proving
P(Dx(F)) = Dx(PF) for shattering-extremal families directly is hard, that is why we
settle for part 4 in its current form.

We will now give several examples that will illustrate how the Dx operations work
and show that the statements of the lemma cannot be strengthened.

First, let us take U = {1}, P = {(1,∅), (1, 1)}, and x = 1. Then FP = Dx(FP) = ∅,
implying P(Dx(FP)) = {(∅,∅)}. However, Dx(P) = {(1, 1), (1, 1)} = {(1, 1)}, and so
F(Dx(P)) = {∅}, which gives an example of P for which the inequalities in both (6)
and (4) are strict; note that Dx(FP) = ∅ ( F(Dx(P)) = {∅}. Let us also mention that
FP = ∅ is shattering-extremal, and so the inequalities in (6) and (4) can be proper in
shattering-extremal case as well.

Second, let U = {1, 2}, P = {(12,∅), (12, 12)}, and x = 2. Then FP = {1, 2}, and
Dx(FP) = {1,∅}. Also, Dx(P) = {(12, 2), (12, 12)}, and so F(Dx(P)) = {∅, 1} = FP ,
so there is equality in (4). However, P(Dx(FP)) = {(2, 2)}, and so the inequality in (4)
is strict. We also note that Str(FP) = {∅, 1, 2}, and so FP is not shattering-extremal.

Alternatively, in this case we can start not with P , but with F , that is, take U = {1, 2},
F = {1, 2}, and x = 2. Then PF = {(12,∅), (12, 12)} and Dx(PF) = {(12, 1), (12, 12)}.
At the same time, Dx(F) = {1,∅} and hence P(Dx(F)) = {(2,∅)}, making the inequal-
ity in (5) proper.

Finally, let us give an example of both semantic and syntactic downshifts on a not so
trivial system. So let F be a family of intervals on U = {1, 2, 3, 4} with 1 < 2 < 3 < 4,
that is, 234 = [2, 4] ∈ F , but 24 /∈ F . As a poset, F is an interval lattice, which is one of
the simplest examples of convex geometries, in particular, F is shattering-extremal, it has
11 elements, and shatters 11 elements, where the latter are all subsets of U of size at most
two. Now, let x = 3, and let Φ be as in (3) for D3. Then Φ(234) = 24, Φ(1234) = 124,
and Φ(F ) = F otherwise; the latter is by definition for F ∈ F such that 3 /∈ F , but
otherwise should be checked manually. For example, for 123, 123 − 3 = 12 ∈ F , and so
Φ(123) = 123. Thus, D3(F) = F − 234− 1234 + 24 + 124. Note that downshifts trivially
preserve the size of the family, and thus |D3(F)| = |F| = 11. Additionally, it can be
checked that D3(F) shatters the same 11 sets as F , and is thus shattering-extremal, which
illustrates part 2 of Lemma 9. Note also that D3(F) is no longer a closure system and
is thus not a convex geometry: Although D3(F) is still intersection-closed, it no longer
contains the maximal element U . We note, without proving it, that downshifts preserve
the property of being intersection-closed in general.

Now, let us consider PF for this F . Figure 1 below shows both PF and D3(PF),
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where, for a forbidden projection (P, hP ), a black point indicates x ∈ P , hP (x) = 1, a
white point x ∈ P , hP (x) = 0, and a dot x /∈ P .

PF D3(PF)

Figure 1: Forbidden projections of PF and D3(PF).

It can be checked explicitly that in this case D3(F) = F(D3(PF)), confirming (7).
Also, D3(PF) ∈ PRJ�, and P(D3(F)) = D3(PF); the latter, as we have noted earlier, will
be proven to be a general case for the shattering-extremal systems.

Proof (of Lemma 9). 1. We are going to prove (6) and then show that the remaining
inequalities, with (7) substituted by (7∗), follow from it; the equality in (7) will be
proven separately. So, suppose (6) does not hold, that is, there is F ∈ Dx(FP) such
that F /∈ F(Dx(P)). This means that there is P ∈ P such that P ′ = (P, hP [x 7→ 1])
is invalidated by F . Suppose P ′ = P , which happens if either x /∈ P or hP (x) = 1. In
this case F invalidates P itself, and hence F ∈ Dx(FP)−FP . By the definition of Dx it
means that x /∈ F , F + x ∈ FP and F /∈ FP . In particular, as F invalidates P , it cannot
be the case that x ∈ P and hP (x) = 1. Thus, x /∈ P , but then F invalidates P iff F + x
invalidates P , and hence F + x /∈ FP , a contradiction.

Now, suppose P ′ 6= P , that is, x ∈ P , hP ′(x) = 1 and hP (x) = 0. As P ′ is invalidated
by F , it follows that x ∈ F . But then P is invalidated by F − x, hence F − x /∈ FP . But
F ∈ Dx(FP) implies, by the definition of Dx, that F, F − x ∈ FP , a contradiction.

After that, the remaining inequalities follow by a straightforward application of prop-
erties from Proposition 2. Indeed, (7∗) follows from (6) by taking P = PF . By a similar
trick, (5) follows from (4). Also, (6) implies (4) and (7∗) implies (5) by applying P to
both sides, using its monotonicity, and applying P(F(P)) �d P to the right hand side.
A similar application of F , followed by using F(P(F)) = F equation, gives (4) ⇒ (6)
and (5) ⇒ (7∗) implications.

Finally, let us show that (7∗) can be strengthened to (7), that is, that Dx(F) =
F(Dx(PF)), for which it is enough to prove Dx(F) ⊇ F(Dx(PF)). So, let us fix a
set family F , and, contrapositively, let X /∈ Dx(F); our goal is then to prove that
X /∈ F(Dx(PF)). Now, X /∈ Dx(F) implies that either i) X /∈ F , or ii) X ∈ F but
X−x /∈ F : Indeed, if it is not the first option then X ∈ F . But then X /∈ Dx(F) implies
Φ(X) 6= X, where Φ = Φ(F) is from (3), which can only happen if X − x /∈ F .

Suppose x ∈ X. Then, if i) X /∈ F , there is (P, hP ) ∈ PF invalidated by X. Then
either x /∈ P , or x ∈ P and hP (x) = 1. In both cases, (P, hP ) = (P, hP [x→ 1]) ∈ Dx(PF)
invalidates X, and hence X /∈ F(Dx(PF)). And if ii) X ∈ F but X−x /∈ F then there is
(P, hP ) ∈ PF invalidated by X−x, but not by X, which implies x ∈ X, x ∈ P , hP (x) = 0,
and for each y ∈ P − x, hP (y) = hX(y), where hX is a characteristic function of X. But
then (P, hP [x→ 1]) ∈ Dx(PF) invalidates X, and hence again X /∈ F(Dx(PF)).

So let x /∈ X. Note that in this case ii) is impossible, and so i) X /∈ F holds.
Also, X + x /∈ F , as otherwise, Φ(X + x) = X ∈ Dx(F). Let (P1, h1), (P2, h2) ∈ PF
be the projection invalidating X and X + x respectively. If x /∈ P1 then (P1, h1) =
(P1, h1[x→ 1]) ∈ Dx(PF) invalidates X, and hence X /∈ F(Dx(PF)). So we can assume
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x ∈ P1; by a similar argument, x ∈ P2. This also implies h1(x) = 0 and h2(x) = 1.
Finally, for all y ∈ P1 ∩ P2 − x, it holds h1(y) = h2(y) = hX(y), that is, (P1, h1) and
(P2, h2) disagree just on x.

Then, by Lemma 7, there is (Q, hQ) ∈ P(F(PF)) = PF such that Q ⊆ P1 ∪ P2 − x
that agrees with both (P1, h1) and (P2, h2). But then (Q, hQ) invalidates X and is not
changed by Dx, which finishes the proof that X /∈ F(Dx(PF)).

2. Note that F being shattering-extremal implies | Str(F)| = |F| = |Dx(F)| 6
| Str(Dx(F))|. So to prove the shattering-extremality of Dx(F) it is enough to prove a
well known-fact that Str(Dx(F)) ⊆ Str(F). Indeed, by Proposition 8, X /∈ Str(F) if
P ⊆ X for some P ∈ Asup(PF ) = Asup(Dx(PF )). But P(Dx(F)) �d Dx(PF ), which
implies Q ⊆ P ⊆ X for some Q ∈ Asup(P(Dx(F))). But then X /∈ Str(Dx(F)).

3. By applying Asup to both sides of (5) we get A1 = Asup(P(Dx(F))) �d A2 =
Asup(Dx(PF)). Now

|Au
1 | = 2|U | −

∣∣{S ⊆ U | S 6⊇ P, for all P ∈ Asup(P(Dx(F)))}
∣∣

= 2|U | −
∣∣Str(Dx(F))

∣∣
=
[
by part 2

]
= 2|U | −

∣∣Dx(F)
∣∣= 2|U | −

∣∣F∣∣= 2|U | −
∣∣Str(F)

∣∣
= 2|U | −

∣∣{S ⊆ U | S 6⊇ P, for all P ∈ Asup(PF)}
∣∣

=
[
trivially, Asup(PF) = Asup(Dx(PF))

]
= 2|U | −

∣∣{S ⊆ U | S 6⊇ P, for all P ∈ Asup(Dx(PF))}
∣∣ = |Au

2 |.

Hence, Au
1 = Au

2 and A1 = A2.

Proof (of Theorem 5). If F is shattering-extremal then PF satisfies (‡). Let us define
a partial order � on the set of systems on U as a transitive closure of the downshift
operation, namely G � F if there is a sequence x0, . . . , xk−1 ∈ U , k > 0, such that
F0 = F , Fi+1 = Dxi

(Fi), and Fk = G. This relation is reflexive and transitive by
construction, and it is also antisymmetric, as for Σ(F) =

∑
{|F | | F ∈ F}, it holds:

Σ(Dx(F)) 6 Σ(F), and the equality happens iff Dx(F) = F . The poset of all systems
with the partial order � is denoted by DNS.

We prove the claim by a poset induction on DNS, that is, we prove it for minimal
elements, and then we prove that for F ∈ DNS, if the claim holds for all G � F , then it
holds for F .

The minimal elements of DNS are exactly hereditary systems, which are shattering-
extremal. However, for a hereditary H ∈ DNS, PH = {(P, P ) | P ⊆ U, P is minimal such
that P /∈ H}. Then, for any A,B ∈ PH, dis(A,B) = ∅ and (‡) holds. This establishes
the base of induction. Also, the claim trivially holds for all non shattering-extremal
systems. As downshifts preserve shattering-extremality, any G � F is shattering-extremal
whenever F is. Thus, for the induction step, we should prove the following:

Let F ∈ DNS be shattering-extremal and such that for
any G � F PG satisfies (‡). Then PF satisfies (‡).

(8)

Suppose (8) does not hold, and let us pick F invalidating it, that is, F is shattering-
extremal and such that (‡) does not hold for PF , but holds for PG, for any G � F . We
can also assume that F is not hereditary.
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We claim that P(Dx(F)) = Dx(PF), for any x ∈ U . Indeed, suppose first that
Dx(F) = F . Then PF = P(Dx(F)) �d Dx(PF), where the second inequality is by
Lemma 9, part 1. But this can only happen if Dx(PF) = PF . Indeed, if there is some
(P, hP ) ∈ PF which is affected by Dx, that is, such that x ∈ P and hP (x) = 0, then
PF �d Dx(PF) implies there is (Q, hQ) ∈ PF such that (Q, hQ) 6 (P, hP [x → 1]). If
x /∈ Q then (Q, hQ) � (P, hP ), which is impossible, so x ∈ Q and hQ(x) = 1. Moreover,
Q ⊆ P , and (P, hP ) and (Q, hQ) disagree only on x. Hence, by Lemma 7 there is
(R, hR) ∈ PF such that R ⊆ P ∩ Q − x = Q − x which agrees with (P, hp). But then
(R, hR) � (P, hP ), a contradiction.

So suppose Dx(F) � F . Then, by Lemma 9, part 2 and 3, P(Dx(F))�d Dx(PF) and
A = Asup(P(Dx(F))) = Asup(Dx(PF))). For any A ∈ A, let us take (A, hA) ∈ Dx(PF ).
By the definition of�d, there is (A′, hA′) ∈ P(Dx(F)) such that (A′, hA′) 6 (A, hA). But
A ∈ Asup(P(Dx(F))), hence A′ = A and hA′ = hA, that is, (A, hA) ∈ P(Dx(F)). By
the induction hypothesis, P(Dx(F)) satisfies (‡), and, by Proposition 6, supports of the
projections of P(Dx(F)) are all distinct and form an antichain A. Thus,

P(Dx(F)) = {(A, hA) ∈ Dx(PF) | A ∈ A} ⊆ Dx(PF).

This, together with P(Dx(F)) �d Dx(PF), implies P(Dx(F)) = Dx(PF). This finishes
the proof of P(Dx(F)) = Dx(PF) claim.

As our second step, we use the assumption that (‡) does not hold for PF . So let us fix
A,B ∈ PF and x ∈ dis(A,B) invalidating (‡), such that |dis(A,B)| is minimal. Without
losing generality we assume that hA(x) = 0 and hB(x) = 1. We claim that in that case F
is downshifted outside of sup(A,B), that is, for any u ∈ U − sup(A,B), Du(F) = F ,
in particular, for any (P, hP ) ∈ PF and any u ∈ P − sup(A,B), hP (u) = 1. Indeed, if
not, take u /∈ sup(A,B) such that Du(F) � F . As u /∈ sup(A,B), A,B ∈ P(Du(F)) =
Du(PF). But then, by the induction hypothesis, there is C ′ ∈ P(Du(F)), validating (‡)
for A and B. But then C ⊆ sup(A,B)− x, hence the preimage of C under Du was not
affected by this downshift, so C ∈ PF and (‡) holds for A and B in PF .

Let us note that Lemma 7 immediately implies that A and B cannot disagree on
a single point x ∈ U . Indeed, otherwise there is C ∈ PF such that C ⊆ A ∪ B − x
which agrees with both A and B, that is, C witnesses (‡) for A and B. So suppose that
|dis(A,B)| > 1, the argument for which is illustrated in Figure 2 below.

Let us take y ∈ dis(A,B) − x, and use it in the induction hypothesis for Dx(PF) =
P(Dx(F)). Thus, there is (C ′, hC′) ∈ Dx(PF) such that C ′ ⊆ sup(A,B)−y, which agrees
with A′ = Dx(A) and B′ = Dx(B) on agr(A′, B′) = agr(A,B)+x. Notice that x ∈ C, as
otherwise C ∈ PF witnesses (‡) for A, B, and x. Let C0 = C ′[x 7→ 0] and C1 = C ′[x 7→ 1]
be the two possible preimages of C ′ under Dx.

If the preimage is C0, then it disagrees with B on x, and dis(B,C0) ⊆ dis(A,B)− y,
and thus |dis(B,C0)| < |dis(A,B)|. Similarly, C1 disagrees with A on x and |dis(A,C1)|<
|dis(A,B)|. From our assumption that A and B have the smallest disagreement sets
among the pairs breaking (‡) it follows that there is either D0 ⊆ sup(B,C0)− x, which
agrees with B and C0 on agr(B,C0) ∩ D0, or D1 with similar properties with respect
to A and C1.

We argue that bothD0 andD1 witness (‡) for A, B, and x. Indeed, D0 ⊆ sup(B,C0)−
x = B ∪ C0 − x ⊆ B ∪ A − x = sup(A,B) − x. Now, suppose D0 disagrees with A or
with B on some w ∈ agr(A,B) ∩ D0. If w ∈ A − B then on w D0 agrees with B and
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Figure 2: Illustration for the |dis(A,B)| > 1 case of the first part of the proof of Theo-
rem 5.

hence disagrees with A. Also, w ∈ sup(B,C0) − x, and, as w /∈ B, w ∈ C0, and so
w ∈ agr(B,C0). As D0 agrees with C0 on agr(B,C0) ∩D0, hD0(w) = hC0(w). Now, C0

agrees with A on agr(A,B)∩C0−x, hence hA(w) = hC0(w). But then D0 agrees with A
on w, a contradiction.

On the other hand, if w ∈ B − A, then on w D0 agrees with A and hence disagrees
with B. And if w ∈ A ∩ B then on w D0 disagrees with both A and B. We use the fact
that it disagrees with B to reach the contradiction for both cases. As D0 agrees with B
on agr(B,C0)∩D0, it follows that w ∈ dis(B,C0), that is, w ∈ B∩C0, hB(w) 6= hC0(w).
But w ∈ agr(A,B) ∩ C0 − x, hence C0 agrees on it with B, a contradiction.

This argument finishes the proof of the induction step and of the first part of the
theorem.

If P ∈ PRJ∗ satisfies (‡) then P ∈ PRJ� and FP is shattering-extremal. Let us first
note that (‡) trivially implies, by Lemma 7, that P ∈ PRJ�. Suppose now that P is
not shattering-extremal, that is, | Str(FP)| > |FP |. Let us enumerate U = {x1, . . . , xn}
somehow, and define P0 = P , Pi+1 = Dxi

(Pi), P∗ = Pn+1; and F0 = FP , Fi+1 = Dx(Fi),
and F∗ = Fn+1. Notice that, by Lemma 9, F(Pi) ⊇ Fi and |Fi| = |FP |, for all i.
Finally, P∗ = {(P, P ) | (P,HP ) ∈ P}, hence F(P∗) is hereditary, P∗ = P(F(P∗)) and
Str(F(P∗)) = F(P∗). Also, by Proposition 8

Str(F(P∗)) = {S ⊆ U | S 6⊇ P, for all P ∈ Asup(P∗)}
= {S ⊆ U | S 6⊇ P, for all P ∈ Asup(P)}
⊇ {S ⊆ U | S 6⊇ P, for all P ∈ Asup(P(FP))} = Str(FP).

Then | Str(FP)| > |FP | implies |F(P∗)| > | Str(FP)| > |FP | = |F∗|, and so F(P∗) ) F∗.
Let i be minimal such that F(Pi) ) Fi; i > 0 as F(P0) = F0 by definition. Notice that (‡)
is preserved under downshifts, so it holds for Pi−1. Then, without losing generality, we
may assume i = 1, that is, there is x ∈ U such that F(Dx(P)) ) Dx(FP), and let us take
X ∈ F(Dx(P))−Dx(FP), as illustrated in Figure 3 below.

Let us denote X0 = X − x and X1 = X + x. If X = X1, that is, if x ∈ X, then
neither X0 nor X1 invalidate P . Indeed, if some P ∈ P is invalidated by X0 or X1, then
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Figure 3: Illustration for the second part of the proof of Theorem 5. Transformations
of S and FS under downshift.

P [x 7→ 1] is invalidated by X0 + x = X or X1 + x = X. But then both X0 and X1 are
in FP , and, consequently, in Dx (FP), which contradicts to the fact that X /∈ Dx (FP).

Thus, X = X0. This implies that neither X0 nor X1 lie in FP . If X0 and X1 are
invalidated by the same P ∈ P , then x /∈ P , and consequently P = P [x 7→ 1] ∈ Dx(P),
which invalidates X in Dx(P). Hence, there are two different forbidden projections
(A, hA) and (B, hB) in P , invalidating X0 and X1 correspondingly, such that x ∈ A ∩B.
Then dis(A,B) = {x}: indeed, hA and hB disagree on x, and, as X0 and X1 agree on all
points except for x, hA and hB must also agree everywhere, except for x.

Now, by (‡), there is (C, hC) ∈ P such that C ∈ A ∪ B − x, which agrees with A
and B on all points. But then hC agrees with both X0 and X1, and, consequently, C is
invalidated by both of them. Finally, C = C[x 7→ 1], which means that C ∈ Dx(P), and
thus X invalidates Dx(P), a contradiction.

Corollary 10. If a system F is shattering-extremal, then

1. Dx and Dy commute on F , that is, Dx(Dy(F)) = Dy(Dx(F)), for all x, y ∈ U ;

2. P(Dx(F)) = Dx(PF);

3. The supports of forbidden projections of PF are all distinct and form an antichain.

4 Topological properties of shattering-extremal systems

In this section, we are trying to work along the lines of characterization of convex geome-
tries in terms of maximal chains, given by the following abridged version of [15, Theorem
III.1.1.], which, in turn, refers to [10]:

Theorem 11. A closure system F is a convex geometry iff for every X ∈ F , X 6= U ,
there is x /∈ X such that X + x ∈ F .

Alternatively, a union-closed system F containing ∅ is an antimatroid iff for every
X ∈ F , X 6= ∅, there is x ∈ X such that X − x ∈ F .

Somewhat parallel to the definition of the downshift Dx, we define a bit flip opera-
tion BX . For X ⊆ U , and F ⊆ 2U , let

BX(F) =
{
F4X | F ∈ F

}
.
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And for a set of forbidden projections P , let

BX(P) =
{

(P,HP4(P ∩X)) | (P,HP ) ∈ F
}
.

When X = {x}, the latter can be reformulated as:

Bx(P) =
{

(P,HP4x) | (P,HP ) ∈ F , x ∈ P
}
∪
{

(P,HP ) | (P,HP ) ∈ F , x /∈ P
}
.

The following proposition gives some obvious properties of bit flips.

Proposition 12. For any system F , set of forbidden projections P, and X ⊆ U , it holds:

1. F is shattering-extremal iff BX(F) is shattering-extremal;

2. P satisfies (‡) iff BX(P) satisfies (‡). Recall that (‡) is from the characterization
of shattering-extremal projection families, that is, from Theorem 5;

3. P ∈ PRJ� iff BX(P) ∈ PRJ�;

4. BX(PF) = P(BX(F));

5. BX(F(P)) = F(BX(P));

6. BX is involutive, that is, BX(BX(F)) = F and BX(BX(P)) = P.

Although we find bit flips to be rather intuitive, let us still illustrate them using the
same system that we used for the illustration of downshifts in the discussion after the
statement of Lemma 9. Recall that F is a family of intervals on U = {1, 2, 3, 4} linearly
ordered as 1 < 2 < 3 < 4; F is a convex geometry, is thus shattering-extremal, has 11
elements, and shatters all subsets of U of size at most two. Now, let X = 24. Figures 4
and 5 below show how this operator applies to F and PF respectively.

PF D3(PF)

Figure 4: Bit flip B24 applied to F .

PF D3(PF)

Figure 5: Bit flip B24 applied to PF .

For A,B ⊆ U , the Hamming distance d(A,B) between A and B is |d(A,B)| = |A4B|.
For a system F , let us define ΓF as a simple graph with vertex set F and edge set
EF = {(F,G) | F,G ∈ F , d(F,G) = 1}. For A,B ∈ F we define dF(A,B) as a distance
between A and B in ΓF ; if A and B are in different connected components of ΓF , then
dF(A,B) =∞. Trivially, dF(A,B) 6 dF(A,B), for all A,B ∈ F .
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Lemma 13. Let F be shattering-extremal, then d(A,B) = dF(A,B), for all A,B ∈ F .

Let us give an example. For U = {1, 2, 3, 4, 5}, let F be a system containing U together
with all sets of size at most three. Then d(123, 345) = dF(123, 345) = 2 with 123, 234, 345
being a path in ΓF of length two. However, d(123, 12345) = 2 and dF(123, 12345) = ∞,
as 12345 is an isolated edge in ΓF . In the light of Lemma 13 this means that F is not
shattering-extremal. Indeed, it can be noticed that F shatters all sets except for U , and
thus | Str(F)| = 25 − 1 > |F | = 25 −

(
5
4

)
.

As before, prior to going into the proof of Lemma 13, we prove an intermediate result:

Lemma 14. Let system F be shattering-extremal, then

P ′ = {(P,HP ) ∈ PF | |HP | 6 1}

satisfies (‡), hence F(P ′) ⊇ F is shattering-extremal. Moreover, if F contains ∅ then
F(P ′) ⊇ F is an antimatroid.

Proof. Indeed, for A,B ∈ P ′, let x ∈ dis(A,B) and let C ∈ PF validate (‡) for A,B
and x. As hA(x) 6= hB(x), let us assume without loss of generality that hA(x) = 1.
Then x is a unique element in A on which hA is non-zero. Now, C ⊆ sup(A,B) − x
and C agrees with A and B on agr(A,B). Let w ∈ C is such that hC(w) = 1. If w ∈ A
then hA(w) = 0, hence w ∈ dis(A,B), which means that w = y where y ∈ B is a unique
element such that hB(y) = 1. Alternatively, if y /∈ A then y ∈ B and y ∈ agr(A,B).
Hence 1 = hC(w) = hB(w), and again w = y. Thus, C ∈ P ′ and hence P ′ satisfies (‡).

Now, if F contains ∅ then there is no projection P ∈ FP for which HP = ∅. Thus,
for all P ′ ∈ P ′ it holds |HP ′| = 1. Then, after bit-flipping on the entire U , BU(P ′) satisfies
the conditions of Theorem 3, hence BU(P ′) ∈ PRJ� and F(BU(P ′)) is a convex geometry.
Then, by definition, BU(F(BU(P ′))) = F(P ′) is an antimatroid.

Proof (of Lemma 13). As noted, d(A,B) 6 dF(A,B), for all A,B ∈ F . The claim of the
lemma then follows from the following statement:

for any A,B ∈ F such that d(A,B) > 2 there is C ∈ F ,
C 6= A,B, such that d(A,B) = d(A,C) + d(C,B).

(9)

Suppose (9) does not hold and let us pick A and B invalidating it. By bit flipping,
we might assume that A = ∅ and |B| > 2. Let P ′ be defined as in Lemma 14, i.e.

P ′ = {(P,HP ) ∈ PF | |HP | 6 1} .

Then F ′ = F(P ′) ⊇ F is an antimatroid.
Notice that, by assumption, for any x ∈ B it holds {x} /∈ F , hence there is Px ∈ PF

invalidated by it. However, as ∅ ∈ F and {x} /∈ F , Px should tell these sets apart, and
hence x ∈ Px and hPx(w) = 0, for all w ∈ Px − x and hPx(x) = 1. Thus, Px ∈ P ′ and
{x} /∈ F ′, for all x ∈ B. But as F ′ is an antimatroid, Theorem 11 trivially implies that
there is x ∈ B such that {x} ∈ F ′, a contradiction.

The following reformulation of Lemma 13 makes the parallel with Theorem 11 more
visible:
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Corollary 15. If F is shattering-extremal then for all A,B ∈ F , A 6= B there is x ∈ U
such that A+ x ∈ F and d(A+ x,B) = d(A,B)− 1.

We define a minimal path between A,B ∈ F as a path in ΓF of length d(A,B), in
particular, if A = B, then the minimal path consists of a single vertex A. We denote the
set of all paths between A and B by PAT(A,B), and the set of minimal paths between A
and B by MPAT(A,B); moreover, for C ∈ F such that d(A,B) = d(A,C) + d(C,B), we
denote by MPAT(A,C,B) the set of minimal paths from A to B through C. Also, for
such C, for χ ∈ MPAT(A,C) and γ ∈ MPAT(C,B) we denote by χ+ γ ∈ MPAT(A,C,B)
the minimal path obtained by concatenating χ and γ.

Let d(A,B) = k, and χ = (X0, . . . , Xk), γ = (Y0, . . . , Yk) ∈ MPAT(A,B). We say
that χ can be 1-deformed into γ if either χ = γ, or there is j, 0 < j < k, such that Xi = Yi
for all i 6= j; and that χ can be deformed into γ if there is a sequence χ0 = χ, . . . , χn = γ
from MPAT(A,B) such that χi can be 1-deformed into χi+1, for all i = 0, . . . , n− 1. For
χ ∈ PAT(A,B), χ−1 ∈ PAT(B,A) denotes a path obtained by traversing χ backwards.

We denote a loop ω in ΓF of length k by ω = (W0, . . . ,Wk−1), where W0 6= Wk−1, but
instead d(Wi,Wi+1) = 1 for i = 0, . . . , k − 1, where lower index is taken is modulo k; in
particular, d(Wk−1,W0) = 1. A cyclic shift of ω is defined in an obvious way. We consider
an empty sequence to be a loop of length 0. For χ ∈ PAT(A,B) and γ ∈ PAT(B,A), we
denote by χ+ γ the loop obtained by concatenating χ and γ.

Let ω = (W0, . . . ,Wl−1) and ζ = (Z0, . . . , Zk−1) be loops in ΓF . We say that ω can
be 1-deformed into ζ if:

1. either l = k and for some cyclic shift ω′ of ω there is 0 6 i < l such that W ′
j = Zj

for all i 6= j;

2. or k = l−2, and for some cyclic shifts ω′ of ω and ζ ′ of ζ, W ′
l−3 = W ′

l−1 and W ′
j = Z ′j

for all 0 6 j 6 l − 3;

3. or 2. holds for ζ and ω.

We say that ω can be deformed into ζ if there is a sequence ω0 = ω, . . . , ωn = ζ of loops
such that ωi can be 1-deformed into ωi+1, for all i = 0, . . . , n− 1. We say that a loop ω
is contractible if it can be deformed into an empty loop.

Theorem 16. If F is a shattering-extremal system, then

1. For any A,B ∈ F , any two minimal paths between A and B can be deformed into
each other;

2. Any loop in F is contractible.

Proof. (1). Suppose not, that is, there are A,B ∈ F , d(A,B) = k, and χ = (X0, . . . , Xk),
γ = (Y0, . . . , Yk) ∈ MPAT(A,B) that cannot be deformed into each other. Take k to be
minimal for which there exist such F , A,B, χ, and γ. Using bit flipping we can assume
that A = ∅ and |B| = k. Trivially, in this case Xi, Yi ⊆ B, and |Xi| = |Yi| = i for all
i = 1, . . . , k.

We claim that Xi = B − Yk−i for all i = 0, . . . k. Suppose not, that is, there is i > 0
such that Xi 6= B − Yk−i. Then d(Xi, Yk−i) = l < k, and let ρ = (P0, . . . , Pl) be a
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minimal path between Xi and Yk−i. Notice that Pj 6= A,B for all 0 6 j 6 l. Indeed,
d(Xi, Pj) + d(Pj, Yk−i) = d(Xi, Yk−i) = l, for all j; however, d(Xi, A) + d(A, Yk−i) =
i + (k − i) = k > l; similarly Pj 6= B. Now we argue that any minimal path from
MPAT(A,Pj, B) can be deformed into a path from MPAT(A,Pj+1, B), for all 0 6 j < l.
Indeed, let ν ∈ MPAT(A,Pj, B) = νb + νt, for νb ∈ MPAT(A,Pj) and νt ∈ MPAT(Pj, B).
As d(Pj, Pj+1) = 1, it is either Pj ( Pj+1 or Pj ) Pj+1. Without losing generality, let us
assume that it is the former. Then there is some ηt ∈ MPAT(Pj, Pj+1, B). As Pj 6= A,
d(Pj, B) < k, and, by the assumption of minimality of k, νt can be deformed into ηt;
hence, ν = νb + νt can be deformed into νb + ηt ∈ MPAT(A,Pj+1, B). Finally, again by
the minimality of k, any paths from MPAT(A,Xi, B) can be deformed into each other,
and same for MPAT(A, Yk−i, B). Combining, we get that A can be deformed into B, a
contradiction. This argument is illustrated in Figure 6

X5

X4

X3 = P0

X2

X1

X0

Y5

Y4

Y3

Y2 = P3

Y1

Y0

P1

P2

Figure 6: Illustration for the path deformation argument in Theorem 16.

Thus, Xi = B − Yk−i for all i = 0, . . . k. Notice that it also follows that there is no
C ∈ F , C ⊆ B, C /∈ χ, γ, as otherwise there is ν ∈ MPAT(A,C,B) and, by the previous
argument, χ can be deformed into ν and ν into γ. Let us enumerate elements of B =
{b0, . . . , bk−1} such that Xi = {b0, . . . , bi−1} and Yi = {bk−i, . . . , bk−1}, for i = 0, . . . , k.

Let P = PF . We claim that for any p, q, r, 0 6 p < q < r 6 k − 1 there is Pp,q,r =
(P, hP ) ∈ FP such that P∩B = {bp, bq, br}, hP (p) = hP (r) = 1, hP (q) = 0, and hP (w) = 0
for all w ∈ U − B. Indeed, let (P ′, hP ′) ∈ PRJ be defined as P ′ = {bp, bq, br} ∪ (U − B),
and hP ′(p) = hP ′(r) = 1, hP ′(q) = 0, and hP ′(w) = 0 for all w ∈ U − B. Notice that a
D ⊆ U invalidates P ′ iff D ⊆ B, p, r ∈ D, and q /∈ D; however, by the above argument,
there is no such D ∈ F , and hence P ′ is a forbidden projection for F . Hence, there is
Pp,q,r ∈ PF , P �d P

′. But if P ∩B does not contain bp, bq, or br, then Pp,q,r is invalidated
by Yk−r, B, or Xp+1 correspondingly.

By a similar argument, for any p, q, r, 0 6 p < q < r 6 k−1 there is Qp,q,r = (Q, hQ) ∈
FQ such that Q ∩ B = {bp, bq, br}, hQ(p) = hQ(r) = 0, hQ(q) = 1, and hQ(w) = 0 for all
w ∈ U − B. Now, let us take P0,1,2 and Q0,1,2. Applying (‡) to them with x = b0 we get
R ∈ PF such that |R∩B| 6 2 and hR(w) = 0 for all w ∈ R−B. The latter is impossible,
a contradiction.
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(2). For a loop ω = (W0, . . . ,Wn−1) let χ = (Wk, . . . ,Wk+l) be a subpath of ω, which
is maximal such that d(Wk,Wk+l) = l. Then χ ∈ MPAT(Wk,Wk+l) and d(Wk−1,Wk+l) =
l − 1, and hence there is a path χ′ ∈ MPAT(Wk,Wk−1,Wk+l). Then χ can be deformed
into χ′, and if we represent ω = γ + χ (up to cyclic shift) then ω can be deformed to
ω′ = γ + χ′. But then, up to a cyclic shift, ω′ = ω′′ + (Wk−1,Wk,Wk−1), and hence ω′

can be 1-deformed to ω′′. As ω′′ has a smaller length, the proof can be finished by
induction.

Note that, unlike Theorem 11, which is a characterization, neither Lemma 13 (Corol-
lary 15), nor Theorem 16 give a sufficient condition for a system to be shattering-
extremal. A non shattering-extremal system F = 2{1,2,3} −

{
∅, 123

}
satisfies the conclu-

sion of Lemma 13, however the graph ΓF is a six-element loop that is not contractible;
and a non shattering-extremal system G = 2{1,2,3,4} −

{
∅, 1234

}
satisfies the conclusion

of both Lemma 13 and Theorem 16.

5 Open problems

Although Lemma 7 enables us to tell if P ∈ PRJ∗ is actually in PRJ�, we note that con-
structing P(F(P)) from P ∈ PRJ∗ cannot be easy. Indeed, P ∈ PRJ can be reinterpreted
as a CNF-boolean formula

φ(P) =
∧
P∈P

(
∨
x∈P

x 6= hP (x)).

Then checking that P(F(P)) = {(∅,∅)} is equivalent to checking that φ(P) is unsatis-
fiable, and is thus a co-NP complete problem. It does not, however, automatically imply
that checking that F(P) is shattering-extremal for P ∈ PRJ∗ is intractable, although the
previous remark suggests that simply constructing P(F(P)) and applying Theorem 5 to
it is computationally hard. Hence

Problem 17. Given P ∈ PRJ∗, is there an easy criterion (or a polynomial-time algo-
rithm) to tell whether F(P) is extremal?

We say that P ∈ PRJ∗ is minimal if there is no P ′ ∈ PRJ∗ such that P ′ ( P and
F(P ′) = F(P). Seemingly related to Problem 17 is the following:

Problem 18. Is there a characterization of minimal families of forbidden projections for
shattering-extremal systems?

It seems that some insight into these two problems can be found in [15], in considera-
tion of critical circuits of antimatroids, which are related to minimal families of forbidden
projections. Moreover, we can define the size s(P) of a family of forbidden projections as
S(P) =

∑
|P | | P ∈ P , and say that P is optimal for F = FP if it has the minimal size

among all families of forbidden projections for F . It is easy to see that optimality implies
minimality, and thus the problem of finding an optimal family of forbidden projections re-
fines Problem 18. The problem of finding the optimal families of implications for lattices
in general and convex geometries in particular has a long history. For example, [1] gives
several characterizations of this sort. However, it is not clear whether these results can
be translated to finding optimal families of projections for shattering-extremal systems.

Another obvious loose end is the following:
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Problem 19. Is there a topological characterization of shattering-extremal systems in
the spirit of Lemma 13 and Theorem 16?

In particular, Theorem 16 can be understood as that the first homotopy group of a
shattering-extremal system is trivial.

Problem 20. Can higher homotopies be reasonably defined for set families? Can it be
the case that all homotopies of shattering-extremal systems are trivial, and could it also
be a sufficient condition?

An interesting example of a shattering-extremal system exhibiting some nontrivial
topological properties was given in [4, Theorem 4.5], as a counterexample to a corner
peeling conjecture. This paper, in turn, attributes the topological approach to [22].
Thus, taking a closer look at this counterexample might provide some guidance toward
Problems 19 and 20.
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