
Synchronizing Times for k-sets in Automata

Natalie Behague∗

Department of Mathematics and Statistics
University of Victoria
Victoria BC, Canada

nbehague@uvic.ca

Robert Johnson
School of Mathematical Sciences
Queen Mary University of London

London, UK

r.johnson@qmul.ac.uk

Submitted: Aug 27, 2020; Accepted: Aug 5, 2022; Published: Aug 26, 2022

c©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

An automaton is synchronizing if there is a word whose action maps all states
onto the same state. Černý’s conjecture on the length of the shortest such words is
one of the most famous open problems in automata theory. We consider the closely
related question of determining the minimum length of a word that maps some k
states onto a single state.

For synchronizing automata, we find a simple argument for general k almost
halving the upper bound on the minimum length of a word sending k states to a
single state. We further improve the upper bound on the minimum length of a
word sending 4 states to a singleton from 0.5n2 to ≈ 0.459n2, and the minimum
length sending 5 states to a singleton from n2 to ≈ 0.798n2. In contrast to previous
work on triples, our methods are combinatorial. Indeed, we exhibit a fundamental
obstacle which suggests that the previously used linear algebraic approach cannot
extend to sets of more than 3 states.

In the case of non-synchronizing automata, we give an example to show that the
minimum length of a word that sends some k states to a single state can be as large
as Θ

!
nk−1

"
.

Mathematics Subject Classifications: 68Q45, 68R05, 68R10, 05D40

1 Introduction

A (deterministic, finite) automaton Ω consists of a finite set of states (usually labelled
[n] = {1, 2, . . . , n}) and a finite set of mappings, which are functions from the set of states
to itself.

∗Supported by a PIMS postdoctoral fellowship.

the electronic journal of combinatorics 29(3) (2022), #P3.41 https://doi.org/10.37236/9819

https://doi.org/10.37236/9819

We shall be interested in the results of applying a sequence of mappings to the set of
states. We call such a sequence of mappings a word of the automaton. The words of the
automaton form a monoid, generated by the mappings, which acts on the set of states.

We say that a word w of the automaton is a reset word if it sends every state to the
same state; that is if w(i) = w(j) for all i, j. We call an automaton synchronizing if it
has a reset word. The most famous and long-standing open problem on synchronizing
automata is Černý’s conjecture.

Conjecture 1 (Černý’s Conjecture [Čer64]). Suppose an automaton on n states is syn-
chronizing. Then the automaton has a reset word of length at most (n− 1)2.

This conjecture comes from a particular family of automata, which we shall refer to
as the Černý automata. For each n ! 2, we define an automaton with states {1, 2, . . . , n}
and two mappings f and g, defined as follows:

f(i) = i+ 1 (mod n) g(i) =

!
2 if i = 1

i otherwise

Figure 1 shows the Černý automaton for n = 4, which has shortest reset word gfffgfffg.
It is not too hard to check that the shortest reset word for the Černý automaton on n
states has length (n− 1)2. Thus if Černý’s conjecture was true the bound would be best
possible.

1

4

2

3

g

f

f

f

f

g

gg

Figure 1: The Černý automaton for n = 4.

Černý’s conjecture has been shown to hold for certain classes of automata, including
orientable automata [Epp90], automata where one mapping is a cyclic permutation of
the states [Dub98], and automata where the underlying digraph is Eulerian [Kar03]. For
a survey of these and other results see [Vol08] or chapter 15 of the recent Handbook of
Automata Theory [KV21]. It remains open to prove the conjecture for all automata.

One can easily obtain a naive upper bound on the length of a shortest reset word by
observing that for any pair of states there is some word sending them to a single state,
and the shortest such word will never pass through the same pair of states twice. Thus
the shortest word sending a given pair of states to a single state is of length at most

"
n
2

#
.

Applying this repeatedly gives a reset word of length at most (n− 1)
"
n
2

#
.

An improved upper bound for the length of a minimal reset word comes from a result
due to Frankl and Pin [Fra82] [Pin83]. Rather than only considering the shortest word

the electronic journal of combinatorics 29(3) (2022), #P3.41 2

sending a given pair to a singleton, this instead bounds the length of the shortest word
sending a given k-set to a (k − 1)-set.

Theorem 2 (Frankl–Pin). Consider a synchronizing automaton with state set Ω of size
n. Let S ⊆ Ω be a set of size k where k ! 2. There exists a word w of length at most"
n−k+2

2

#
such that |w(S)| < k.

Applying Theorem 2 repeatedly, we get

Corollary 3 (Frankl–Pin). An n-state synchronizing automaton has a reset word of length
"

$n
i=2

"
n−i+2

2

#
= n3−n

6
.

This was the best known upper bound until relatively recently. Slight improvements
to the constant factor have now been found: Szyku"la [Szy18] obtained an upper bound
of ≈ 114

685
n3 + O(n2) and Shitov [Shi19] refined this method to obtain an upper bound of

≈ 0.1654n3 + o (n3).
Let Ω be an automaton on [n]. The power automaton P(Ω), has as states the non-

empty subsets of [n], and for each mapping f of Ω a corresponding mapping in P(Ω)
taking S to f(S) for each set of states S. Figure 2 shows the power automaton for the
Černý automaton in figure 1. We will think of the power automaton as a directed graph
with labelled edges, and we say that the subsets of size k form the kth layer of the power
automaton, written Lk.

g

g

g

g

g

ggg

g

g

1234

341123

34 4112 24

1

13

3 4

234

2

412

L4

L3

L2

L1

f

f
f

f

f

g g g

g

f

g

23

f

f

f f

f ff

f f

Figure 2: The power automaton for the Černý automaton on 4 states.

Now Černý’s conjecture can be restated in terms of the power automaton:

Conjecture 1′ (Černý’s conjecture). Let Ω be an automaton on [n]. If the power au-
tomaton P(Ω) contains a path from [n] to a state in L1, then there exists such a path of
length at most (n− 1)2.

the electronic journal of combinatorics 29(3) (2022), #P3.41 3

This formulation of Černý’s conjecture suggests the more general question of deter-
mining the length of the shortest path taking a k-set to a singleton. This was introduced
by Gonze and Jungers [GJ16] as the k-set rendezvous time and will be our focus in the
first half of this paper.

Question 4. What is the minimum m such for any synchronizing automaton Ω on [n]
there is a path in the power automaton P(Ω) from Lk to L1 of length at most m? Denote
this minimum by rdv(k, n).

Question 5. What is the minimum m such for any synchronizing automaton Ω on [n]
and for any k-set S there is a path in the power automaton P(Ω) from S to L1 of length
at most m? Denote this minimum by RDV(k, n).

Given an automaton Ω and a set of states S, we call S synchronizable if there exists
a path from S to a singleton in the power automaton P(Ω). Let the weight t(S) of a set
S be the shortest path from S to a singleton if S is synchronizable and ∞ otherwise. We
define

m(k,Ω) = min{t(S) : S ∈ Lk}
M(k,Ω) = max{t(S) : S ∈ Lk, S synchronizable}.

Then rdv(k, n) is the maximum of m(k,Ω) taken over all synchronizing automata and
RDV(k, n) is the maximum of M(k,Ω) again taken over all synchronizing automata. It
is clear that rdv(k, n) " RDV(k, n) and rdv(k, n) " 1 + RDV(k − 1, n).

Answering either of these questions in the case k = n is equivalent to answering
Černý’s conjecture. Note that finding a lower bound on rdv(k, n) or RDV(k, n) requires
a construction of a suitable automaton with all k-sets having large weight or one k-set
having large weight respectively; while finding an upper bound on rdv(k, n) or RDV(k, n)
requires an argument about all synchronizing automata.

It is easy to see that rdv(2, n) = 1. We have RDV(2, n) "
"
n
2

#
since at worst some pair

must travel through every other pair before reaching to a singleton. In fact, RDV(2, n) ="
n
2

#
, where the example of a pair of weight

"
n
2

#
is the pair (2,

%
n
2

&
+ 2) in the Černý

automaton on [n].
The Černý automaton also gives lower bounds for general k. We have that the mini-

mum weight k-set is {1, 2, . . . , k} with weight (k−2)n+1 and so rdv(k, n) ! (k−2)n+1.
Gonze and Jungers [GJ16] give a construction showing that rdv(3, n) ! n + 3 for odd
n ! 9, which means in particular that the Černý automaton is not extremal for the triple
rendezvous time for such n.

Using the fact that (after the first time) it takes n moves to get two states one step
closer to each other on the cycle, a k-set with states equally spaced around the circle

has weight !
'
(k−1)n

k
− 1

(
n and so RDV(k, n) ! k−1

k
n2 − 2n. More precisely, Cardoso

[Car14] showed that the Černý automaton on n states contains a k-set with weight at
least (n− 1)2 −

)
n−k
k

* "
2n− k

)
n
k

*
− 1

#
, and thus

RDV(k, n) ! (n− 1)2 −
+
n− k

k

,-
2n− k

.n
k

/
− 1

0
.

the electronic journal of combinatorics 29(3) (2022), #P3.41 4

Cardoso conjectured that this is the true value of RDV(k, n).
For upper bounds on rdv(k, n) we can apply Theorem 2, which gives rdv(k, n) "

1 +
$k−1

i=2

"
n−i+2

2

#
= k−2

2
n2 +O(n) and RDV(k, n) "

$k
i=2

"
n−i+2

2

#
= k−1

2
n2 +O(n).

In Section 2 we give a simple argument that rdv(k, n) "
%
k−1
2

&
n2

2
, thus almost halving

the upper bound given by Frankl-Pin (indeed, for even k the coefficient of n2 is exactly
halved).

We are also interested in upper bounds for specific values of k. Gonze and Jungers
[GJ16] proved that the triple rendezvous time rdv(3, n) is bounded above by ≈ 0.1545n2+
O(n), using an approach based on linear programming. Our main results on these ques-
tions are improved upper bounds for the 4-set and 5-set rendezvous times rdv(4, n) and
rdv(5, n). In particular, we prove that rdv(4, n) # 0.4589n2 + O(n) and rdv(5, n) #
0.7975n2 + O(n). To do so, we first prove an upper bound on rdv(3, n) that is weaker
than the bound proved in [GJ16] but which uses an approach that is both purely combi-
natorial and, crucially, generalisable to larger k. The proofs of these results are given in
Section 2.

In subsection 2.1 we include a brief discussion of the triple rendezvous bound given in
[GJ16], including an explanation of a link between the linear program used and the more
familiar vertex cover number, and why this suggests their approach may be difficult to
generalise to k larger than 3.

lower bound upper bound

rdv(3, n) n+ 3 ≈ 0.1545n2 +O(n)

rdv(4, n) 2n+ 1 ≈ 0.4589n2 +O(n)

rdv(5, n) 3n+ 1 ≈ 0.7975n2 +O(n)

rdv(k, n) (k − 2)n+ 1 1
2

%
k−1
2

&
n2 +O(n)

RDV(k, n) k−1
k
n2 +O(n) k−1

2
n2 +O(n)

Table 1: Upper and lower bounds on rdv(k, n) and RDV(k, n).

Table 1 summarises what is known about rdv(k, n) and RDV(k, n), with the new
results highlighted in red.

We can also ask similar questions over all automata, not just synchronizing automata,
and this will be our focus in the second half of the paper.

Question 6. What is the minimum m such that for any automaton Ω on [n], if the power
automaton P(Ω) contains a path from Lk to L1, then there exists such a path of length
at most m? Denote this minimum by rdv∗(k, n).

Question 7. What is the minimum m such that for any automaton Ω on [n] and for any
k-set S, if there is a path from S to L1, then there is such a path of length at most m?
Denote this minimum by RDV∗(k, n).

the electronic journal of combinatorics 29(3) (2022), #P3.41 5

In particular, rdv∗(k, n) is the maximum of m(k,Ω) taken over all automata Ω with
at least one synchronizable k-set, and RDV∗(k, n) is the maximum of M(k,Ω) over the
same collection of automata.

Again we have that answering either question in the case k = n is again equivalent to
Černý’s conjecture. Note that rdv∗(k, n) " RDV∗(k, n) and rdv∗(k, n) " 1 + RDV∗(k −
1, n).

A similar question on the maximum length of a word resetting some subset of states of
a non-synchronizing automaton was studied by Vorel [Vor16] among others. In particular,
Vorel proved that there exist non-synchronizing automata on n states with subsets taking
2Ω(n) steps to synchronize. We ask the slightly more specific question of what happens
for sets of k states.

A naive upper bound on rdv∗(k, n) is 1 +
$k−1

i=2

"
n
i

#
, since a shortest word down to a

singleton will take a set through each set of size < k at most once.
A very slightly improved upper bound can be obtained by noting that an automaton is

synchronizing if and only if for every pair of states u, v there is a word w with w(u) = w(v).
If the automaton is synchronizing then we can use the Frankl–Pin bound. If not, then
there is a pair u, v that cannot be sent to the same state and any set containing both
u and v is not synchronizable. The shortest path will not pass through any of these
sets and so rdv∗(k, n) " 1 +

$k−1
i=2

""
n
i

#
−

"
n−2
i−2

##
. In either case, for fixed k we have

rdv∗(k, n) = O(nk−1) and by the same argument RDV∗(k, n) = O(nk).
In Section 3 we show that this is best possible — that is, if k is fixed then the an-

swer to Question 6 is Θ
"
nk−1

#
. Since RDV∗(k, n) ! rdv∗(k + 1, n) − 1, we also get that

RDV∗(k, n) = O
"
nk

#
. The non-synchronizing case therefore exhibits very different be-

haviour to the synchronizing case, which implies that any approach to Černý’s conjecture
using rendezvous times must use the condition that the automata is synchronizing in a
critical way.

lower bound upper bound

rdv∗(3, n) 1
8
n2 1

2
n(n− 1)

rdv∗(k, n) 4
3

"
n
4k

#k−1 "
n

k−1

#
+O

"
nk−2

#

RDV∗(k, n) 4
3

-
n

4(k+1)

0k

− 1
"
n
k

#
+O

"
nk−1

#

Table 2: Upper and lower bounds on rdv∗(k, n) and RDV∗(k, n).

Table 2 summarises what is known about rdv∗(k, n) and RDV∗(k, n). The new con-
tributions are highlighted in red.

For the avoidance of confusion please note that throughout this paper we use the
convention that when applying a word fnfn−1 . . . f2f1 to a state v, we first apply the
mapping f1, then the mapping f2 and so on, as with composition of functions.

the electronic journal of combinatorics 29(3) (2022), #P3.41 6

2 Upper Bounds on the Rendezvous Time

Frankl–Pin gives trivially that for 2 " k " n, the k-set rendezvous time rdv(k, n) is at
most 1 +

$k−1
i=2

"
n−i+2

2

#
. The following simple adaptation of Frankl–Pin’s result improves

on this bound for k ! 4.

Theorem 8. For all n and all 2 " k " n the k-set rendezvous time rdv(k, n) is at most

⌊ k
2⌋1

i=1

2
i+ 1

2

3
+

⌈ k
2⌉−11

i=1

2
n− i+ 1

2

3
.

In particular, for fixed k and n sufficiently large given k we have that

rdv(k, n) <

4
k − 1

2

5
n2

2
.

Proof. By Frankl–Pin, there exists a word w that takes [n] to a set S of size n −
%
k
2

&
of

length at most

n1

i=n−⌊ k
2⌋+1

2
n− i+ 2

2

3
=

⌊ k
2⌋1

i=1

2
i+ 1

2

3
.

By the pigeonhole principle, there are at least n− 2
%
k
2

&
states in S with exactly one

state in their pre-image under w. Take T to be n− k such states and let R = S \ T . We
have |R| =

)
k
2

*
and |w−1(R)| = n− |w−1(T)| = n− |T | = k.

By Frankl–Pin again, we can find a word w′ that takes R to a singleton of length at
most

⌈ k
2⌉1

i=2

2
n− i+ 2

2

3
=

⌈ k
2⌉−11

i=1

2
n− i+ 1

2

3
.

Concatenating w′w gives the required word.

We can also obtain improved bounds on the rendezvous time for k = 4 and 5. We
shall first consider the case k = 3. The triple rendezvous time rdv(3, n) was studied in

particular by Gonze and Jungers [GJ16], who proved that rdv(3, n) "
√
5−1
8

n2 + O(n) ≈
0.1545n2+O(n). Theorem 9 gives a weaker upper bound (note that 3−

√
5

4
≅ 0.1910) but it

serves to illustrate the combinatorial approach that we will apply to the more complicated
cases of k = 4 and k = 5.

Theorem 9. For all n ! 3, we have rdv(3, n) " 3−
√
5

4
n2 + 3

2
n.

For the sake of clarity, we will first prove the bound for strongly connected automaton,
from which Theorem 9 will follow as a corollary. An automaton is strongly connected if
for any ordered pair of states u, v there is a word w such that w(u) = v.

We will need two further definitions. The image Imw of a word w is the set of states
that are in the image of w thought of as a function. In particular, Imw = w([n]). The
rank of a word is the number of states in its image.

the electronic journal of combinatorics 29(3) (2022), #P3.41 7

Theorem 10. Let Ω be a strongly connected synchronizing automaton on n ! 3 states.
There exists some set S of three states and some word w of length " 3−

√
5

4
n2 + 3

2
n such

that w(S) is a single state.

Proof. First, note that if n = 3 then the triple rendezvous time is at most 4 and the result
is trivially true. Thus we may assume that n ! 4.

Let r be the minimum rank over all words of length at most n. Note that by Frankl–
Pin there is a word of length 4 =

"
2
2

#
+

"
3
2

#
that takes [n] to a set of size n − 2. Since

n ! 4 we thus have that r " n− 2.
Let w be a word of length " n of minimal rank r. If r < n

2
then by the pigeonhole

principle there must be some triple sent to a singleton by w and so we are done. We may
therefore assume that r ! n

2
! 2.

Claim 10.1. There exists a word of length " n+
"
r+2
2

#
that takes some triple to a singleton.

Proof of Claim. Let w be a word of length " n of minimal rank r. If there is some triple
which w sends to a singleton then we are done, so we can assume that w sends at most
two states to the same state.

Let S = {x : ∃y ∕= z with w(y) = w(z) = x} be the set of states with pre-images of
size 2 under w. Let T = Imw−S be the set of all states with a singleton pre-image under
w. We have that |S| + |T | = r and 2|S| + |T | = |w−1([n])| = n, from which we obtain
|S| = n− r.

By Frankl–Pin there exists a word w′ of length "
"
n−(n−r)+2

2

#
=

"
r+2
2

#
such that

|w′(S)| < |S|. In particular, there exist x ∕= y in S with w′(x) = w′(y) = z. Take states
u, v with w(u) = w(v) = x and s, t with w(s) = w(t) = y. The word w′w has length at
most n +

"
r+2
2

#
and w′w({u, v, s, t}) = w′{x, y}) = {z} so in this case w′w sends some

4-set to a single state.

Claim 10.2. There exists a word of length" n+ (n−r)n
2

that takes some triple to a singleton.

Proof of Claim. We call an pair of states (u, v) good if there exists a word wuv of length
" n with |w−1

uv ({u, v})| ! 3. We will count the number of good pairs.
We can find a state z and a mapping f with |f−1(z)| ! 2. Since Ω is strongly connected,

for each state v there is some word wv of length " n − 1 with wv(z) = v. In particular,
(wvf)

−1(v) ⊇ f−1(z) where wvf is a word of length " m. For all a ∈ (Im (wvf) \{v}) the
pair (v, a) is good.

Since wvf is a word of length " n, the rank of wvf is ! r and so | (Im (wvf) \ {v}) | !
r − 1 > 0. Every state is in at least r − 1 good pairs and so the number of good pairs is
at least (r−1)n

2
> 0.

The number of pairs in E that are not good is at most
"
n
2

#
− (r−1)n

2
= (n−r)n

2
. We

conclude that there is some word w of length at most (n−r)n
2

that sends some good pair
(u, v) to a singleton x, where the worst case scenario is having to pass through every not
good pair first.

By definition of good, we can find a word wuv of length " n with |w−1
uv ({u, v})| ! 3.

Then wwuv is a word of length at most n + (n−r)n
2

where (wwuv)
−1(x) ⊇ w−1

uv ({u, v}) has
size at least 3. In particular, the claim holds.

the electronic journal of combinatorics 29(3) (2022), #P3.41 8

Combining the results of these two claims, we have that the triple rendezvous time

for strongly connected automata is at most min
6
n+

"
r+2
2

#
, n+ (n−r)n

2

7
. The former is

increasing in r while the latter is decreasing in r and so to find the maximum we look for
the r where they are equal. This is when (r + 2)(r + 1) = (n − r)n, which occurs when

r = −n−3+
√
5n2+6n+1
2

(subject to r ! 0).
Substituting this in gives that the triple rendezvous time for strongly connected au-

tomata is at most

n+

"
3n+ 3−

√
5n2 + 6n+ 1

#
n

4
" n+

-
3n+ 3−

√
5
-
n+ 1√

5

00
n

4

= n+

"
(3−

√
5)n+ 2

#
n

4

=
3−

√
5

4
n2 +

3

2
n.

We can use the strongly connected case to prove Theorem 9.

Proof of Theorem 9. Let C be the sink component of the automaton, that is, the minimal
non-empty set of states such that f(C) ⊆ C for every f . In particular, if w is any
synchronizing word and x is the state with w([n]) = x then C = {y : ∃w′ with w′(x) = y}.
Let m = |C| and let Ω′ be the automaton restricted to C (with state set C and mappings
that are the mappings of Ω restricted to C).

Note that Ω′ is strongly connected, and so if m ! 3 we can apply Theorem 10 to Ω′.
We obtain a word sending a triple to a singleton of length " 3−

√
5

4
m2+ 3

2
m " 3−

√
5

4
n2+ 3

2
n.

Suppose that m " 2. If m = 2, write C = {x, y}. Since the automaton is synchro-
nising, there must be some mapping g with g(x) = g(y). In addition, in Ω there must be
some state z ∕= x, y and some mapping f such that f(z) ∈ C. Note that f(C) ⊆ C, and
so the word gf of length 2 takes the triple {x, y, z} to a singleton.

Finally, suppose m = 1 and let C = {x}. In Ω, there must be some state y ∕= x and
some mapping f such that f(y) = x. Let r be the rank of f . If r < n

2
, then by the

pigeonhole principle there must be some triple sent to a singleton by f and we are done.
Suppose r ! n

2
. For every state of Ω there is some word taking that state to x. Thus we

can find some state z in Im f \ {x} and some word w of length at most n − r + 1 with
w(z) = x, where the worst case scenario is having to pass through every state in [n]\ Im f
before reaching x. Now wf is a word of length at most n− r + 2 " n

2
+ 2 that takes the

triple {x, y, z} to the singleton x.

In a similar way we can improve the upper bounds on the 4-set and 5-set rendezvous
times.

Theorem 11. For all n ! 4, we have

rdv(4, n) " rdv(3, n) + (2−
√
3)n2 + 2n− 1 "

8
11−

√
5− 4

√
3

4

9
n2 +

7

2
n− 1.

the electronic journal of combinatorics 29(3) (2022), #P3.41 9

Note that 11−
√
5−4

√
3

4
≅ 0.4589, so this is again an improvement on the 4 +

"
n
2

#
given

by Theorem 8.

Theorem 12. For all n ! 5, we have

rdv(5, n) " rdv(4, n) +
4−

√
7

4
n2 +

3

2
n− 1 "

8
15−

√
5− 4

√
3−

√
7

4

9
n2 + 5n− 2.

Note that 15−
√
5−4

√
3−

√
7

4
≅ 0.7975, so this is again an improvement on the bound of

4 +
"
n
2

#
+
"
n−1
2

#
given by Theorem 8.

To prove both Theorems 11 and 12 we will need two lemmas. In the case k = 2 the
lemmas correspond precisely to claims 10.1 and 10.2 in the proof of Theorem 9 and we
prove each lemma in an analogous way.

Lemma 13. Fix 2 " k " n − 1 and l ! 1. Let Ω be a synchronizing automaton on
n states and let r be the minimal rank over all words of length " l in Ω. Suppose that

r " n−2⌈ k
2⌉

⌊ k
2⌋

and let s =
n−⌊ k

2⌋r
⌈ k

2⌉
! 2. Then

rdv(k + 1, n) " l +

2
n− s+ 2

2

3
.

Proof. Let w be a word of length " l of minimal rank r. If there is some (k+1)-set which
w sends to a singleton then we are done, so we can assume that w sends at most k states
to the same state.

Let S = {x : |w−1(x)| !
)
k+1
2

*
} be the set of states with at least

)
k+1
2

*
pre-images

under w. Let T = Imw−S be the set of states with "
%
k
2

&
pre-images under w. We have

that |S|+|T | = r. We also have that n = |w−1([n])| = |w−1(S)|+|w−1(T)| " k|S|+
%
k
2

&
|T |.

Putting these together, we have k|S|+
%
k
2

&
(r − |S|) " n and so |S| ! n−⌊ k

2⌋r
⌈ k

2⌉
! 2.

By Frankl–Pin there exists a word w′ of length "
"
n−|S|+2

2

#
such that |w′(S)| < |S|. In

particular, there exist x ∕= y in S with w′(x) = w′(y) = z. We have that |(w′w)−1(z)| =
|w−1(x, y)| ! 2

)
k+1
2

*
, so w′w sends some (k + 1)-set to a single state.

The length of the word w′w is l +
"
n−|S|+2

2

#
" l +

"
n−s+2

2

#
where s =

n−⌊ k
2⌋r

⌈ k
2⌉

.

Lemma 14. Fix 3 " k " n − 1 and l ! 1. Let Ω be a synchronizing automaton on n
states and let r be the minimal rank over all words of length " l in Ω. Then there exists
a word of length " rdv(k, n) + n− 1 + (n−r)n

2
that sends some (k + 1)-set to a singleton.

We will first prove this Lemma for strongly connected automata.

Lemma 15. Fix k " n − 1. Let Ω be a strongly connected synchronizing automaton on
n states and let r be the minimal rank over all words of length " rdv(k, n) + n− 1. Then

there exists a word of length " rdv(k, n) + n− 1+ (n−r)n
2

that sends some (k+1)-set to a
singleton.

the electronic journal of combinatorics 29(3) (2022), #P3.41 10

Proof. Let E = {(u, v) : u ∕= v} be the set of pairs of states. Let l = rdv(k, n). We
call an pair (u, v) ∈ E good if there exists a word wuv of length " l + n − 1 with
|w−1

uv ({u, v})| ! k + 1. We will count the number of good pairs.
There is a word w of length l = rdv(k, n) that sends some k-set to a singleton x.
Since Ω is strongly connected, for each state v there is some word wv of length " n−1

with wv(x) = v. In particular, (wvw)
−1(v) ⊇ (w)−1(x) where wvw is a word of length

" l + n− 1. For all a ∈ (Im (wvw) \ v) the pair (v, a) is good.
Since wvw is a word of length " l + n − 1, the rank of wvw is ! r and so

| (Im (wvw) \ {v}) | ! r − 1 > 0. Every state in C is in at least r − 1 good pairs and

so the number of good pairs is at least ! (r−1)n
2

> 0.

The number of pairs in E that are not good is at most
"
n
2

#
− (r−1)n

2
= (n−r)n

2
. We

conclude that there is some word w of length at most (n−r)n
2

that sends some good pair
(u, v) to a singleton x, where the worst case scenario is having to pass through every not
good pair first.

By definition of good, we can find a word wuv of length " n with |w−1
uv ({u, v})| ! k+1.

Then wwuv is a word of length at most l+n−1+ (n−r)n
2

where (wwuv)
−1(x) ⊇ w−1

uv ({u, v})
has size at least k + 1. In particular, the claim holds.

We can now prove the more general statement for non-synchronizing automata.

Proof of Lemma 14. Let l = rdv(k, n). Let C be the sink component of the automaton
and let m = |C|. Let Ω′ be the automaton restricted to C and let r′ be the minimal rank
of a word of length l + n− 1 restricted to Ω′.

Note that Ω′ is strongly connected, and so if m ! k we can apply Theorem 15 to Ω′.
Since | ImΩ′ f | = | ImΩ f ∩ C| ! | ImΩ f | − (n − m), we have r′ ! r − (n − m) and in
particular, m− r′ " n− r. We obtain a word sending a (k+1)-set to a singleton of length

" l +m− 1 + (m−r′)m
2

" l + n− 1 + (n−r)n
2

and we are done.
Suppose then that m " k−1. We know that there is a word w in Ω of length " l that

sends a k-set to a singleton and which therefore has rank " n− k + 1. This tells us that
r " n − k + 1. In particular, we have m " k − 1 " n − r. We will show that there is a
word of length " l + 2(n−m) +

"
m
2

#
that takes some (k + 1)-set to a singleton.

There is a word w of length l = rdv(k, n) that sends some k-set to a singleton x. We
can then find a word w1 of length at most n − m that sends x to a state z ∈ C, where
at worst we have to go through every state not in C before we reach C. In particular,
|(w1w)

−1(z)| ! k where w1w is a word of length " l + n−m.
If z is the only state in Im(w1w) then w1w is a synchronizing word sending n ! k + 1

states down to a singleton. So suppose Im(w1w) − z is non-empty and take some v ∈
Im(w1w), v ∕= z. We can find a word w2 of length " n−m that takes v to a vertex y ∈ C.

If w2(z) = y then the word w2w1w of length " l + 2(n − m) has |(w2w1w)
−1(y)| =

|(w1w)
−1(z, v)| ! k+1. Otherwise, y, w2(z) are two distinct vertices in C and we can find

a word w3 of length at most
"
m
2

#
that takes {y, w2(z)} to a singleton. Then w3w2w1w is

a word of length " l + 2(n−m) +
"
m
2

#
that takes some (k + 1)-set to a singleton.

the electronic journal of combinatorics 29(3) (2022), #P3.41 11

To prove that the bound as stated in the lemma holds, it suffices to show that the
following quantity is positive.

2
n− 1 +

(n− r)n

2

3
−

2
2(n−m) +

2
m

2

33
=

n(n− r − 2)−m2 + 5m− 2

2

Note that since there is a word of length " l that sends a k-set to a singleton, we have a
word of length l of rank " n− k+1. This implies that r " n− k+1, and so in particular
n − r − 2 ! 0. If m = 1, we are already done. Otherwise, m ! 2 and substituting
m " n− r, we obtain

n(n− r − 2)−m(m− 5)− 2

2
! (m+ r)(m− 2)−m2 + 5m− 2

2

=
(m− 2)r + 3m− 2

2
! 0.

We use these lemmas to prove the Theorems.

Proof of Theorem 11. Fix n ! 4. Let l = rdv(3, n) + n− 1 and let r be the minimal rank
of a word of length at most l.

Applying the k = 3 case of Lemmas 13 and 14 we get

rdv(4, n) "
!
l + 1

2

"
n+r
2

+ 2
"

n+r
2

+ 1
#

if r " n− 4

l + 1
2
(n− r)n for all r

If r > n− 4 then 1
2
(n− r)n < 2n.

If r " n − 4, the first bound is increasing with r (for r ! 0) and the second is
decreasing with r so the maximum is obtained where the two are equal, that is when"
n+r
2

+ 2
"

n+r
2

+ 1
#
= (n− r)n. Rearranging gives r2 + 6(n + 1)r − (3n2 − 6n− 8) = 0.

Solving for r, we get that the maximum is obtained when

r = −3(n+ 1) +
√
12n2 + 12n+ 1

Thus we have that the maximum is

(n− r)n

2
=

"
4n+ 3−

√
12n2 + 12n+ 1

#
n

2

"
2
2n+

3

2
−

√
3

2
n+

1√
12

33
n

= (2−
√
3)n2 + n

Putting this together with the bound on rdv(3, n) from Theorem 9 we get the final
bound

rdv(4, n) "
8
3−

√
5

4
+ 2−

√
3

9
n2 +

7

2
n− 1.

the electronic journal of combinatorics 29(3) (2022), #P3.41 12

Proof of Theorem 12. Fix n ! 5. Let l = rdv(4, n) + n− 1 and let r be the minimal rank
of a word of length at most l.

Applying the k = 4 case of Lemmas 13 and 14 we get

rdv(5, n) "
!
l + 1

2

"
n+2r
2

+ 2
"

n+2r
2

+ 1
#

if r " n−4
2

l + 1
2
(n− r)n for all r

If r > n−4
2

then 1
2
(n− r)n < 1

4
n2 + n.

If r " n−4
2
, the first bound is increasing with r (for r ! 0) and the second is de-

creasing with r so the maximum is obtained where the two are equal, that is when"
n+2r
2

+ 2
"

n+2r
2

+ 1
#
= (n− r)n. Rearranging gives r2 + (2n+3)r− (3

4
n2 − 3

2
n− 2) = 0.

Solving for r, we get that the maximum is obtained when

r =
−(2n+ 3) +

√
7n2 + 6n+ 1

2

Thus we have that the maximum is

(n− r)n

2
=

"
4n+ 3−

√
7n2 + 6n+ 1

#
n

4

"

-
4n+ 3−

√
7
-
n+ 1√

7

00
n

4

=
4−

√
7

4
n2 +

1

2
n

Putting this together with the bound on rdv(4, n) from Theorem 9 we get the final bound.

It is clear that we could continue applying this method in the way we have here to
obtain upper bounds on rdv(k, n) for larger k. However, as it stands the method does not
give an improvement on the bound rdv((k, n) <

%
k−1
2

&
n2

2
given by Theorem 8 for larger

k. We remain hopeful that the method could be improved upon to give results for larger
k. One approach might be to alter Lemma 13 to allow one to go directly from a result
about rdv(k, n) to a result about rdv(k + c, n) for c larger than 1.

2.1 A Discussion of Gonze and Jungers’ Result

Gonze and Jungers prove in Theorem 3.13 of [GJ16] that for strongly connected syn-

chronizing automata the triple rendezvous time rdv(3, n) is at most
√
5−1
8

n2 + O(n) "
0.16n2 +O(n). To do so, they used a linear program first introduced in [Jun12].

We will discuss a correspondence between this linear program and the more well-
known fractional vertex cover number. This connection to a better understood linear
program is interesting in its own right and could potentially lead to improvements to the
triple rendezvous time. Unfortunately, this correspondence also suggests that this linear

the electronic journal of combinatorics 29(3) (2022), #P3.41 13

programming approach cannot be straightforwardly generalised to give upper bounds on
k-set rendezvous times for k > 3. We explain why at the end of this section.

First, let us state the original linear program defined in [Jun12]. Fix an automaton Ω
on n states. If t < rdv(3, n), the sets for which there is a word of length " t sending that
set to a singleton will only be singletons and pairs. We let Gt be the graph on n states
with edge-set all such pairs, and let m(t) = e (Gt) be the number of such pairs.

Let A(t) be a matrix with rows indexed by [n] and columns indexed by the sets of Ω
that can be sent to a singleton by a word of length " t. A column corresponding to the set
S will have a 1 in rows indexed by elements of S and a 0 in all other rows. For example,
A(0) will be the n × n identity matrix. In general, A(t) will have n +m(t) columns for
t < rdv(3, n).

Define ProgA(t) to be the linear program

min
p,k

k

s.t. pA(t) " ken+m(t)

enp
T = 1

p ! 0 (1)

where p is a row vector of length n and ei is the all ones row vector of length i. Let k(t)
be the minimum value attained by ProgA(t) and let Pt be the set of optimal solutions p
to ProgA(t).

The linear program ProgA(t) can be thought of in terms of assigning weights to Gt.
The vector p assigns a weight to each vertex of Gt such that the sum of all the weights
is one. The condition pA(t) " ken+m(t) means that for each vertex and edge of Gt the
sum of the weights on the incident vertices is at most k. Then k(t) is minimal subject to
a weighting of Gt existing that satisfies these conditions.

A critical part of the proof in [GJ16] is that the set of possible minimum values k(t)
attained by ProgA(t) is small. This is used together with an argument showing that as
t increases, either k(t) decreases or the dimension of the solution space decreases and so
there is a bound on how large t can grow.

We can rewrite ProgA(t) in the form of a more well-known linear program. We will do
this in two stages. First, define E(t) to be a matrix with rows indexed by [n] and columns
indexed by the edges of Gt, where the column indexed by edge ij has a 1 in rows i and
j and 0s elsewhere. Now A(t) is the concatenation of the n × n identity matrix In and
E(t), and so the statement pA(t) " ken+m(t) is equivalent to the statements p " ken and
pE(t) " kem(t). We rewrite ProgA(t) as follows:

the electronic journal of combinatorics 29(3) (2022), #P3.41 14

min
p,k

k

s.t. pE(t) " kem(t)

enp
T = 1

p ! 0

p " ken (1*)

We now rescale this linear program. Define r = en − 1
k
p and s = n− 1

k
. Substituting

into 1* and rearranging (noting that enE(t) = 2em(t) and so on) we obtain the equivalent
linear program ProgB(t) :

min
r,s

s

s.t. rE(t) ! em(t)

enr
T = s

r " en

r ! 0 (2)

Let s(t) be the minimum value attained by ProgB(t) and let Rt be the set of optimal
solutions r to ProgB(t). If we restrict r to having only entries in {0, 1} we get the standard
integer linear program for the minimum vertex cover problem. A solution r assigns weights
0 or 1 to the vertices of Gt such that the total weight assigned is s. The condition
rE(t) ! em(t) means that for each edge of Gt the sum of the weights of the incident
vertices is at least one — the edge is ‘covered’ by the vertices. The value of s(t) is then
the minimum total weight over all such vertex covers r.

Thus ProgB(t) is the relaxation of the integer linear program for the minimum vertex
cover problem. As a result ProgA(t) is in direct correspondence with the more well-studied
fractional vertex cover problem.

It is well known (and straightforward to show) that s(t) must always be half integral
and, what is more, there is always an optimal solution r with entries taken only from
{0, 1

2
, 1}. One immediate outcome of this correspondence is therefore that is an easy

proof that the value of k(t) must be of the form 2
n+n1

where n1 is an integer between 0
and n. This fact formed a crucial part of the proof in [GJ16].

Suppose we wanted to generalise this linear programming approach to get upper
bounds on the k-set rendezvous time for k > 3. One can construct an analogous lin-
ear program to ProgA(t) and similarly transform it into an analogous linear program to
ProgB(t). The resulting ProgB(t) is the fractional relaxation of a hypergraph minimum
vertex cover problem where hyperedges of size i must be covered i − 1 times. That is, a
solution r assigns a weight to each vertex such that the sum of the weights of vertices in
an i-edge is at least i− 1.

The hypergraph version does not have the nice half integral property that the graph
version has, even in the smallest case k = 4. The relevant fractional vertex cover problem
is to find, for a hypergraph H with edges of size 2 and 3, the minimum total weight τ*(H)

the electronic journal of combinatorics 29(3) (2022), #P3.41 15

of a fractional vertex cover that covers each 2-edge with weight one and each 3-edge with
two. The following Lemma proves that not only is this not half integral, but in fact there
can be no integer p where the set of possible values are of the form i/p for i ∈ N.

Lemma 16. For all j ∈ N there exists a hypergraph H such that the minimum total
weight τ*(H) of a fractional vertex cover that covers each 2-edge with weight one and
each 3-edge with weight two is s/2j for some odd integer s.

Proof. Let Hj have 3j vertices labelled x1, . . . , xj, y1, . . . , yj and z1, . . . zj. Add the 2-
edges {x1, y1}, {y1, z1} and {z1, x1} and all 3-edges of the form {xi, yi−1, zi}, {yi, zi−1, xi},
{zi, xi−1, yi} for 2 " i " j. (You can also add 2-edges that are subsets of a 3-edge and it
will not change the argument.) Fix a fractional vertex cover of Hj with minimum total
weight. For a vertex set S let w(S) denote the total weight of that set.

Let a1, . . . , aj be positive rationals satisfying the j simultaneous equations 2a1 + a2 =
2a2 + a3 = . . . = 2aj−1 + aj = 2aj = 1. Note that summing these equations gives
j = 2a1 + 3

$j
i=2 aj. We have:

τ*(Hj) = w(Hj) =

j1

i=1

2ai(w(xi) + w(yi) + w(zi)) +

j1

i=2

ai(w(xi−1) + w(yi−1) + w(zi−1))

= a1 (w({x1, y1}) + w({y1, z1}) + w({z1, x1}))

+

j1

i=2

ai (w({xi, yi−1, zi}) + w({yi, zi−1, xi}) + w({zi, xi−1, yi}))

! 3a1 +

j1

i=2

6ai

= 2j − a1

We will show by induction that for 1 " l " j, aj+1−ℓ = sℓ/2
ℓ for some odd integer

sℓ. For the base case note aj = 1/2. For the inductive step, let 1 " ℓ < j and suppose

the statement is true for aj+1−ℓ. We have aj−ℓ =
1−aj+1−ℓ

2
and so the inductive hypothesis

holds. In particular, the value of 2j − a1 is s/2j for some odd integer s.
The final step of the proof is to show that this lower bound is attainable. Let w(xi) =

w(yi) = w(zi) = 1− aj+1−i. It is easy to check that the total weight on the 2-edges is one
and the total weight on the 3-edges is two. Furthermore, the total weight over all vertices
is 3j − 3a1 −

$j
i=2 ai = 2j − a1 as required.

Corollary 17. For every i, j ∈ N there exists a hypergraph H where τ*(H) is i/2j more
than an integer.

Proof. If H1+H2 is the disjoint union of two hypergraphs H1 and H2, then τ*(H1+H2) =
τ*(H1) + τ*(H2). Thus by taking disjoint unions of the appropriate Hj given by Lemma
16 we can obtain any residue of the form i/2j where i, j ∈ N.

the electronic journal of combinatorics 29(3) (2022), #P3.41 16

The proof of the triple rendezvous time upper bound uses as a critical component
that there are a small number of possible minimum values of the linear program ProgA(t),
which follows from the half integrality of ProgB(t). We can see via the correspondence
to the fractional vertex covers and Corollary 17 that there is no similarly straightforward
bound on the number of possible minimum values when we generalise to k > 3, and so
this approach cannot be trivially generalised.

3 Non-synchronizing Automata with Large Rendezvous Time

We now turn to the second half of the paper, which concerns rendezvous times in non-
synchronizing automata. We will prove a lower bound on rdv∗(k, n) via a construction of
a suitable automaton. To introduce the main idea of the construction we give the simpler
k = 3 case first.

Theorem 18. For every sufficiently large n, rdv∗(3, n) > n2

8
.

Proof. For every n we will construct an automaton on [n] where the minimal weight of a
k-set is greater than n2

8
.

Partition [n] into A and X, where |A| =
%
n
4

&
.

Label the states of A by a1, a2, . . . , a|A| and label the states of X by x1, x2, . . . , x|X|.
Take two functions f and g as follows, as shown in figure 3 where f is drawn in blue

and g in red.

f(xt) = x(t+1 mod |X|)

f(a|A|) = a1

f(aj) = xj for j ∕= |A|

g(xt) =

:
;<

;=

xt+1 if 1 " t " |A|− 1

xt−|A|+1 if t = |A|
xt otherwise

g(aj) = a(j+1 mod |A|)

Note that f and g restricted to X are permutations on X and so any set containing
more than one state in X cannot be synchronized. Moreover, any set containing three
states in A cannot be synchronized: the image of such a set under g still has three states
in A, and the image under f contains two states in X.

It follows that a synchronizable triple must contain two states in A and one state in
X. Fix such a triple S and consider a word that synchronizes this set acting on it. We
will obtain that the triple of minimal weight is in fact {x|X|, a1, a|A|}.

Note that for a shortest word from a triple to a singleton the first step must map
a triple to a pair. In particular, the first map of the shortest word must be f , as g is
a permutation. The triple S must contain two states in A, one of which must be a|A|

the electronic journal of combinatorics 29(3) (2022), #P3.41 17

A

X

a1 a2 a3 a4 a5

x2
x3

x4

x5

x6

x1

x7

x16

Figure 3: An example of the automaton used in the proof of Theorem 18 for n = 21,
where f is drawn in blue and g in red.

otherwise applying f gives two states in X. Let the other be at, where 1 " t " |A| − 1.
After applying f , we have the states a1 and xt, which must be the only state in X.

Note that

fgl−1 (a1) =

!
a1 if l ≡ 0 (mod |A|)
x(l mod |A|) otherwise

and for 1 " t " |A|− 1,

fgl−1 (xt) =

!
x|A|+1 if t+ l − 1 ≡ 0 (mod |A|)
x(t+l mod |A|) otherwise.

.

This means that applying fgl−1 gives two states in X for every l ∕≡ 0 (mod |A|). Thus
the next step must be to apply fgl−1 where l is some multiple of |A|. This sends a1 and
xt to themselves unless t = 1, in which case xt is sent to x|A|+1.

To further reduce the size of the set, we must map x|A|+1 and a1 to the same state. To
do this, we must move the state in position x|A|+1 round through x|A|+2, x|A|+3, . . . until
we reach x|X|, without moving the second state that is currently in A into X as we do so.

Suppose we have just applied f , and we now want to move xs to xs+1 without adding
any extra states into X (where s is some value not in {|X|, 1, 2, 3 . . . , |A|}). Since we have
just applied f , the state in A must be at position a1 (having just come from position
a|A|). We need to apply f to move xs, but we can only apply f when the state in A is at
position a|A| and so we must first apply g|A|−1 to move the state at a1 to be at a|A|. Only
then can we apply f , and so the shortest word moving xs to xs+1 is fg|A|−1.

Repeatedly applying this, we have that the shortest word squashing a triple to a

the electronic journal of combinatorics 29(3) (2022), #P3.41 18

singleton is f
"
fg|A|−1

#(|X|−(|A|+1))
fg|A|−1f which has length

1 + (|X|− |A|)|A|+ 1 =
-
n− 2

'n
4

(0 'n
4

(
+ 2 >

n2

8
.

The general case extends the construction given in Theorem 18. We still have two
mappings and a set of states X on which both mappings act as permutations, meaning
that any synchronizable set has at most one state in X. Rather than having a single
gadget A we will need k− 2 gadgets A0, A1, Ak−3, each with the same structure as A but
of coprime sizes.

To synchronize a k-set we will need to apply a mapping f to move a state around
X. As before, we will not be able to apply f without first applying the other mapping g
several times to move the state in each Ai from a

(i)
1 to a

(i)
0 . Because we chose the Ai to

have coprime sizes, each such move will neccessitate many applications of g.

Theorem 19. Let k ! 3. For every n sufficiently large, rdv∗(k, n) ! 4
3

"
n
4k

#k−1
.

Proof. Fix the integer k. For every n we will construct an automaton on [n] where the

minimal weight of a k-set is 4
3

"
n
4k

#k−1
.

Partition [n] into A0, A1, A2, . . . , Ak−3 and X, where n
4k

" |Ai| " n
3k

and
gcd{A0, A1, A2, . . . , Ak−3} = 1. This is possible for n sufficiently large, for example by the
prime number theorem.

Label the states in each Ai by a
(i)
1 , a

(i)
2 , a

(i)
3 , . . . and label the states ofX by x1, x2, x3

Let q =
%
2n
3k

&
.

Take two functions f and g as follows, as shown in figure 4 where f is drawn in blue
and g in red.

f(xt) = x(t+1 mod |X|)

f
-
a
(i)
j

0
=

!
a
(i)
1 if j = |Ai|

xiq+j otherwise

g(xt) =

:
;<

;=

xt+1 if iq + 1 " t " iq + |Ai|− 1 for some i

xt−|Ai|+1 if t = iq + |Ai| for some i

xt otherwise

g(a
(i)
j) = a

(i)
(j+1 mod |Ai|)

Note that f and g restricted to X are permutations on X and so any set containing
more than one state in X cannot be synchronized.

Moreover, any set containing three states in some Ai cannot be synchronized: the
image of such a set under g still has three states in Ai, and the image under f contains

the electronic journal of combinatorics 29(3) (2022), #P3.41 19

A0

A1

A2

a(0)1 a(0)2 a(0)3 a(0)4

a(1)2

a(1)3a(2)1

a(2)2

x1
x2 x3 x4

x5

xq+1

xq+2

xq+3

xq+4

x2q+1

x2q+2

x2q+3

a(0)5

a(1)4

a(1)1a(2)3

Figure 4: An example of the automaton used in the proof of Theorem 19 for k = 5, where
f is drawn in blue and g in red.

two states in X. Similarly, any set containing two states in Ai and two states in Aj for
some distinct i and j also cannot be synchronized.

It follows that a synchronizable set of size k must contain two states in some Ai, one
state in every other Aj and one state in X. Fix such a set S and consider a word that
synchronizes this set acting on it.

For a shortest word from a triple to a singleton the first step must map a triple to a pair
and so the first map must be f . The set S contains two states in Ai, one of which must be
a
(i)
|Ai| else applying f gives two states in X. Let the other be a

(i)
t , where 1 " t " |Ai|− 1.

After applying f , we have the states a
(i)
1 and xiq+t, which must be the only state in X.

Note that

fgl−1
-
a
(i)
1

0
=

!
a
(i)
1 if l ≡ 0 (mod |Ai|)

xiq+(l mod |Ai|) otherwise

and

fgl−1 (xiq+t) =

!
xiq+|Ai|+1 if t+ l − 1 ≡ 0 (mod |Ai|)
xiq+(t+l mod |Ai|) otherwise

.

Since 1 " t " |Ai| − 1 this means that applying fgl−1 gives two states in X for any
l ∕≡ 0 (mod |Ai|). Thus the next step must be to apply fgl−1 where l is some multiple of

|Ai|. This sends a
(i)
1 and xiq+t to themselves unless t = 1, in which case xiq+t is sent to

xiq+|Ai|+1.

the electronic journal of combinatorics 29(3) (2022), #P3.41 20

To further reduce the size of the set, we must map the state in X and some state in
some Aj to the same state. To do this, we must move the state xiq+|Ai|+1 in X round to
be in {xjq, xjq+1, . . . , xjq+|Aj |−2}, without adding extra states to X as we do so.

Suppose we have just applied f , and we now want to move xs to xs+1 without adding
any extra states into X (where s is some value not in {xjq+1, xjq+2, . . . , xjq+|Aj |−1} for any

j). Since we have just applied f , the state in each Aj must be at position a
(j)
1 (having

just come from position a
(j)
|Aj |). We must apply f to move xs, but we can only apply f

when for each Aj, the state in Aj is at position a
(j)
|Aj |. Thus we must use g to move the

state at a
(j)
1 to be at a

(j)
|Aj | for each j.

The number of times g is applied must be congruent to −1 modulo |Aj| for all j.

Since |A0|, |A1|, . . . , |Ak−3| are coprime, the smallest such number is
>k−3

j=0 |Aj|− 1. This

is followed by an application of f and so it takes at least
>k−3

j=0 |Aj| steps to move xs to
xs+1.

Applying this repeatedly, we see that the length of a word taking the state in X
from xiq+|Ai|+1 to some state of the form {xjq, xjq+1, . . . , xjq+|Aj |−2} without introducing
a second state to X must be at least

(q − (|Ai|− 1))
k−3?

j=0

|Aj| !
2
2n

3k
− n

3k

3- n

4k

0k−2

=
4

3

- n

4k

0k−1

.

Theorem 19, together with the observation that a minimal length path from some
k-set to a singleton passes through each set of size < k at most once, tells us that
rdv∗(k, n) = Θ

"
nk−1

#
for fixed k. Since RDV∗(k, n) ! rdv∗(k + 1, n) − 1 we have as an

immediate consequence that RDV∗(k, n) = Θ
"
nk−1

#
.

These results are very different from the situation for synchronizing automata. One
thing we learn therefore is that any bound on the k-set rendezvous time rdv(k, n) must
use the fact that the automata are synchronizing as a crucial part. In particular, this
impacts any attempt at a proof or improved bound for Černý’s conjecture that relies on
bounding the k-set rendezvous time — such a proof must use somewhere that all pairs
(and all sets) are synchronizable.

4 Open Questions

As mentioned at the end of Section 2, it may be possible that the tools used to prove
Theorems 9, 11 and 12 could be extended further and combined with new ideas to give
improved upper bounds on rdv(k, n) for k > 3. To do so, one would have to strengthen
Lemma 13 and/or Lemma 14.

We believe something stronger may be true, at least for small k. We know from [GJ16]
that the triple rendezvous time rdv(3, n) # 0.1545n2 + O(n). However, the best known
lower bound to rdv(3, n) is n + 3. Given the lack of any examples to the contrary, we
conjecture that the triple rendezvous time is in fact linear in n.

the electronic journal of combinatorics 29(3) (2022), #P3.41 21

Conjecture 20. There exists some constant c such that rdv(3, n) " cn for all n.

Any techniques involved in the proof of Conjecture 20 may well generalise to give
improved bounds on the k-set rendezvous time rdv(k, n) and potentially rdv(n, n), the
Černý bound itself.

We can also ask about improved bounds on RDV(3, n), which is known to be between
2
3
n2 +O(n) and n2 +O(n).

Question 21. Is there some constant c < 1 such that RDV(3, n) " cn2 +O(n)?

A positive answer to this question would give an improvement to the Frankl–Pin bound
for the length of a shortest reset word from n3

6
to c′n3 for come constant c′ < 1

6
. The reason

for this is that for k ! 3 we would have from any k-set there is a path to a (k − 2)-set
of length " cn2. This is an improvement on the Frankl–Pin bound

"
n−k+2

2

#
+
"
n−k+3

2

#
for

k < (1−
√
c)n, that is, a linear proportion of all k.

There is nothing special about triples here: an improved upper bound on RDV(k, n)
for any fixed k would give a improvement on the Frankl–Pin bound in a similar way. We
also don’t have to be restricted to paths from k-sets to singletons — one can ask the same
questions about the shortest path from a k-set to an l-set for any k > l and draw similar
conclusions from any improved bounds.

Theorem 19 shows that for fixed k we have rdv∗(k, n) = Θ
"
nk−1

#
. A natural question

to ask is what are the correct asymptotics for rdv∗(k, n)? In the case k = 3 we have
n2

8
" rdv∗(k, n) " n2−n−1

2
.

Question 22. Is there an automaton which attains rdv∗(3, n) = (1
2
+ o(1))n2?

An upper bound on the minimum weight of a triple rdv∗(3, n) is the total number of
synchronizable pairs plus one. To get a minimum weight triple of weight (1

2
+ o(1))n2

we would need the automaton to be almost synchronizing in the sense that all but an
arbitrarily small proportion of pairs are synchronizable.

Consider the construction given in the proof of Theorem 18. We know that a pair of
states both in X is not synchronizable. In fact, it is straightforward to check that only
pairs of the following forms are synchronizable:

• {ai, xs} for i ∈ {1, 2, 3, . . . , |A|} and s ∕∈ {1, 2, 3, . . . , |A|},

• {ai, xi} for i ∈ {1, 2, 3, . . . , |A|},

• {a1, x|A|} and (ai, xi−1) for i ∈ {2, 3, . . . , |A|}, and

• {ai, a(i+1 mod |A|)} for i ∈ {1, 2, 3, . . . , |A|}.

In particular, the automaton has |A| (|X|− |A|)+3|A| = n2

8
+O(n) synchronizable pairs.

We have that the number of synchronizable pairs and the minimum weight of a triple are
asymptotically equal in this example. Is it possible to construct an automaton with this
same property where a larger proportion of pairs are synchronizable?

We also note that our construction is not strongly connected. Could there be a strongly
connected automaton with the same properties, that is, with only two mappings and
needing time Ω(nk) to synchronize a k-set?

the electronic journal of combinatorics 29(3) (2022), #P3.41 22

References

[Car14] Ângela Filipa Pereira Cardoso. The Cernỳ Conjecture and Other Synchronization
Problems. PhD thesis, Universidade do Porto (Portugal), 2014.

[Čer64] J Černỳ. Poznámka k homogénnym eksperimentom s konečnỳmi automatami.
matematickofyzikálny časopis slovenskej akadémie vied, 14 (3): 208–216, 1964.
Slovak zbMATH, 1964.

[Dub98] Louis Dubuc. Sur les automates circulaires et la conjecture de Černỳ. RAIRO-
Theoretical Informatics and Applications, 32(1-3):21–34, 1998.

[Epp90] David Eppstein. Reset sequences for monotonic automata. SIAM Journal on
Computing, 19(3):500–510, 1990.

[Fra82] Peter Frankl. An extremal problem for two families of sets. European Journal
of Combinatorics, 3(2):125–127, 1982.

[GJ16] François Gonze and Raphaël M. Jungers. On the synchronizing probability func-
tion and the triple rendezvous time for synchronizing automata. SIAM J. Dis-
crete Math., 30(2):995–1014, 2016.

[Jun12] Raphaël M Jungers. The synchronizing probability function of an automaton.
SIAM Journal on Discrete Mathematics, 26(1):177–192, 2012.

[Kar03] Jarkko Kari. Synchronizing finite automata on Eulerian digraphs. Theoretical
Computer Science, 295(1-3):223–232, 2003.

[KV21] Jarkko Kari and Mikhail Volkov. Cerny’s conjecture and the Road Coloring
Problem. Chapter 15 in J Pin (ed.), Handbook of Automata Theory, Volume I,
EMS, 2021.

[Pin83] Jean-Éric Pin. On two combinatorial problems arising from automata theory. In
North-Holland Mathematics Studies, volume 75, pages 535–548. Elsevier, 1983.

[Shi19] Yaroslav Shitov. An improvement to a recent upper bound for synchronizing
words of finite automata. J. Autom. Lang. Comb., 24:367–373, 2019.

[Szy18] Marek Szyku"la. Improving the upper bound and the length of the shortest
reset words. In 35th Symposium on Theoretical Aspects of Computer Science,
volume 96 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 56, 13. Schloss
Dagstuhl. Leibniz-Zent. Inform., Wadern, 2018.

[Vol08] Mikhail V. Volkov. Synchronizing automata and the Černý conjecture. In Lan-
guage and automata theory and applications, volume 5196 of Lecture Notes in
Comput. Sci., pages 11–27. Springer, Berlin, 2008.

[Vor16] Vojtěch Vorel. Subset synchronization and careful synchronization of binary
finite automata. International Journal of Foundations of Computer Science,
27(05):557–577, 2016.

the electronic journal of combinatorics 29(3) (2022), #P3.41 23

