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Abstract

Let the crown C13 be the linear 3-graph on 9 vertices {a, b, c, d, e, f, g, h, i} with
edges

E = {{a, b, c}, {a, d, e}, {b, f, g}, {c, h, i}}.

Proving a conjecture of Gyárfás et. al., we show that for any crown-free linear
3-graph G on n vertices, its number of edges satisfy

|E(G)| ⩽ 3(n− s)

2

where s is the number of vertices in G with degree at least 6. This result, combined
with previous work, essentially completes the determination of linear Turán number
for linear 3-graphs with at most 4 edges.
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1 Introduction

A linear 3-graph G = (V,E) consists of a finite set of vertices V = V (G) and a collection
E = E(G) of 3-element subsets of V (edges), such that any two edges in E share at most
one vertex. If H and F are linear 3-graphs, then H is F -free if it contains no copy of F .
For a linear 3-graph F , and a positive integer n, the linear Turán number ex(n, F ) is
the maximum number of edges in any F -free linear 3-graph on n vertices.

Let the crown C13 be the linear 3-graph on 9 vertices {a, b, c, d, e, f, g, h, i} with edges

E = {{a, b, c}, {a, d, e}, {b, f, g}, {c, h, i}}.
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Figure 1: The crown C13.

The study of ex(n,C13) was initiated by Gyárfás, Ruszinkó and Sárközy in [3], where
they showed the bounds

6⌊n− 3

4
⌋+ ϵ ⩽ ex(n,C13) ⩽ 2n.

where ϵ = 0 if n−3 ≡ 0, 1 mod 4, ϵ = 1 if n−3 ≡ 2 mod 4, and ϵ = 3 if n−3 ≡ 3 mod 4. In
[1], Carbonero et. al. showed that every linear 3-graph with minimum degree 4 contains a
crown. They also proposed some ideas to obtain the exact bounds. Very recently, Fletcher
showed in [2] the improved upper bound

ex(n,C13) <
5

3
n.

In this paper, we show that the lower bound in [3] is essentially tight, thus resolving a
conjecture in [1]. In fact, we show the following stronger result.

Theorem 1. Let G be any crown-free linear 3-graph G on n vertices. Then its number
of edges satisfies

|E(G)| ⩽ 3(n− s)

2
.

where s is the number of vertices in G with degree at least 6.
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Furthermore, we show that when s is small, the upper bound can be improved.

Theorem 2. Let G be any crown-free linear 3-graph G on n vertices, and let s be the
number of vertices in G with degree at least 6. If s ⩽ 2, then the number of edges satisfies

|E(G)| ⩽ 10(n− s)

7
.

Combining the two theorems above, we immediately conclude that the lower bound
in [3] is exact when n ≡ 3 mod 4 and n ⩾ 63.

Corollary 3. If n ⩾ 63, then

ex(n,C13) ⩽
3(n− 3)

2
.

The paper is structured as follows. In Section 2 and Section 3 we present the main
innovative inequality and prove our main theorems, quotient a technical and familiar
lemma that we prove in Section 4.

2 Proof of Theorem 1

Let G be any linear 3-graph. For each v ∈ V (G), let d(v) be the degree of v, which is the
number of edges in E(G) that contains v. For each edge e ∈ E(G) and positive integers
a ⩾ b ⩾ c, we write D(e) ⩾ ⟨a, b, c⟩ if we can write e = {x, y, z} such that d(x) ⩾ a,
d(y) ⩾ b and d(z) ⩾ c.

Suppose the contrary. Let G be the smallest linear 3-graph such that G has greater
than 3(n − s)/2 edges. For each v ∈ V (G), let χ(v) = 1 if d(v) ⩽ 5, and χ(v) = 0
otherwise.

Our key innovation is the following observation∑
e∈E(G)

∑
v∈V (G),v∈e

χ(v)

d(v)
=

∑
v∈V (G)

∑
e∈E(G),v∈e

χ(v)

d(v)
=

∑
v∈V (G)

χ(v) = n− s.

As |E(G)| > 3(n− s)/2, we conclude that there exists an edge e = {x, y, z} such that

χ(x)

d(x)
+

χ(y)

d(y)
+

χ(z)

d(z)
<

2

3
. (1)

Without loss of generality, assume d(x) ⩽ d(y) ⩽ d(z). First we note that d(x) ⩾ 2 and
d(y) ⩾ 4, as otherwise (1) would be violated. If d(z) ⩾ 6, then we can easily find a C13

by choosing an edge e1 ̸= e adjacent to x, choosing an edge e2 adjacent to y that does not
share a vertex with e1, and finally choosing an edge e3 adjacent to z that does not share
a vertex with e1 and e2, contradiction. Therefore, we have d(z) ⩽ 5, and (1) implies that
D(e) ⩾ ⟨5, 5, 4⟩.

We use the following lemma to handle the case D(e) ⩾ ⟨5, 5, 4⟩. As the lemma is
quite straightforward using the techniques in [1], [2] and [3], we delay the lengthy proof
to Section 4.

the electronic journal of combinatorics 29(3) (2022), #P3.46 3



Lemma 4. Let G be a crown-free graph and e = {x, y, z} ∈ E(G) satisfy D(e) ⩾ ⟨5, 5, 4⟩.
Then, the vertex set of all edges sharing a vertex with {x, y, z},

S =
⋃

f∈E(G),f∩{x,y,z}̸=∅

f,

contains exactly 11 vertices and all vertices in S have degree at most 5. The set of edges
that contain at least one vertex in S,

ES = {f : f ∈ E(G), f ∩ S ̸= ∅},
contains at most 13 edges, and all elements of ES are subsets of S. In other words, the
subgraph G[S] is a connected component of G.

Let G− S be the graph obtained by deleting the vertices S and the edges in ES. By
the lemma, the graph G − S has n′ = n − 11 vertices and at least |E(G)| − 13 edges.
Furthermore, the number of vertices in G−S of degree at least 6 is exactly s. Therefore,
we conclude that

|E(G− S)| ⩾ |E(G)| − 13 >
3(n− s)

2
− 13 >

3(n′ − s)

2
contradicting the assumption that G is the smallest counterexample to Theorem 1. So
we have shown Theorem 1.

3 Proof of Theorem 2

We use the same notations as Section 2.
Suppose the contrary. Let G be the smallest linear 3-graph excluding C13 such that

G has at most 2 vertices with degree at least 6 and has greater than 10(n− s)/7 edges.
For each e ∈ E(G) and v ∈ e, we define a weight χ(v, e) as follows: let χ(v, e) = 1 if

d(v) = 1, 2, 4, 5, and χ(v, e) = 0 if d(v) ⩾ 6. If d(v) = 3, let χ(v, e) = 1.05 if there exists
at least one vertex in e with degree at least 6, and χ(v, e) = 0.9 otherwise.

Since s ⩽ 2, we have∑
e∈E(G)

∑
v∈V (G),v∈e

χ(v, e)

d(v)
=

∑
v∈V (G)

∑
e∈E(G),v∈e

χ(v, e)

d(v)
⩽ n− s.

As |E(G)| > 10(n− s)/7, we conclude that there exists an edge e = {x, y, z} such that

χ(x, e)

d(x)
+

χ(y, e)

d(y)
+

χ(z, e)

d(z)
<

7

10
. (2)

Without loss of generality, assume d(x) ⩽ d(y) ⩽ d(z). First we note that d(x) ⩾ 2, as
otherwise (2) would be violated. Then note that if d(y) ⩽ 3, no matter d(z) is greater
than 6 or not (2) would also be violated, thus d(y) ⩾ 4.

The rest of the proof proceeds exactly the same as Section 2. We can analogously show
that D(e) ⩾ ⟨5, 5, 4⟩, apply Lemma 4, and apply the following inequality which leads to
contradiction. Theorem 2 then follows.

|E(G− S)| ⩾ |E(G)| − 13 >
10(n− s)

7
− 13 >

10(n′ − s)

7
.
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4 Proof of Lemma 4

In this section we show our lemma on the case D(e) ⩾ ⟨5, 5, 4⟩. Our proof follows similar
techniques as in [1], [2] and [3]. In particular, [1] analyzed the case D(e) ⩾ ⟨4, 4, 4⟩, [2]
analyzed the case D(e) ⩾ ⟨5, 5, 5⟩, and [3] analyzed the case D(e) ⩾ ⟨5, 5, 3⟩. We use a
slight variation of their methods to prove our lemma.

Without loss of generality, assume d(y), d(z) ⩾ 5 and d(x) ⩾ 4. As we must not have
D(e) ⩾ ⟨6, 4, 2⟩, we must have d(y) = d(z) = 5. For p ∈ {x, y, z}, let G(p) be the set
of all vertices distinct from x, y, z that lie on the same edge with p. We first note that
we must have G(y) = G(z). Suppose on the contrary that some edge e1 ̸= e adjacent to
y contain some vertex not in G(z). Then at most one edge adjacent to z other than e
contains a vertex in e1, so at least three edges adjacent to z are disjoint from e1. Let F
denote the set of such edges. Thus, we can take an edge e2 containing x that is disjoint
from e1, then take an edge e3 from F that is disjoint from e2. So e, e1, e2, e3 forms a C13,
contradiction.

Similarly, we must have G(x) ⊂ G(y). Suppose the contrary, and some edge e1 ̸= e
adjacent to x contain some vertex not in G(y). Then, we can take an edge e3 containing
z that is disjoint from e1. Among the four edges adjacent to y distinct from e, at most
two can intersect e3, and at most one can intersect e1. Thus, we can choose e2 containing
y that is disjoint from e1 and e3. So e, e1, e2, e3 forms a C13, contradiction.

Thus S\{x, y, z} = G(y) = G(z) ⊃ G(x). We define F as the set of all edges in E(G)
that contain one of the vertices in S, but is disjoint from {x, y, z}. It suffices to show that
F must be empty.

We denote the vertices in G(z) by a, b, c, d, r, s, p, q, such that {z, a, b}, {z, c, d},
{z, r, s}, {z, p, q} are edges in E(G).
Step I. We construct an auxiliary bipartite graphH = (XH , YH , EH), whereXH = {ei|y ∈
ei}, YH = {ej|z ∈ ej}, EH = {{ei, ej}|ei ∩ ej ̸= ∅}. H is a 2-regular bipartite graph with
order 8. Thus, H = C8 or H = C4

⊎
C4.

We claim that if G contains no crown, H contains a K2,2. Arbitrarily choose e ∈ G(x).
Define V1 = e ∩ S ⊂ EH ,W1 = {ei|ei ∩ V1 ̸= ∅} ⊂ XH

⊎
YH . We have |V1| ⩽ 2, |W1| ⩽ 4,

|H − W1| ⩾ 4. To find a crown, we only need to choose ei ∈ XH , ej ∈ YH such that
{ei, ej} ̸∈ EH−W1 . Therefore, if there is no crown in H, H − W1 has to be a completed
bipartite graph. Since |H−W1| ⩾ 4 and two parts have the same order, there is definitely
a K2,2 in H −W1. So H contains a K2,2, furthermore, H = C4

⊎
C4.

By symmetry we can assume {z, a, b}, {z, c, d} are in a C4 and {z, r, s}, {z, p, q} are in
the other one. Without loss of generality we can further assume {y, b, d}, {y, a, c} lie in
E(G), and {y, s, q}, {y, r, p} lie in E(G).
Step II. Now let V1 = {a, b, c, d}, V2 = {r, s, p, q}, We have symmetry between V1 and
V2, and symmetry inside Vi, i = 1, 2 as well. We claim that there exists no edge con-
taining x that contains exactly one vertex in V1 and another one in V2. Otherwise
we can let it be {x, a, r} by symmetry. Then {z, a, b}, {y, b, d}, {z, p, q}, {x, a, r} form
a C13, contradiction. Thus the edges other than e containing x must be a subset of
{{x, a, d}, {x, b, c}, {s, r, q}, {x, s, p}}.
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Step III. Let f be any element of F . By symmetry we can let a ∈ f without loss of
generality. Then we can see b, c /∈ f . Firstly, we claim that f cannot contain exactly
one element a of S. Otherwise {z, a, b}, {y, b, d}, {z, r, s}, f form a C13, contradiction.
Secondly, we claim that d /∈ f . Otherwise G(x) = {{x, b, c}, {s, r, q}, {x, s, p}} since
d(x) ⩾ 4. Since at most one edge of {z, r, s} and {z, p, q} intersect f , we can assume
{z, r, s} ∩ f = ∅. Then{z, a, b}, {x, b, c}, {z, r, s}, f form a C13, contradiction.

Therefore we can assume r ∈ f by symmetry. Similarly we know that q /∈ f
since a, d and r, q are symmetric. So f has exactly two elements a, r of S. While
{z, a, b}, {x, b, c}, {z, p, q}, f form a C13 in this case, contradiction.
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