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Abstract

Necessary and sufficient numerical conditions are known for the embedding of an
incomplete latin square L of order n into a latin square T of order t > 2n+1 in which
each symbol is prescribed to occur in a given number of cells on the diagonal of T
outside of L. This includes the classic case where T is required to be idempotent.

If t < 2n then no such numerical sufficient conditions exist since it is known that
the arrangement of symbols within the given incomplete latin square can determine
the embeddibility. All examples where the arrangement is a factor share the common
feature that one symbol is prescribed to appear exactly once in the diagonal of T
outside of L, resulting in a conjecture over 30 years ago stating that it is only this
feature that prevents numerical conditions sufficing for all t > n.

In this paper we prove this conjecture, providing necessary and sufficient numer-
ical conditions for the embedding of an incomplete latin square L of order n into
a latin square T of order t for all t > n in which the diagonal of T outside of L is
prescribed in the case where no symbol is required to appear exactly once in the
diagonal of T outside of L.

Mathematics Subject Classifications: 05B15
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1 Introduction

Historically, a (partial) latin square L of order n is an n × n array in which each cell
contains (at most) one symbol in S(n) = {1, 2, . . . , n} and each of the symbols in S(n)
occurs (at most) once in each row and (at most) once in each column. Let L(i, j) denote
the symbol in cell (i, j) of L, and let NL(i) (or simply N(i) if L is clear) be the number
of cells that contain symbol i in L. A (partial) incomplete latin square of order n (also
referred to as a (partial) latin array of order n) on the symbols in S(t) is an n× n array
in which each cell contains (at most) one symbol in S(t) and each of the symbols in S(t)
occurs at most once in each row and at most once in each column. A partial or incomplete
latin square L of order n is said to be embedded in the latin square T of order t if for each
cell (i, j) of L that contains a symbol, L(i, j) = T (i, j). The cells (i, i) for n+1 6 i 6 t are
said to be the diagonal of T outside L. A latin square of order n is said to be idempotent if
L(i, i) = i for 1 6 i 6 n, and is said to be symmetric if L(i, j) = L(j, i) for 1 6 i 6 j 6 n.

There is a rich history of papers that consider the embedding of partial and incomplete
latin squares; the following is a sample of such results. The classic result of Ryser [12]
shows that an incomplete latin square L of order n on the symbols in S(t) can be embedded
in a latin square of order t if and only if NL(i) > 2n − t for 1 6 i 6 t. This condition
is known as the Ryser condition. Evans [7] obtained a related result for partial latin
squares, proving that any partial latin square of order n can be embedded in a latin
square of order t for any t > 2n. This result is best possible in that there are partial
latin squares of order n that cannot be embedded in a latin square of order t if t < 2n.
Cruse [6] then found necessary and sufficient conditions for a partial latin square of order
n to be embedded in a symmetric latin square of order t, and also to be embedded in
an idempotent symmetric latin square of order t, where in both cases t > n is arbitrary.
It turns out that embedding partial and incomplete latin squares in an idempotent latin
square is a very difficult problem. The Ryser conditions can naturally be extended to
provide a necessary condition for an incomplete idempotent latin square L of order n
with symbol set S(t) to be embedded in an idempotent latin square of order t with
symbol set S(t), namely that NL(i) > 2n − t + f(i) for 1 6 i 6 t, where f(i) = 0 for
1 6 i 6 n and f(i) = 1 for n + 1 6 i 6 t. It was shown by Andersen et al. [3, 4] that
for all t < 2n these Ryser-type conditions are not sufficient: there exists an incomplete
idempotent latin square of order n which cannot be embedded in an idempotent latin
square of order t. In some cases, just swapping the placement of symbols in two cells
results in one which does have an idempotent embedding. So, for the first time in these
sorts of embedding problems, the arrangement of the symbols in L can determine its
embeddibility, thus making the idempotent setting quite special. The case where t > 2n
was finally settled after various results reduced the bound on t. Treash [13] showed that
a finite embedding of a partial idempotent latin square was always possible, Lindner [8]
reduced the bound to around 6n, conjecturing that 2n+ 1 was the right lower bound (the
Ryser-type conditions come into play when t 6 2n), Andersen [5] further reduced it to
t > 4n and t 6= 4n + 1, and finally Andersen et al. [2] settled the Lindner conjecture
which states that any partial idempotent latin square can be embedded in an idempotent

the electronic journal of combinatorics 29(3) (2022), #P3.47 2



latin square of order t, for any t > 2n + 1. The idempotent embedding for incomplete
idempotent latin squares was then settled for all t > 2n by Rodger [10].

A natural generalization to embedding an incomplete latin square L of order n with
symbol set S(t) into an idempotent latin square T of order t is to more generally prescribe
what is to occur on the diagonal: suppose it is required that for 1 6 i 6 t symbol i should
occur f(i) times in the diagonal cells of T outside L. Then the Ryser-type conditions are
again necessary, and if t > 2n + 1 then Rodger [11] proved they, along with two other
necessary conditions, are also sufficient. It is the case that if f(i) = 1 for some symbol,
i, then Andersen et al. [3] again showed that when t < 2n the arrangement of symbols
in L can determine if L can be embedded in T with the given prescribed diagonal of T
outside L. Rodger conjectured that if f(i) 6= 1 for 1 6 i 6 t then, even when t 6 2n, the
Ryser-type conditions are sufficient. It is this 30 year old conjecture that we prove in this
paper.

2 Previous Results

Before proving the main result, Theorem 4, we note the following three results.
Andersen et al. [1] proved Theorem 1, which completely settles the embedding problem

providing not all of the diagonal is prescribed.

Theorem 1 ([1]). Let t > n > 0. Let L be an incomplete latin square of order n on the
symbols in S(t). Let f : {1, 2, . . . , t} 7→ N satisfy

∑n
i=1 f(i) 6 t − n − 1. Then L can

be embedded in a latin square T of order t on the same symbols in which each symbol i
appears at least f(i) times on diagonal of T outside L if and only if NL(i) > 2n− t+ f(i)
for 1 6 i 6 t.

The following classic theorem, proven by Ryser [12], will be used in Step 1 of the proof
of Theorem 4.

Theorem 2 ([12]). An incomplete latin square L of order n on the symbols in S(t) can
be embedded in a latin square of order t on the same symbols if and only if NL(i) > 2n− t
for 1 6 i 6 t.

A family L of sets is said to be a laminar set if X, Y ∈ L implies that X ⊆ Y , Y ⊆ X,
or X ∩Y = ∅. Nash-Williams [9] proved the following result which will play a critical role
in Step 3 of the proof of Theorem 4.

Theorem 3 ([9]). If L1 and L2 are laminar sets of subsets of a finite set M , then for
each integer h > 0 there exists J ⊆M such that⌊

|Z|
h

⌋
6 |J ∩ Z| 6

⌈
|Z|
h

⌉
for every Z ∈ L1 ∪ L2.
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3 Main Result

In the following proof, f(i) will be modified in various ways. With this in mind, the
incomplete latin square L of order n is said to be (f, t)-satisfied if NL(i) > 2n− t + f(i)
for 1 6 i 6 t. We say a symbol i satisfies Ryser’s condition if NL(i) > 2n− t+ f(i).

Theorem 4. Let t > n > 0. Let L be an incomplete latin square of order n on the symbols
in S(t). Let f : S(t) 7→ N such that

∑n
i=1 f(i) = t−n and f(i) 6= 1 for 1 6 i 6 t. Then L

can be embedded in a latin square T of order t on the same symbols in which each symbol
i appears f(i) times on the diagonal of T outside L if and only if NL(i) > 2n − t + f(i)
for 1 6 i 6 t.

Proof. The necessity is well known, so assume that NL(i) > 2n− t+ f(i) for 1 6 i 6 t.
Suppose there exists a symbol α for which f(α) > 3. Let f ′(α) = f(α) − 1 and

f ′(i) = f(i) for 1 6 i 6 t, i 6= α. Thus
∑t

i=1 f
′(i) = t − n − 1. Then by Theorem 1, L

can be embedded in a latin square T ′ of order t in which for 1 6 i 6 t, symbol i occurs at
least f ′(i) times on the diagonal of T ′ outside L. By a permutation of rows and columns
if needed, assume T ′(n + 1, n + 1) = α. Define the incomplete latin square L′ of order
n + 1 by L′(a, b) = T ′(a, b) for 1 6 a, b 6 n + 1. We now show that L′ is (f ′, t)-satisfied.
Because T ′(n+ 1, n+ 1) = α,

NL′(α) = NL(α) + 1

> 2n− t+ f(α) + 1

= 2(n+ 1)− t+ f ′(α).

Also, since L′ is embedded in T ′, by the necessary condition in Theorem 1, NL′(i) >
2(n + 1) − t + f ′(i) for 1 6 i 6 t, i 6= α. Thus L′ is an incomplete latin square of order
n + 1 satisfying the conditions of the theorem. Therefore, by repeating this process, we
can assume that f(i) ∈ {0, 2} for 1 6 i 6 t; so t− n is even.

The remainder of the proof is completed in three steps. In each step, two rows and
columns are added so that the resulting incomplete latin square satisfies the necessary
condition after appropriately modifying f to allow for the symbol placed in both the
added diagonal cells.

Step 1. Suppose t−n = 2. Then f(α) = 2 for exactly one symbol α, and f(i) = 0 for
all symbols i 6= α. By assumption, NL(α) > 2n− t+f(α) = 2n−(n+2)+2 = n. Because
L is of order n, NL(α) = n. Use Theorem 2 to embed L in a latin square T of order t.
Because NL(α) = n, symbol α must appear twice in the 2 × 2 square formed with rows
and columns t− 1 and t of T . If α is on the diagonal, we are done. If not, then permute
columns t− 1 and t to obtain the required embedding. Thus we can assume t− n > 4.

Step 2. Suppose t − n > 8. Let s = (t − n)/2. By renaming symbols, we can
assume that f(i) = 2 for 1 6 i 6 s and f(i) = 0 for s + 1 6 i 6 t. We wish to
extend L by 2 rows and 2 columns embedding L in a latin square of order n + 2 that
satisfies the conditions of the theorem. Define f ′(i) = 2 for 1 6 i 6 s − 1, f ′(s) = 1,
and f ′(i) = 0 for s + 1 6 i 6 t. So,

∑t
i=1 f

′(i) = t − n − 1. Thus by Theorem 1 and
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L Ai

Bi Di

Figure 1: Li

a permutation of rows and columns if needed, we can embed L in a latin square T ′ of
order t with T ′(n + 2i − 1, n + 2i − 1) = i = T ′(n + 2i, n + 2i) for 1 6 i 6 s − 1 and
T ′(n+ 2s− 1, n+ 2s− 1) = s. (So at this stage we do not know what symbol appears in
cell (t, t).) Define the sets of cells Ai, Bi and Di for 1 6 i 6 s− 1 as follows:

Ai := {(a, b) : 1 6 a 6 n, n+ 2i− 1 6 b 6 n+ 2i},
Bi := {(a, b) : n+ 2i− 1 6 a 6 n+ 2i, 1 6 b 6 n}, and

Di := {(a, b) : n+ 2i− 1 6 a, b 6 n+ 2i}.
Let Ai, Bi, and Di be the n × 2, 2 × n, and 2 × 2 latin subrectangles of T ′ formed by
the cells in Ai, Bi, and Di respectively. Similarly, let Ai ∪ Bi ∪ Di be the array formed
by the cells in Ai, Bi, and Di. For 1 6 i 6 s − 1, let Li be the incomplete latin square
of order n + 2 depicted in Figure 1. We now have s − 1 candidates for extending L
by two rows and two columns, namely L1, . . . , Ls−1. We now show that at least one of
them must satisfy the necessary conditions of the theorem. (It is only symbol s that is
potentially problematic because f ′(s) 6= f(s). However, we show for at least one value of
i, 1 6 i 6 s − 1, s appears the necessary number of times in Ai ∪ Bi ∪ Di, so Li meets
the necessary conditions of the theorem.)

Suppose 1 6 i 6 s− 1. Permute the rows and columns of T ′ to produce a latin square
Ti such that Li is embedded in Ti and for 1 6 j 6 t, j 6= i, symbol j appears in at least
f ′(j) diagonal cells of Ti outside Li. Define fi(j) = f(j) for 1 6 j 6 t, j 6= i, and define
fi(i) = f(i)− 2 = 0. Because i appears 2 more times on the diagonal of Li than it did in
L,

NLi(i) = NL(i) + 2

> 2n− t+ f(i) + 2

= 2n− t+ (fi(i) + 2) + 2

= 2(n+ 2)− t+ fi(i).

Since Li is embedded in Ti, by the necessity of Theorem 1, for 1 6 j 6 t, j /∈ {i, s},
NLi(j) > 2(n+ 2)− t+ f ′(j)

= 2(n+ 2)− t+ f(j)

= 2(n+ 2)− t+ fi(j).
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Also, by the necessity of Theorem 1,

NLi(s) > 2(n+ 2)− t+ f ′(s)

= 2(n+ 2)− t+ (f(s)− 1)

= 2(n+ 2)− t+ fi(s)− 1.

We claim that for some i, 1 6 i 6 s− 1, s satisfies Ryser’s condition in Li, so in actuality
NLi(s) > 2(n+ 2)− t+ fi(s). Assume otherwise; so for all i, 1 6 i 6 s− 1, assume that
NLi(s) = 2(n+ 2)− t+ fi(s)− 1 = 2(n+ 2)− t+ 1. But then,

s−1∑
i=1

NLi(s) = (s− 1)(2(n+ 2)− t+ 1)

= (s− 1)(2n− t+ 5).

Symbol s appears n times in the first n rows of Ti (by the definition of a latin square),
but does not appear in the (t− 1)th column of the first n rows because symbol s appears
on the diagonal in that column. Symbol s could possibly appear in the tth column of the
first n rows. Thus NL(s) +

∑s−1
i=1 NAi(s) > n−1. Similarly, NL(s) +

∑s−1
i=1 NBi(s) > n−1.

Therefore,

s−1∑
i=1

NLi(s) =
s−1∑
i=1

(NL(s) +NAi(s) +NBi(s) +NDi(s))

> (s− 3)NL(s) + (n− 1) + (n− 1) +
s−1∑
i=1

NDi(s)

> (s− 3)NL(s) + (n− 1) + (n− 1),

implying

(s− 3)NL(s) 6 (s− 1)(2n− t+ 5)− 2n+ 2

= (s− 3)(2n− t+ 5) + 4n− 2t+ 10− 2n+ 2

= (s− 3)(2n− t+ 5)− 4s+ 12

= (s− 3)(2n− t+ 1).

So, because s > 4, NL(s) 6 (2n − t + 1), contradicting our original assumption.
Therefore, for some value of i, 1 6 i 6 s − 1, say i = α, NLα(s) > 2(n + 2) − t + fα(s).
Also, as already stated, NLα(j) > 2(n + 2) − t + fα(j) for 1 6 j 6 t, j 6= s. Thus Lα
is an incomplete latin square of order n + 2 that is (fα, t)-satisfied and thus satisfies the
conditions of the theorem. By repeating this process, we may now assume t− n 6 6.

Step 3. Suppose t − n ∈ {4, 6}. Form a bipartite multigraph G∗c with bipartition
C = {c1, c2, . . . , cn, c∗} and S = {σ1, σ2, . . . , σt} of the vertex set as follows. For 1 6 i 6 n
and 1 6 j 6 t, join ci to σj if and only if symbol j is missing from column i of L and
join c∗ to σj with f(j) edges. Similarly, form a bipartite multigraph G∗ρ with bipartition
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R = {ρ1, ρ2, . . . , ρn, ρ∗} and S ′ = {σ′1, σ′2, . . . , σ′t} of the vertex set as follows. For 1 6 i 6 n
and 1 6 j 6 t, join ρi to σ′j if and only if symbol j is missing from row i of L, and join
ρ∗ to σ′j with f(j) edges. Because each column and row of L contains n symbols, for
1 6 i 6 n,

degG∗c (ci) = degG∗ρ(ρi) = t− n. (1)

Because
∑n

i=1 f(i) = t− n,

degG∗c (c
∗) = degG∗ρ(ρ

∗) = t− n. (2)

For 1 6 j 6 t, symbol j is missing from n − NL(j) rows of L and n − NL(j) columns of
L, so

degG∗c (σj) = degG∗ρ(σ
′
j) = n−NL(j) + f(j). (3)

For 1 6 j 6 t, let z(j) = NL(j) − (2n − t + f(j)). So 0 6 z(j) 6 n − (2n − t + f(j)) =
t− n− f(j). Thus, by (3),

degG∗c (σj) = degGρ∗ (σ
′
j) = n−NL(j) + f(j)

= n− (2n− t+ f(j) + z(j)) + f(j)

= t− n− z(j)

6 t− n.

(4)

So, ∆(Gc∗) = ∆(Gρ∗) = t−n and z(j) measures how far σj and σ′j are from this maximum
degree.

Define a laminar set L1 of subsets of E(G∗c) ∪ E(G∗ρ) as follows. For 1 6 i 6 n, let
Ci ∈ L1 be the set of edges incident to ci. Let C∗ ∈ L1 be the set of edges incident to
c∗. For 1 6 j 6 t such that f(j) > 0, let C∗j ∈ L1 be the subset of C∗ given by the two
element set of the pair of edges joining c∗ and σj. Similarly, for 1 6 i 6 n, let Ri ∈ L1

be the set of edges incident to ρi. Let R∗ ∈ L1 be the set of edges incident to ρ∗. For
1 6 j 6 t such that f(j) > 0, let R∗j ∈ L1 be the subset of R∗ given by the two element
set of the pair of edges joining ρ∗ and σj. Define a second laminar set L2 of subsets of
E(G∗c) ∪ E(G∗ρ) as follows. For 1 6 j 6 t, let Sj ∈ L2 be the set of edges incident to σj,
S ′j ∈ L2 be the set of edges incident to σ′j, and Σj ∈ L2 be the set of all edges incident to
either σj or σ′j. By Theorem 3, there exists a set J ⊆ (E(G∗c) ∪ E(G∗ρ)) for which⌊

|Z|
(t− n)/2

⌋
6 |J ∩ Z| 6

⌈
|Z|

(t− n)/2

⌉
for every Z ∈ (L1 ∪ L2).

Let GJ be the graph induced by the edges of G∗c and G∗ρ in J . Later, a modified version
of GJ will be colored with 2 colors and be used to fill rows and columns n+ 1 and n+ 2
to embed L in an incomplete latin square of order n + 2. But first we explore GJ to see
what modifications are needed.

By (1), for 1 6 i 6 n, degG∗c (ci) = degG∗ρ(ρi) = t − n; so, because Ci, Ri ∈ L1,

degGJ (ci) = degGJ (ρi) = 2. By (2), degG∗c (c
∗) = degG∗ρ(ρ

∗) = t− n; so, because C∗, R∗ ∈
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L1, degGJ (c∗) = degGJ (ρ∗) = 2. By (4), degG∗c (σj) = degG∗ρ(σ
′
j) = t−n−z(j); so, because

Sj, S
′
j ∈ L2, degGJ (σj) 6 d2 − 2z(j)

t−n e 6 2 and degGJ (σ′j) 6 d2 −
2z(j)
t−n e 6 2. Also, because

Σj ∈ L2, degGJ (σj) + degGJ (σ′j) > b4−
4z(j)
t−n c > 4− z(j). So, for 1 6 j 6 t,

NL(j) + degGJ (σj) + degGJ (σ′j) > (2n− t+ f(j) + z(j)) + (4− z(j))

= 2(n+ 2)− t+ f(j).
(5)

Recall, degGJ (c∗) = 2. Because C∗j ∈ L1 at most one edge {c∗, σj} ∈ C∗j is in J . So,
the two edges in J incident to c∗ are incident to two different vertices in S. Similarly,
there are exactly two edges in J incident to ρ∗, each of which is incident to two different
vertices in S ′. Because c∗ and ρ∗ are incident to σj and σ′j respectively for the same two
(if t−n = 4) or three (if t−n = 6) values of j, there must exist an α such that 1 6 α 6 t,
{c∗, σα} ∈ J and {ρ∗, σ′α} ∈ J .

In what follows we construct another set of edges J ′ through a modest modification
of J so both edges in C∗α and both edges in R∗α will be in J ′. The graph GJ is a bipartite
graph with maximum degree 2. Thus, the edges of GJ can be properly colored with 2
colors, say 1 and 2. Consider the graphs G∗c − J and G∗ρ − J . They are bipartite graphs
with maximum degree t− n− 2. Thus, the edges of G∗c − J and G∗ρ − J can be properly
colored with t− n− 2 colors, say 3, . . . , t− n. These two edge-colorings naturally induce
a proper (t − n)-edge-coloring of G∗c ∪ G∗ρ, X : E(G∗c ∪ G∗ρ) → {1, 2, . . . , t − n}, in which
all edges in J are colored 1 or 2.

In what follows we construct an edge-coloring X ′ : E(G∗c ∪ G∗ρ) → {1, 2, . . . , t − n}
by interchanging colors on two 2-colored trails, T1 and T2, in X. In X ′ the edges in Cα
will be colored 1 and 2 and the edges in Rα will be colored 1 and 2. Suppose the edges
in Cα are colored 1 and 3 by X. Consider the maximal trail, T1, containing the edge
{c∗, σα} colored 3, in which the edges are alternately colored 2 and 3 by X. Because the
edge-coloring is proper, T1 is either a cycle or a path. Interchange the colors on T1 and
let this new edge-coloring be X ′ on the edges in G∗c . The edges in Cα are now colored 1
and 2 by X ′. If T1 is a cycle, interchanging colors did not impact the number of edges
of each color incident to each vertex. Suppose T1 is a path. Interchanging colors did not
impact the number of edges of each color incident to each vertex in the interior of T1, but
did impact the endpoints. For each c ∈ C, by (1) and (2), deg(c) = t − n. So there is
exactly one edge colored 2 and one edge colored 3 by X incident to vertex c. Thus c is
not an endpoint of T1, so the endpoints of T1 must be in S. Because G∗c is bipartite and
both ends of T1 are in S, exactly one of the ends was incident to an edge colored 2 by X.
This end cannot be σα because σα was incident to an edge colored 3 by X. So one end
of T1 is a vertex σu ∈ S \ {σα} that now does not have an edge colored 2 by X ′ incident
to it. The other end of T1 was incident to an edge colored 3 by X. So this vertex now is
incident to an edge colored 2 by X ′. Similarly, we can use a trail T2 to modify the proper
edge-coloring, X, of G∗ρ and define X ′ on the edges of G∗ρ so the edges in Rα are now
colored 1 and 2 in X ′. After recoloring, at most one vertex in S ′ \ {σ′α} has lost an edge
colored 2 incident to it in X ′. If such a vertex exists, name it σ′v. All other vertices in
G∗c ∪ G∗ρ have an equal or greater number of edges colored 2 incident to them. Thus, we

the electronic journal of combinatorics 29(3) (2022), #P3.47 8



have the revised edge-coloring X ′ : E(G∗c ∪ G∗ρ) → {1, 2, . . . , t − n}. Define J ′ to be the
set of edges colored 1 and 2 by X ′, and let GJ ′ be the graph induced by the edges in J ′.

It is important to note a property that will be used later in the proof if σu and/or
σ′v have been defined. In X ′, σu and σ′v do not have an edge colored 2 incident to them,
so degG∗c (σu) = degG∗ρ(σ

′
u) < t − n and degG∗ρ(σ

′
v) = degG∗c (σv) < t − n. So, for each

j ∈ {u, v}, by (3),
NL(j) > 2n− t+ f(j) + 1. (6)

To finally arrive at the desired edge-coloring, X ′′ : E(G∗c ∪G∗ρ)→ {1, 2, . . . , t− n}, X ′
is to be modified in the situation where degGJ′ (σu) = degGJ′ (σv) = 1 and/or degGJ′ (σ

′
u) =

degGJ′ (σ
′
v) = 1 (as in Case 3 below). To do this we construct the edge-coloring X ′′ by

interchanging colors on up to two trails, T3 and T4, whose edges are colored 1 and 2 in X ′

as follows.
We first define X ′′ on E(G∗c). Suppose degGJ′ (σu) = degGJ′ (σv) = 1. Let eu and ev be

the edges incident to σu and σv in GJ ′ respectively. In X ′′, we make sure that one of eu
and ev is colored 1 and the other is colored 2. If X ′(eu) 6= X ′(ev), then we already have the
desired property, so define X ′′(e) = X ′(e) for all e ∈ E(G∗c). Otherwise, X ′(eu) = X ′(ev).
Take a maximal trail, T3, in GJ ′ that begins with eu. Because ∆(GJ ′) = 2, the trail T3 is
necessarily a path. For each c ∈ C, degGJ′ (c) = 2. Thus c is not an endpoint of T3, so the
endpoint of T3 must be in S. The path T3 cannot end with ev because X ′(eu) = X ′(ev) and
GJ ′ is a bipartite graph. So, because degGJ′ (σv) = 1, T3 does not include ev. Interchange
colors along T3. All interior vertices of T3 still have exactly one incident edge colored 1
and exactly one incident edge colored 2. The endpoints of T3 now have the opposite color
incident to them. Define X ′′ on the edges in G∗c to be this new edge-coloring. Thus, in
any case, if eu and ev exists, we can assume

X ′′(eu) 6= X ′′(ev). (7)

For convenience, if degGJ′ (σu) 6= 1 or degGJ′ (σv) 6= 1, so we are not in the above case,
then define X ′′(e) = X ′(e) for all e ∈ E(G∗c).

Similarly, we can define X ′′ on the edges in G∗ρ by interchanging colors on a trail T4 in
X ′ if needed. So, if degGJ′ (σ

′
u) = 1 and degGJ′ (σ

′
v) = 1 and we let e′u and e′v be the edges

incident to σ′u and σ′v in GJ ′ respectively, then

X ′′(e′u) 6= X ′′(e′v). (8)

For convenience, if degGJ′ (σ
′
u) 6= 1 or degGJ′ (σ

′
v) 6= 1, so we are not in the above case,

then define X ′′(e) = X ′(e) for all e ∈ E(G∗ρ).
Thus, we have the revised edge-coloring X ′′ : E(G∗c ∪G∗ρ)→ {1, 2, . . . , t− n}. Define

J ′′ to be the set of edges colored 1 and 2 by X ′′, and let GJ ′′ be the graph induced by the
edges in J ′′.

We will use GJ ′′ to fill in rows and columns n + 1 and n + 2 and extend L to an
incomplete latin square of order n + 2. For 1 6 i 6 t, degGJ′′ (ci) = degGJ′′ (ρi) = 2. For
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1 6 j 6 t, degGJ′′ (σj) 6 2 and degGJ′′ (σ
′
j) 6 2. Also, for 1 6 j 6 t, by (5),

NL(j) + degGJ′′ (σj) + degGJ′′ (σ
′
j)

> NL(j) + degGJ (σj) + degGJ (σ′j)− εj
> 2(n+ 2)− t+ f(j)− εj,

(9)

where εj = 0 if j /∈ {u, v}, εj = 1 if j ∈ {u, v} and u 6= v, and εj = 2 if j = u = v.
Form a partial incomplete latin square Lα of order n+ 2 by adding two new rows and

columns to L using J ′′ as follows. Let Lα(a, b) = L(a, b) for 1 6 a 6 n and 1 6 b 6 n.
Define the sets of cells A, B and D as follows:

A := {(a, b) : 1 6 a 6 n, n+ 1 6 b 6 n+ 2},
B := {(a, b) : n+ 1 6 a 6 n+ 2, 1 6 b 6 n}, and

D := {(a, b) : n+ 1 6 a, b 6 n+ 2}.

Let A, B, and D be the n × 2, 2 × n, and 2 × 2 latin subrectangles of Lα formed by
the cells in A, B, and D respectively. Similarly, let A ∪ B be the array formed by the
cells in A and B. We now fill A and B using GJ ′′ . For 1 6 k 6 2 and 1 6 i 6 n, let
Lα(n + k, i) = j if and only if {ci, σj} is colored k in GJ ′′ . Similarly, for 1 6 k 6 2 and
1 6 i 6 n, let Lα(i, n + k) = j if and only if {ρi, σ′j} is colored k in GJ ′′ . Every cell in
A ∪ B is filled because degGJ′′ (ci) = degGJ′′ (ρi) = 2 for 1 6 i 6 n. So, for 1 6 j 6 t, by
(9),

NLα(j) > 2(n+ 2)− t+ f(j)− εj. (10)

In a later modification of Lα we will place α in the two new diagonal cells, so define
f ′(α) = f(α) − 2 and f ′(j) = f(j) for 1 6 j 6 t and j 6= α. For 1 6 j 6 t and
j /∈ {u, v, α}, by (10),

NLα(j) > 2(n+ 2)− t+ f ′(j). (11)

Thus, Lα is a partial incomplete latin square of order n+ 2 with all cells except those in
D filled and all symbols satisfying Ryser’s condition except possibly α (which will satisfy
Ryser’s condition once placed twice on the diagonal in D) and possibly u and v if they
exist. The aim is to construct L′α through a modest modification of Lα to form a partial
incomplete latin square of order n+ 2 on S(t) which is (f ′, t)-satisfied.

By (10), NLα(u) > 2(n+ 2)− t+f ′(u)− εu and NLα(v) > 2(n+ 2)− t+f ′(v)− εv. We
will now modify Lα to form L′α so that if NLα(j) < 2(n+ 2)− t+ f ′(j) for any j ∈ {u, v},
u and/or v will be placed in cells (n+ 1, n+ 2) and/or (n+ 2, n+ 1) of L′α as needed to
ensure that NL′α(u) > 2(n+ 2)− t+ f ′(u) and NL′α(v) > 2(n+ 2)− t+ f ′(v).

Let j ∈ {u, v}. If NLα(j) < 2(n+ 2)− t+ f ′(j), by (10), NLα(j) = 2n− t+ f ′(j) + 2
or NLα(j) = 2n− t+ f ′(j) + 3. These two cases of NLα(j) correspond to L′α needing 2 or
1 more occurrence of j respectively. To reveal more about these potentially problematic
cases, consider the following properties. Recall, by (6), NL(j) > 2n− t+ f(j) + 1.

(i) Suppose NLα(u) < 2(n + 2) − t + f ′(u) and NL(u) = 2n − t + f(u) + 1. By (3),
degG∗c (σu) = n − NL(u) + f(u) = t − n − 1. In the edge-coloring X ′′, σu is missing
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exactly one of the colors 1 or 2 (because T1 ended on this vertex). So, since σu is
incident to an edge of every color in G∗c except one, σu must be incident to the other
color (1 or 2). Therefore, degGJ′′ (σu) = 1, and so because u appears at most 2 times
(because NLα(u)−NL(u) 6 2) in A ∪B, degGJ′′ (σ

′
u) 6 1.

(ii) Similarly, if NLα(v) < 2(n + 2) − t + f ′(v) and NL(v) = 2n − t + f(v) + 1, then
degGJ′′ (σ

′
v) = 1 and degGJ′′ (σv) 6 1.

(iii) If NL(u) = 2n − t + f(u) + 1, NLα(u) < 2(n + 2) − t + f ′(u), and u = v, then by
(i-ii), degGJ′′ (σu) = 1 = degGJ′′ (σ

′
u). So, NLα(u) = 2n− t+ f ′(u) + 3.

(iv) If j ∈ {u, v}, NLα(j) < 2(n + 2) − t + f ′(j), and 2n − t + f(j) + 2 6 NL(j) 6
2n− t+ f(j) + 3, then j appears at most 1 time (because NLα(u)−NL(u) 6 1) in
A ∪B.

If NLα(j) > 2(n + 2) − t + f ′(j) for j ∈ {u, v}, then let L′α(a, b) = Lα(a, b) for
1 6 a, b 6 n+2. Otherwise we will make use of (i-iv) to modify Lα to define L′α and place
u and/or v in cells (n+ 1, n+ 2) and/or (n+ 2, n+ 1) of L′α as needed to ensure that, for
j ∈ {u, v}, NL′α(j) > 2(n + 2)− t + f ′(j). The following three cases are considered. The
first two cases consider if exactly one of u or v, say u, does not meet Ryser’s condition.
So, by (10), NLα(u) = 2(n + 2) − t + f ′(u) − 2 or NLα(u) = 2(n + 2) − t + f ′(u) − 1.
The third case considers when both u and v do not meet Ryser’s Condition, so, by (10),
NLα(u) = 2(n+ 2)− t+ f ′(u)− 1 and NLα(v) = 2(n+ 2)− t+ f ′(v)− 1.

Case 1: Suppose NLα(u) = 2(n + 2) − t + f ′(u) − 2. Thus, by (10), u = v. By (iii),
NL(u) = 2n − t + f(u) + 2. Then u does not appear in A nor in B. Define
L′α(a, b) = Lα(a, b) for (a, b) ∈ A ∪ B and for 1 6 a, b 6 n. Also, define L′α(n +
1, n+2) = L′α(n+2, n+1) = u. Thus NL′α(u) = NLα(u)+2 = 2(n+2)−t+f ′(u).

Case 2: Suppose that for exactly one of u or v, say u, NLα(u) = 2(n+ 2)− t+ f ′(u)− 1
and for the other, say v, NLα(v) > 2(n+ 2)− t+f ′(v), u = v, or v does not exist.
By (i,iii,iv), u is in at most one row of B, say n + 2, and at most one column of
A, say n + 1 (permuting the columns and/or rows of A and/or B respectively if
need be). Define L′α(a, b) = Lα(a, b) for (a, b) ∈ A ∪ B or 1 6 a, b 6 n. Also,
define L′α(n+ 1, n+ 2) = u. Thus NL′α(u) = NLα(u) + 1 = 2(n+ 2)− t+ f ′(u).

Case 3: Suppose u 6= v, NLα(u) = 2(n+ 2)− t+ f ′(u)− 1, and NLα(v) = 2(n+ 2)− t+
f ′(v)− 1. By (i-ii, iv), u and v each appear at most once in A and at most once
in B. By (7) and (8), we can assume u and v appear in different rows of B and
different columns of A. Thus, permuting rows and/or columns if necessary we
can assume u does not appear in row n+ 1 nor in column n+ 2 of Lα and v does
not appear in row n + 2 nor in column n + 1 of Lα. Define L′α(a, b) = Lα(a, b)
for (a, b) ∈ A ∪ B or 1 6 a, b 6 n. Also, define L′α(n + 1, n + 2) = u and
L′α(n + 2, n + 1) = v. So NL′α(u) = NLα(u) + 1 = 2(n + 2) − t + f ′(u) and
NL′α(v) = NLα(v) + 1 = 2(n+ 2)− t+ f ′(v).
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Thus, in any case, we can place u and/or v in cells (n+ 1, n+ 2) and/or (n+ 2, n+ 1)
if needed so that for j ∈ {u, v},

NL′α(j) > 2(n+ 2)− t+ f ′(j).

Define L′α(n+ 1, n+ 1) = L′α(n+ 2, n+ 2) = α. So

NLα(α) = NL(α) + 2 > 2(n+ 2)− t+ f ′(j).

Also for 1 6 j 6 t and j /∈ {u, v, α}, NL′α(j) = NLα(j), so by (11),

NL′α(j) = NLα(j)

> 2(n+ 2)− t+ f ′(j).

Thus, L′α is a partial incomplete latin square of order n + 2 with all symbols satisfying
Ryser’s condition and all cells filled except possibly cells (n+ 1, n+ 2) and (n+ 2, n+ 1).

We now define L′′α through a modest modification of L′α to fill cells (n+1, n+2) and/or
(n + 2, n + 1) if needed to form an (f ′, t)-satisfied incomplete latin square. Suppose cell
(n+ 1, n+ 2) of L′α is empty. Form the bipartite graph B with bipartition C ′ = {ci | 1 6
i 6 n + 2} and S = {σj | 1 6 j 6 t} of the vertex set as follows. For 1 6 i 6 n + 2
and 1 6 j 6 t, join ci to σj if and only if symbol j is missing from column i of L′α or
L′α(n + 1, i) = j. For ci ∈ C ′ \ {cn+1}, degB(ci) = t − n − 1. Because j appears at most
once in row n+ 1, for σj ∈ S,

degB(σj) 6 n+ 2− (NL′α(j)− 1)

6 n+ 2− (2(n+ 2)− t+ f ′(j)− 1)

= t− n− f ′(j)− 1

6 t− n− 1.

(12)

Define the matching M by letting {ci, σj} ∈ E(B) be in M if and only if L′α(n+ 1, i) = j.
Because symbol α appears in cell (n + 1, n + 1), {cn+1, σα} ∈ M . Let B′ be the induced
subgraph ofB formed by removing vertices cn+1 and σα. We wish to find anM -augmenting
path in B′ starting at cn+2. For a contradiction, suppose there does not exist an M -
augmenting path in B′ starting at cn+2. Let W be the subgraph of B′ induced by the set
of vertices that can be reached by an M -alternating path starting at cn+2. All maximal M -
alternating paths starting at cn+2 end at an M -saturated vertex in C ′ \ {cn+1}. So V (W )
contains say x vertices from S \ {σα} and V (W ) contains x+ 1 vertices from C ′ \ {cn+1},
namely cn+2 and the M -neighbors of the x vertices from S \ {σα}. Let C ′W = C ′ ∩ V (W )
denote the set of these x + 1 vertices. By the definition of W , every edge in B′ incident
to a vertex in C ′W must be an edge in W (which implies the equality in the relations
below). Because degB(σα) 6 t− n− 1 (by (12)) and σα is adjacent to cn+1 in B, at most
t − n − 2 vertices in C ′W have degree t − n − 2 in B′ and all other vertices in C ′W have
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degree t− n− 1 in B′. So,

(t− n− 1)x >
∑

σj∈V (W )

degB′(σj)

> e(W )

=
∑

ci∈V (W )

degB′(ci)

> (t− n− 1)(x+ 1)− (t− n− 2).

This is a contradiction. Thus, there exists an M -augmenting path in B′ starting at cn+2.
Form the matching M ′ from M by interchanging edges in M with edges not in M along
this path. Now replace row n+ 1 of L′α to form L′′α using M ′ by letting L′′α(n+ 1, i) = j if
and only if {ci, σj} is in M ′ for 1 6 i 6 n+2 and 1 6 j 6 t and letting L′′α(a, b) = L′α(a, b)
for 1 6 a 6 n or a = n+ 2 and 1 6 b 6 n+ 2. Thus, L′′α contains the same symbols as L′α
with the addition of one more symbol in row n+ 1. Now, all cells in row n+ 1 are filled.
Similarly, if cell (n + 2, n + 1) is empty, we can modify L′′α using the same approach. So
we can assume all cells of L′′α are filled and all symbols satisfy Ryser’s condition. Thus,
L′′α is an incompete latin square of order n + 2 that is (f ′, t)-satisfied and thus satisfies
the conditions of the theorem.
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Corrigendum – Added May 19, 2023

The authors have noted the following typographic errors:

• Page 7, Line -12: Replace σj with σ′j.

• Page 8, Line -21: Replace Cα with C∗α.

• Page 8, Line -20: Replace Rα with R∗α.

• Page 8, Line -19: Replace Cα with C∗α.

• Page 8, Line -16: Replace Cα with C∗α.

• Page 8, Line -4: Replace Rα with R∗α.
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