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Abstract

Let D = (V, A) be a digraph. A vertex set K C V is a quasi-kernel of D if K
is an independent set in D and for every vertex v € V' \ K, v is at most distance 2
from K. In 1974, Chvatal and Lovéasz proved that every digraph has a quasi-kernel.
P. L. Erd6s and L. A. Székely in 1976 conjectured that if every vertex of D has a
positive indegree, then D has a quasi-kernel of size at most |V|/2. This conjecture
is only confirmed for narrow classes of digraphs, such as semicomplete multipartite,
quasi-transitive, or locally semicomplete digraphs. In this note, we state a similar
conjecture for all digraphs, show that the two conjectures are equivalent, and prove
that both conjectures hold for a class of digraphs containing all orientations of
4-colorable graphs (in particular, of all planar graphs).

Mathematics Subject Classifications: 05C20, 05C35, 05C69

1 Introduction and notation

The digraphs in this note may have antiparallel arcs, but do not have loops. Let D be
a digraph. We denote by V(D) and A(D) the vertex set and the arc set of D, respectively.
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We say D is weakly connected if the underlying graph of D is connected. Let x € V(D).
The open (closed) outneighborhood and inneighborhood of x in D, denoted N} (z) (N} [z])
and N (z) (Np[z]) are defined as follows.

Np(x) ={y € V(D) |zy € A(D)}, Npla] = Nj(z)U{z},
Np(z) ={y e V(D) |yz € A(D)}, Nplz] = Np(z) U{z}.

The outdegree of x in D is df;(x) = | N} (z)], and the indegree of x in D is d(x) = | Ny (z)].
Vertices of indegree zero in D are called sources of D and vertices of outdegree zero in D
are called sinks of D. By 07 (D) (respectively, 0~ (D)) we denote the minimum outdegree
(respectively, indegree) in D among all vertices of D. For each X C V(D), we let

NA(X) = | Nj@)\ X, Nj[X]=N(X)UX,
Np(X) = Np(@)\ X, Np[X]=Np(X)UX.

zeX

Let u,v € V(D) and K C V(D). The distance from u to v in D, denoted distp(u,v),
is the length of a shortest directed path from u to v. The distance from K to v in D, is
distp(K,v) = min{distp(z,v) |z € K}. We say K is a kernel of D if K is independent
in D and for every v € V(D) \ K, distp(K,v) = 1. We say K is a quasi-kernel of D if K
is independent in D and for every v € V(D) \ K, distp(K,v) < 2. !

A digraph D is kernel-perfect if every induced subdigraph of it has a kernel. Richardson
proved the following result.

Theorem 1 (Richardson [10]). Every digraph without directed odd cycles is kernel-perfect.

The proof gives rise to an algorithm to find one. On the other hand, Chvatal [4] showed
that in general it is NP-complete to decide whether a digraph has a kernel, and by a result
of Fraenkel [6] it is NP-complete even in the class of planar digraphs of degree at most 3.
While not every digraph has a kernel, Chvétal and Lovéasz [5] proved that every digraph
has a quasi-kernel. In 1976, P.L. Erdos and S. A. Székely made the following conjecture
on the size of a quasi-kernel in a digraph.

Conjecture 2 (Erdés—Székely [1]). Every n-vertex digraph D with 67(D) > 1 has a
quasi-kernel of size at most .

If D is an n-vertex digraph consisting of the disjoint union of directed 2- and 4-cycles,
then every kernel or quasi-kernel of D has size exactly 5. Thus, Conjecture 2 is sharp.

In 1996, Jacob and Meyniel [9] showed that a digraph without a kernel contains at least
three distinct quasi-kernels. Gutin et al. [7] characterized digraphs with exactly one and
two quasi-kernels, thus provided necessary and sufficient conditions for a digraph to have

LOur definition of a kernel is the digraph dual of what was originally defined in [6], and it is “consistent”
with the definition of a quasi-kernel.
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at least three quasi-kernels. However, these results do not discuss the sizes of the quasi-
kernels. Heard and Huang [8] in 2008 showed that each digraph D with 6% (D) > 1 has two
disjoint quasi-kernels if D is semicomplete multipartite (including tournaments), quasi-
transitive (including transitive digraphs), or locally semicomplete. As a consequence,
Conjecture 2 is true for these three classes of digraphs.

We propose a conjecture which formally implies Conjecture 2. It suggests a bound for
digraphs that may have sources. Note that each quasi-kernel of a digraph contains all of
its source vertices and hence contains no outneighbors of the source vertices.

Conjecture 3. Let D be an n-vertex digraph, and let S be the set of sources of D. Then
D has a quasi-kernel K such that

n+ 1] = INB(S)|

K| <
2

To show that the upper bound above is best possible, consider the following examples.

e Let S be a nonempty set of isolated vertices, and let D be a digraph obtained from
a directed triangle by adding an arc from every vertex in S to the same vertex in

the triangle. Then every quasi-kernel of D has size |S| +1 = w

e Let D be an orientation of a connected bipartite graph with parts S and T" where

each arc goes from S to T. Then S forms a quasi-kernel of D of size |S| =
(SIHTD+S|=|T]
5 .

In this paper, we support Conjectures 2 and 3 by showing the following results.

Theorem 4. Let D be an n-vertex digraph and S be the set of sources of D. Suppose that

V(D) \ N}|[S] has a partition Vi U Vy such that D[V;] is kernel-perfect for each i = 1,2.
n+|S|= N (S)]

Then D has a quasi-kernel of size at most 5

Since by Theorem 1, every digraph without directed odd cycles is kernel-perfect, The-
orem 4 immediately yields:

Corollary 5. Conjectures 2 and 3 hold for every orientation of each graph with chromatic
number at most 4.

By the Four Color Theorem [2, 3], Corollary 5 yields that Conjectures 2 and 3 hold
for every digraph whose underlying graph is planar.

Theorem 6. If Conjecture 3 fails and D is a counterexample to it with the minimum
number of vertices, then D has no source.

Since Conjecture 3 implies Conjecture 2, Theorem 6 implies that the two conjectures
are equivalent.
In the next section we prove Theorem 4 and in Section 3 prove Theorem 6.
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2 Proof of Theorem 4

Let D' = D — N}[S] be the digraph obtained by removing the source vertices and
their outneighbors, and Vy UV, = V(D') be a partition of V/(D') such that D[V;] is kernel-
perfect for each i = 1,2. In addition, we choose such a partition so that |V5| is as small as
possible. Observe that adding a source vertex v to a kernel-perfect digraph H results in
a new kernel-perfect digraph: let H’ be the resulting digraph, and let F' be a subdigraph
of H' that contains v. Then K U{v} is a kernel of F where K is any kernel of F'— N\, [v]
in H.

If there exists some v € V5, with no inneighbors in V;, then we may move v from V5, to
V1, and obtain a new partition of V(D’) into kernel-perfect subgraphs with a smaller V;
by Theorem 1. Thus, by the choice of V5,

Np(v)yNnVi #£ @ for every v € V. (1)

For a digraph F' and an independent set R C V(F), we say Ry C R is a concise set
of Rin F if Njf(Ry) = Nj(R) and |Ro| < [N/ (Rp)|. Indeed, every independent set has
a concise set—iteratively add vertices v from R to Ry if and only if [N} (Rg U {v})| >
N (Ro)l,

Since DI[V;] is kernel-perfect, it has a kernel R. Let Ry be a concise set of R in D'.
Let D" = D' — (RyU N}, (R)) = D' — N}, [Ro]. We partition R\ Ry into sets S” and T of
sources and non-sources in D" respectively. Note that since each v € S” was not a source
in the original digraph D, v must have an inneighbor in V(D) — V(D").

Set K = SURyUT. We will show that K is a quasi-kernel of D. We first show
that it is independent. Indeed, K N R is independent, since R was a kernel of D[V;].
There are no arcs from K N R to K \ R = S because each vertex in S is a source in
D. Similarly, there are no arcs from S to S. Finally, there are no arcs from S to K\ S
because K \ S C V(D) = V(D) — NA[S].

Now we check that each vertex is at distance at most 2 from K. For any v € N [K],
we have distp(K,v) < 1. Consider v € V; \ NA[K]. Recall that R is a kernel of D[V;], so
Vi € NJ[R]. Tt follows that since Ry is a concise set of R, the vertex v must be contained
in R\ K = S”. Therefore v has an inneighbor in N[S] U N} [Ry] € N} [K], hence
diStD(K, U) g 2.

Now suppose v € Vo \ NA[K]. By (1), v has an inneighbor u € V;. If u € N} [K], then
distp(K,v) < 2. So we may assume u € V; \ N[K] = S”. Since S” C R, v € N, [R].
But Ry is a concise set of R, so v € N, (Ry) C NA[K]. We get distp(K,v) < 1.

Therefore, K is a quasi-kernel of D. If |T| < |V/(D")\ T| (so 2|T| < |[V(D")UT| =
|V(D")|), then using the fact that Ry is a concise set,

1 1
(K] =[S+ [ Bol + |T| < |S] + 5B U N (R)| + 5 [V(D")]

<181+ 5IV(D)\ NB[S]] < 500 +18] - INF(S)))

and the theorem holds. Thus, assume that |T'| > [V(D")\T| (so |V(D")\T| < |V (D")|/2).
Note that V(D")\T = (Vo \ N}, (R))US". Since D[V3] is kernel-perfect and adding source
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vertices preserves kernel-perfectness, the digraph D” — T is also kernel-perfect. Let W be
a kernel of D" — T and set K’ = (SU RyUW)\ N (W).
Similarly to K, the set K’ is independent in D. Since |T'| > |V(D")\ T,

no+ 1| = IN(S)|

1 1
1] <181+ [ Rol + W] < ||+ 51 Ro U NG (R)| + 5 V(D")] < ;

We now show that distp(K’,v) < 2 for every v € V(D) \ K.

Observe that S” C W since the vertices in S” are sources in D” —T'. Clearly, we have
that each vertex v € V(D" —T) has distp(K’,v) < 1. Now suppose v € T'. Since v is not
a source in D", it has an inneighbor in V(D"), and this neighbor cannot be in 7" because
T C R is independent. Hence distp(K’,v) < 2.

We have distp(K’,v) < 1 for all v € NJA[S]. Tt remains to consider v € V(D) \
V(D") = N}, [Ro). If v € Ry, then either v € K" or v € N} (W). Hence distp(K’,v) < 1.
It follows that distp(K’,v) < 2 for all v € N}, (Ry). Therefore K’ is a quasi-kernel of
D. [

3 Proof of Theorem 6

Assume Conjecture 3 fails and D is a counterexample to it with the fewest vertices.
Let n = |V(D)|. We assume n > 4 as the cases n < 3 are verifiable by hand. By the
minimality of n, D is weakly connected. Let S be the set of sources of D. We show that
S = @. Assume instead that S # @.

Case 1: [N/[S]| = 3. Let D; be obtained from D by deleting all vertices in N [S],
adding two new vertices x and y, adding an arc from y to every vertex of D — N [S] that
is an outneighbor of some vertex of N}}(S) in D, and adding an arc from z to y. Then z is
the only source vertex of Dy, and Nj, (x) = {y}. Since [V(Dy)| = |V(D)|— [NS[S]|+2 <
|[V(D)| — 1, the minimality of n implies that D; has a quasi-kernel K of size at most

n-INy [Si\+2+1—1' Then K = (K; \ {z}) U S is a quasi-kernel of G that has size at most

n—|NES]| +2+1—1
2

n+|S| = [N5(S)]

-1+ |5 = 5 ,

as desired.

Case 2: |N}[S]| < 2. Since D is weakly connected, and |S| > 1, we get |[S| =1 and
INS(S)] = 1. Let D; = D — N}[S]. If Dy has no sources, then by the minimality of
D, digraph D; has a quasi-kernel K; with |K;| < ”T_z Then K = K; US is a desired
quasi-kernel of D. Therefore, we assume that D; has a source. Let

S ={veV(Dy)|dp, (v) = 0}.

If [N} (S1)] < |S1], we let Dy = Dy — S;. By the minimality of D, D, has a quasi-kernel

K, of size at most 27|51+, (1)l < ”T_Q Then K = K; U S is a desired quasi-kernel of
D. Thus, we assume that |Np, (S1)| > |S1|. Let Dy be obtained from D; by deleting all

THE ELECTRONIC JOURNAL OF COMBINATORICS 29(3) (2022), #P3.49 5



vertices in NE)LI [S1], adding two new vertices x and y, adding an arc from y to every vertex
of Dy — Nj, [S1] that is an outneighbor of some vertex of N}, (S1) in Dy, and adding an

arc from x to y. Note that x is the only source of D,, and N52 () = {y}. Again, by
n—2—|Ng1 [S1]|+2+1-1

the minimality of D, Dy has a quasi-kernel K of size at most 5 . Then
K = (K;\ {z})USUS; is a quasi-kernel of D that has size at most
n—2—|N5[Si]|+24+1—1 n—1
2 2
as desired. ]
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