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Abstract

Given a family of graphs F , we define the F-saturation game as follows. Two
players alternate adding edges to an initially empty graph on n vertices, with the
only constraint being that neither player can add an edge that creates a subgraph
in F . The game ends when no more edges can be added to the graph. One of the
players wishes to end the game as quickly as possible, while the other wishes to
prolong the game. We let satg(n,F) denote the number of edges that are in the
final graph when both players play optimally.

In general there are very few non-trivial bounds on the order of magnitude of
satg(n,F). In this work, we find collections of infinite families of cycles C such that
satg(n, C) has linear growth rate.

Mathematics Subject Classifications: 05C57, 05C35, 05C38

1 Introduction

Given a family of graphs F , we say a graph G is F -saturated if G does not contain a
subgraph isomorphic to any F ∈ F , but adding any edge to G creates a copy of some
F ∈ F . The study of F -saturated graphs is one of the main topics of interest in extremal
combinatorics. Particularly well studied quantities include the extremal number ex(n,F),
which denotes the maximum number of edges in an n-vertex F -saturated graph, and the
saturation number sat(n,F), which denotes the minimum number of edges in an n vertex
F -saturated graph. If F = {F}, then we will often denote F simply by F .

For a family of graphs F , we define the F -saturation game as follows. The game is
played by two players, Max and Mini. Starting with Max, the two players alternate adding
edges to an empty graph on n vertices, with the only constraint being that neither player
can add an edge that creates a subgraph in F . The game ends once the graph becomes
F -saturated. We define the F -game saturation number satg (n,F) to be the number of
edges in the graph at the end of the game when both players play optimally.

It is worth noting that

sat(n,F) ! satg(n,F) ! ex(n,F). (1)

The first F -saturation game to be considered was the C3-saturation game, which was
introduced by Füredi, Reimer, and Seress [7] based on another game proposed by Hajnal.
Despite being introduced nearly 30 years ago, very little is known about satg(n,C3). In
their original paper, Füredi, Reimer, and Seress proved that satg(n,C3) " 1

2
n log(n) +

o(n log(n)). The only other non-trivial bound for satg(n,C3) was obtained recently by
Biró, Horn, and Wildstrom [1] who showed that satg(n,C3) ! 26

121
n2 + o(n2).

The systematic study of saturation games was initiated by Carraher, Kinnersley,
Reiniger, and West [2]. In particular, they obtained bounds for the game saturation
number of paths and stars, and these results were refined by Lee and Riet [11]. Hefetz,
Krivelevich, Naor, and Stojaković [8] further generalized saturation games to avoiding
other graph properties such as colorability, and in particular Keusch [9] proved asymp-
totically tight bounds for the game where both players must keep the graph 4-colorable.
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Saturation games have also been generalized to other combinatorial structures such as
hypergraphs and directed graphs [10, 12].

In view of (1), the problem of determining the order of magnitude of satg(n,F) is
trivial whenever ex(n,F) and sat(n,F) have the same order of magnitude. For example,
many families which contain a tree will have linear extremal and saturation number;
see [5] for further details. Perhaps the simplest non-trivial case of this problem is to try
and determine the order of magnitude of satg(n, C) when C is a family of cycles.

A basic question in this direction that one could ask is: what families of cycles C have
quadratic game saturation number? It is well known that ex(n,C2k) = o(n2) for all k,
so by (1) a necessary condition to have satg(n, C) = Θ(n2) is that C consists only of odd
cycles. The last author [13] showed that a sufficient condition for a set of odd cycles C
to have quadratic game-saturation number is to have C3, C5 ∈ C, in which case we have
satg(n, C) " 6

25
n2 + o(n2).

Carraher, Kinnersley, Reiniger, and West [2] showed that satg(n, Co) = ⌊n2/4⌋ where
Co is the set of all odd cycles [2], though the last author [13] showed that in general a set
of odd cycles C containing C3 and C5 need not have satg(n, C) = (1 + o(1))1

4
n2.

It is straightforward to show that sat(n, C) = Ω(n) for any set of cycles C, so it is
natural to ask for necessary and sufficient conditions for satg(n, C) to be linear. Much
less is known about this problem. Let C!k (respectively, Co

!k) denote the set of all cycles
(respectively, all odd cycles) of length at least k. The following result of Erdős and Gallai
shows that a trivial condition to have satg(n, C) = O(n) is for C to contain every cycle
which is at least as large as some cutoff value k.

Theorem 1 ([4, Theorem 2.7]). For all n, k we have

ex(n, C!k) !
1

2
(k − 1)(n− 1).

Prior to this work, the only known non-trivial example of a set of cycles with linear
game saturation number was the following.

Theorem 2 ([13, Theorem 1.4]).

satg(n, Co
!5) ! 2n− 2.

The key idea in the proof of Theorem 2 is that Mini is able to play in the Co
!5-saturation

game such that the graph stays C!5-free throughout the game, so the result follows by
Theorem 1. Our main goal is this paper is to generalize the approach used in Theorem 2
to prove that satg(n, C) = O(n) for many more families of cycles C.

1.1 Our Results

Our first result shows that if C includes roughly half the cycles of length at least as large
as some cutoff value k, then it has game saturation number which grows linearly with n.
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Theorem 3. Let C be a collection of cycles such that C3 ∕∈ C, and such that there exists
some k " 3 so that for all ℓ " k, either Cℓ ∈ C or Cℓ+1 ∈ C. Then

satg(n, C) !
1

2
(3k − 1)(n− 1).

Applying this theorem with 2k + 1 in place of k immediately gives the following.

Corollary 4. For k " 2,

satg(n, Co
!2k+1) ! (3k + 1)(n− 1).

Our next result applies to infinite families of cycles which are much sparser than those
considered in Theorem 3.

Definition 5. For k " 5, a family of cycles C is said to be k-dense if the following
properties hold:

1. The cycles Ck, Ck+1 ∈ C, unless k = 5 in which case we only require C5 ∈ C,

2. For all ℓ < k, we have Cℓ /∈ C,

3. For all s " 3 there exists ℓ with s+ 2 ! ℓ ! 3 + (k − 2)(s− 2) and Cℓ ∈ C.

Roughly speaking, a family C is k-dense if it contains no cycle up to length k, we have
Ck, Ck+1 ∈ C, and the gaps between consecutive cycle lengths in C grow no faster than an
exponential function in k − 2.

Theorem 6. If C is a k-dense family of cycles, then

satg(n, C) !
1

2
(k − 1)(n− 1) + 1.

Corollary 7. Let C =
!

r!0{C3r+4} = {C5, C7, C13, C31, C85, . . .}. Then

satg(n, C) ! 2n− 1.

Note that the gaps between the cycle lengths of this family C grow exponentially large.
Moreover, ex(n, C) = Θ(n2) because C consists only of odd cycles, so in theory its game
saturation number could have been much larger than linear.

We will prove Theorem 6 by showing that when C is a k-dense family of cycles, either
player can play in the C-saturation game so that the graph never contains a cycle of length
at most k, and given this the result will essentially follow from Theorem 1. We will show
(see Proposition 20) that the bounds in the definition of C being k-dense are close to best
possible for such a strategy to exist.

The rest of the paper is organized as follows. In Section 1.2 we establish some basic
graph theory notation and facts. In Section 2 we give a short proof of Theorem 3. The
majority of the paper is dedicated to the proof of Theorem 6 in Section 3. Finally, we
close with some concluding remarks and open problems in Section 4.
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1.2 Preliminaries

Given a graph G = (V,E), we say that a graph G′ = (V ′, E ′) is a subgraph of G if V ′ ⊆ V
and E ′ ⊆ E. We say that G′ is an induced subgraph of G if E ′ = {uv ∈ E : u, v ∈ V ′}.
For a set S ⊆ V , we define the induced subgraph on S to be G[S] := (S,ES) where
ES = {uv ∈ E : u, v ∈ S}. We will often write G + e and G − e to denote the graph G
obtained by adding or deleting the edge e respectively. Given two vertices u, v ∈ V (G),
a path from u to v is a u–v geodesic if the path is of length d(u, v). A path that is a u–v
geodesic for some choice of u and v will just be called a geodesic. The circumference of
a graph G is the length of the longest cycle in G. We say that a path is v-avoiding if it
does not contain the vertex v.

Many of our proofs will rely heavily on the block structure of our underlying graph.
We recall that a block B of a graph G is a maximal subgraph of G which is either a K2 or
2-connected, and that the edges of the blocks partition the edges of G. By a slight abuse
of notation, we will often refer to blocks, vertex sets of blocks, and edge sets of blocks
simply as “blocks”.

We recall some basic facts about blocks, and we refer the reader to Diestel [3] for more
information on blocks. Whitney’s Theorem states that a graph on at least 3 vertices is
2-connected if and only if every pair of vertices is connected by two internally vertex-
disjoint paths. Thus given a block B on at least three vertices and u, v ∈ B, there exists a
pair of internally disjoint paths from u to v. A dominating vertex in a block B is a vertex
adjacent to all other vertices in B. We say two blocks are adjacent if their vertex sets
have a nonempty intersection. Note that two blocks can overlap in at most one vertex,
so two blocks being adjacent is equivalent to them sharing exactly one vertex.

We now move onto some less standard terminology. Given a path P = (u1, u2, . . . , uℓ)
in G with ℓ " 2, note that there is a unique list of blocks B1, B2, . . . , Br of G and integers
1 ! s1 < s2 < · · · < sr ! ℓ − 1 such that for all 1 ! j ! r and sj ! i < sj+1, the edge
uiui+1 ∈ Bj. We will say (B1, B2, . . . , Br) is the block geodesic associated with P . Note
further that if P1 and P2 are two u–v paths, then P1 and P2 are associated with the same
block geodesic, which we will call the u–v block geodesic. Furthermore, if the u–v block
geodesic consists of r blocks, we will say that the block distance from u to v, denoted
bd(u, v), is r. In the C-saturation game, we let G(t) be the graph after the tth edge has
been added in the game. We let G(0) be the initial (empty) graph of the game, and we
let G(T ) denote the graph once it has become C-saturated.

2 Proof of Theorem 3

We use the Erdős-Gallai theorem, Theorem 1, to give a relatively short proof of Theorem 3.
We will say that a path is a path of K2 blocks if every edge in the path is a K2 block. We
will call such a path trivial whenever it contains only a single block.

Proof of Theorem 3. First, we will show that we can play such that at the end of each
of our turns the following hold for G(t):

the electronic journal of combinatorics 29(3) (2022), #P3.5 5



(i) Every block that is not a K2 block contains a triangle, and

(ii) There is at most one non-trivial maximal path of K2 blocks, with this path contain-
ing at most three edges. When it exists, we denote this path by P .

(a) (b) (c) (d)

Figure 1: An illustration of our moves in different situations depicted by dashed orange
lines. The previous move of our opponent (if it is relevant) is highlighted by a thick purple
line. Situation (a) shows a case when property (i) is violated. Situations (b) and (c) show
cases when property (ii) is violated (in (b) due to multiple non-trivial paths of K2 blocks,
in (c) due to a long path of K2 blocks). Situation (d) handles one possible case when
properties (i) and (ii) are satisfied before our move. Note, that (d) is the only place when
a path of K2 blocks of length 3 is present after our move.

We prove this claim inductively. For the base cases, G(1) and G(2) have properties (i) and
(ii), since there are not enough edges to negate the claim. In the induction we describe
moves that maintain properties (i) and (ii) in all possible situations; see also Figure 1.
Inductively assume that at the end of our turn, G(t) has properties (i) and (ii) for some
time t " 2.. Then the only way a block without a triangle could form in G(t+1) would be
for this block to consist of the new edge in G(t+1) and some number of K2 blocks from
G(t). Since by property (ii) there is only one non-trivial path of K2 blocks, P , and as
this has length at most 3, the only blocks that could have formed in G(t+1) in this way
are triangle blocks or (a unique) C4 block. If a unique C4 block forms, we can add a
diagonal to this block, which then contains a triangle and satisfies property (i), and it is
not difficult to see that (ii) is satisfied. Thus we can maintain the desired conditions if
G(t+1) contains a non K2 block without a triangle.

With this we can assume that every non K2 block of G(t+1) contains a triangle, so
property (i) is satisfied. If G(t+1) contains more than one non-trivial path of K2 blocks, or
a path of K2 blocks of length 4 or more, this must have been created by our opponent’s
last turn. In either case, there exists a choice of edge we can add which connects our
opponent’s most recent edge to another edge within this K2 block path such that we
create a triangle containing the edge our opponent just played (See Figure 1 for a few
example situations). In this case, the K2 blocks in G(t+2) form a subset of the K2 blocks
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in G(t), so property (ii) follows from the fact that G(t) satisfied property (ii), and the only
new block created was a triangle, so property (i) remains satisfied.

Next, we must handle the case that G(t+1) already satisfies properties (i) and (ii). If
there exists a non-trivial path of K2 blocks, then we can add an edge between two vertices
on that path such that we create a triangle. The resulting graph satisfies both properties.
Thus we may assume G(t+1) has no two adjacent K2 blocks. Any move that does not
create a forbidden cycle cannot create a path of K2 blocks on more than three edges, so
any move we make satisfies property (ii). Also, such a move can create at most one block
B which was not present in G(t+1). If B is a K2 block, then property (i) is satisfied. If
the vertices of B were contained in a single block in G(t+1), then that block must have
contained a triangle, so property (i) is satisfied. Thus B must contain the vertices from
at least two blocks in G(t+1). If any of those blocks contained a triangle in G(t+1), then B
contains a triangle and property (i) is satisfied. Thus all the blocks from G(t+1) contained
in B are K2 blocks. However, no two K2 blocks are adjacent in G(t+1), and it is impossible
to form a single block using only non-adjacent K2 blocks and one additional edge. This
completes the proof of the claim.

Assume we play according to this strategy throughout the game, which implies that
every block of G(T ) is a K2 block or contains a triangle. We claim that this implies that
G(T ) is C!3k-free. If some block B of G(T ) contained a cycle C of length ℓ " 3k and a
triangle xyz, then we will show that this block also contains a cycle of length ℓ′ for some
ℓ′ " ℓ/3+2 which contains the three vertices in the triangle as consecutive vertices. This
implies that G(T ) also contains a cycle of length ℓ′−1, which contradicts G(T ) being C-free.

Suppose the triangle xyz intersects C in two or three vertices, not necessarily sequen-
tially along C. This yields two or three paths along C between each of the vertices of
x, y, z that it intersects. One of these paths must have length at least ℓ

3
, call it P1 with

endpoints say x, y, without loss of generality. Then the cycle formed by P1 and the edges
xz, zy give the desired cycle.

Next, suppose that C and xyz have exactly one vertex in common, say x without loss
of generality. Since B is 2-connected, there exists some shortest path Q in B − x from a
vertex in {y, z} to a vertex of C − x. Since Q is a shortest path, it contains at most one
vertex from {y, z} and C − x, say these vertices are y, v, which must be the endpoints of
Q. Then x and v split C into two paths, one of which will have length at least ℓ

2
" ℓ

3
.

This long path, together with Q and the edges yz and zx, gives the desired cycle.
Finally, suppose that C and xyz are disjoint. Then since B is 2-connected, we can

find two paths, disjoint from each other and internally-disjoint with both xyz and C,
connecting distinct vertices of the triangle to distinct vertices of the cycle. This again
partitions C into two paths, one of which will have length at least ℓ

3
, and using this

together with the two paths from xyz and the third vertex of xyz gives the desired cycle.
Thus G(T ) is C!3k-free. Using Theorem 1 gives

|E(G(T ))| ! (3k − 1)(n− 1)

2
.
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3 k-Dense Families of Cycles

In this section, we consider the cycle saturation game for families of cycles with sufficiently
small gaps between consecutive forbidden cycle lengths.

Let us briefly outline the strategy we use in the C-saturation game when C is a k-
dense family of cycles. Ideally we would like to play such that at the end of each of
our turns, G(t) is a connected graph where every block B is dominated, i.e. B contains
a dominating vertex rB, and moreover rB is the unique vertex of B which is closest to
some special vertex h. Assuming this holds, if our opponent connects two vertices u and
v with block distance s, then the path through their dominating vertices creates a cycle
of length s + 1. We further require that each dominating vertex rB be the endpoint of
a path of length k − 3 in another block, which will allow us to extend this path through
dominating vertices in such a way that we can actually get any cycle length between s+1
and 3 + (k − 2)(s − 2), with at least one of these lengths forbidden by assumption of C
being k-dense. Thus distant blocks can not be connected to one another. This will imply
that G(t) has small circumference, and hence relatively few edges.

It remains to describe how we can maintain this ideal structure (or at least something
close to it). If our opponent ever connects an isolated vertex x to one of these blocks B,
then we can try to make x adjacent to the dominating vertex of B. If this is impossible
then it will turn out that x’s neighbor y dominates the xy block and y is the end of a
long path in B, so this new block maintains the desired properties. The issue will be
when our opponent connects two isolated vertices. To maintain connectedness we are
forced to make one of these vertices adjacent to h. By doing this repeatedly the opponent
can create some non-desirable structures, but we can at least maintain that any that do
appear are incident to h.

3.1 k-Fantastic Graphs

We now move onto our formal definitions. Throughout the remainder of this section, we
will assume we are playing the C-saturation game for a k-dense family of cycles C. To
define the structure that we wish to maintain in this game, we work with a graph G with
a specified vertex h. We say a block B in G is rooted if there exists a vertex rB that is
a dominating vertex in B, and for which d(rB, h) < d(u, h) for all u ∈ B − rB. When B
is rooted, we say rB is the root of B and that rB roots the block B. Note that if h ∈ B
and B is rooted, then h is the root. Furthermore, note that if every block in G has a
root, then every vertex v ∈ V (G)\{h} is in exactly one block for which it is not the root,
namely the first block in the v–h block geodesic. If v ∕= h is a vertex that roots every
block containing it except for one block B, then we will call this block the stem of v and
denote it by Bv.

We say a vertex v in a rooted block B is finished if v is the endpoint of a path of
length at least k−3 in the induced subgraph B− rB. We say the block B is finished if all
vertices in B − rB are finished. If a vertex or block is not finished, we call it unfinished.
We say a block B is nearly h-dominated if B contains h, and all but one vertex in B is
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adjacent to h. In this case we define rB := h (even though h is technically not a root of
the block).

Definition 8. Two blocks B1 and B2 are together called an h-umbrella if the following
hold:

1. The vertex h dominates B1,

2. The block B2 is a K2 block,

3. The blocks B1 and B2 intersect at a vertex u ∕= h,

4. For any other block B, if B intersects B1, then they intersect at h,

5. The vertex in B2 \B1 has degree 1, and we will refer to this vertex as the handle of
the h-umbrella.

We say that an h-umbrella is finished if the unique neighbor of the handle is finished in
B1, and unfinished otherwise.

See Figure 2 for an illustration of an h-umbrella. Note that if B1 and B2 constitute
an h-umbrella, then rB1 = h and rB2 = u.

h = rB1

B1B2

the handle rB2

Figure 2: An illustration of Definition 8. The h-umbrella is in black. The vertex rB2 is
the unique neighbor of the handle. Other blocks that intersects B1 are depicted in orange.

We are now ready to state the definition of a k-fantastic graph, which is the main
structural tool we will need in this section.

Definition 9. Given a graph G with specified vertex h, let H be the subgraph induced by
the set of vertices which are contained in a block which is nearly h-dominated or part of
an unfinished h-umbrella, and if no such blocks exist set H = {h}. Let F be the subgraph
induced by the set consisting of h and all of the vertices contained in the blocks of G not
contained in H. We say G is k-fantastic whenever F has the following properties:

Property 1. F is connected,

Property 2. Every block in F is rooted,
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Property 3. If a vertex v ∕= h is the root of some block in F , then v is finished in its
stem Bv.

Property 4. Each vertex v ∕= h roots at most one unfinished block in F ,

Property 5. The vertex h is adjacent to at most one vertex of degree 1 in F .

We note that the graph G consists of H ∪F along with a set of isolated vertices. Note
that in a slight abuse of notation, we will sometimes use H and F to refer to V (H) and
V (F ), respectively.

3.2 Preliminary work towards k-Dense results

We will ultimately show that for any k-dense family of cycles C, either player can play
the C-saturation game such that the graph G(t) is k-fantastic at the end of their turns. To
this end, throughout this subsection we let G refer to a k-fantastic graph, and we consider
h, H, F , and I as defined above.

Lemma 10. Let G′ be a C-free graph with specified vertex h. If B is a block of G′ that is
either rooted or nearly h-dominated, then the longest rB-avoiding path in B is of length
at most k − 3.

Proof. Assume to the contrary that B contains an rB-avoiding path (v0, v1, . . . , vk−2).
If the edges v0rB and vk−2rB are in E(G′), then (rB, v0, v1, . . . , vk−2, rB) is a cycle of
length k, which contradicts the fact that G′ is C-free. This implies that B must be
nearly h-dominated, rB = h, and exactly one of the edges v0h or vk−2h are not in E(G′).
We assume without loss of generality vk−2h ∕∈ E(G′). Since B is non-trivial and 2-
connected, vk−2 must have at least two neighbors in B, and specifically at least one neigh-
bor v with v ∕= vk−3. If v ∕= vi for any 1 ! i ! k − 4, then (h, v1, v2 . . . , vk−2, v, h)
is a cycle of length k, a contradiction. If v = vi for some 1 ! i ! k − 4, then
(h, vi+1, vi+2, . . . , vk−2, vi, vi−1, . . . , v0, h) is a cycle of length k in G′, a contradiction. We
conclude that for all rooted and nearly h-dominated blocks B, we have that B does not
contain an rB-avoiding path of length k − 2.

Lemma 11. The circumference of any k-fantastic graph is at most k − 1.

Proof. Let G be a k-fantastic graph, and note that every block of a k-fantastic graph is
either rooted or nearly h-dominated. If G had a cycle of length ℓ " k, then this cycle
would have to be in some block B because cycles are 2-connected and blocks are maximal
2-connected subgraphs. Thus, B would necessarily contain an rB-avoiding path of length
ℓ − 2 > k − 3, a contradiction with Lemma 10. So, the circumference of G is at most
k − 1.

We continue our discussion on the structural properties of k-fantastic graphs with
the following two lemmas regarding which path lengths are attainable between specific
vertices.
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Lemma 12. Let G be k-fantastic. If a vertex v is finished in a rooted block B and u ∈ B,
then for each ℓ with d(u, v) ! ℓ ! k − 2 there is a u–v path of length ℓ in B.

Proof. If ℓ = 1 the result is immediate, so assume ℓ " 2. Since v is finished there exists
an rB-avoiding path (v, v1, . . . , vk−3) in B. If u = rB then the path (v, v1, . . . , vℓ−1, rB)
works. If u ∕= rB and u ∕= vi for any i < ℓ, then (v, v1, . . . , vℓ−2, rB, u) is a path of length
ℓ. If u = vi with 2 ! i < ℓ, then we use (v, v1, . . . , vi−1, rB, vℓ−1, vℓ−2, . . . , vi+1, u). In each
case we find a path of length ℓ, thus completing the proof.

Recall that we denote the block distance from vertex u to vertex v as bd(u, v), a vertex
v can only have one stem, and that v roots all other blocks containing it.

Lemma 13. Let G be k-fantastic, and let u, v ∈ F with u ∕= h be such that s := bd(u, v) "
2. Then there is a u–v path of length ℓ in G for every ℓ with

s+ 1 ! ℓ ! 2 + (k − 2)(s− 2).

Moreover, if v = h we can do this for all ℓ with

s ! ℓ ! 1 + (k − 2)(s− 1).

Proof. Let (B1, . . . , Bs) be the u–v block geodesic, and observe that these blocks are all
rooted since u, v ∈ F . For 1 ! i ! s−1, let vi be the vertex in both Bi and Bi+1, and note
that e.g. u ∕= v1 as otherwise (B2, . . . , Bs) would be a shorter path of blocks from u to v.
We will first prove, regardless of if v = h or v ∕= h, that for all d(vi, vi+1) ! ki ! k − 2
there is a u–v path of length

d(u, v1) +
s−1"

i=2

ki + d(vs−1, v),

and moreover the path ends in a vs−1–v geodesic.
Indeed, starting from u we transverse a u–v1 geodesic. If v1 ∕= rB2 , then by definition

Bv1 = B2, i.e. B2 is the unique block containing v1 which v1 is not the root of. The
uniqueness of this block implies v1 = rB1 , and by Property 9 this means that v1 is finished
in B2. Thus we can apply Lemma 12 to find a path of length k2 from v1 to v2 in B2. If
v1 = rB2 , then v2 ∕= rB2 and a symmetric argument gives the same conclusion. Continuing
in this manner, Lemma 12 gives for each 3 ! i ! s − 1 a path of length ki from vi−1 to
vi in Bi, and once we reach vs−1 we can traverse a vs−1–v geodesic to complete the path.
This proves the claim.

By choosing the appropriate values for the ki’s, we can find a u–v path of length ℓ for
every ℓ with

d(u, v) ! ℓ ! d(u, v1) + d(vs−1, v) + (k − 2)(s− 2).

To finish the proof for the v ∕= h case, it suffices to show d(u, v1) + d(vs−1, v) " 2 and
d(u, v) ! s + 1. The first part is immediate, and the second part follows by considering
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the path (u, rB1 , . . . , rBs , v) after deleting duplicated vertices if, say, rBi
= rBi+1

for some
i.

In the case where v = h, we can again apply the claim to find u–h paths of length ℓ
for all ℓ with d(u, h) ! ℓ ! d(u, v1) + d(vs−1, h) + (k − 2)(s − 2) and which end in the
edge vs−1h. Note that vs−1 does not root Bs (since h ∈ Bs), and thus it must root Bs−1

so it will be be finished in Bs. By Lemma 12 we can replace the edge vs−1h with a path
of length ks for any 1 ! ks ! k− 2, thus allowing us to build a u–h path of every length ℓ
with d(u, h) ! ℓ ! d(u, v1) + (k− 2)(s− 1). Since d(u, h) = s and d(u, v1) " 1, the result
follows.

We show that we can always find long paths between pairs of vertices in adjacent
blocks, except for one exceptional case.

Lemma 14. Let G be k-fantastic. Let u, v ∈ F with bd(u, v) = 2, and let (B1, B2) be the
u–v block geodesic. Then there is a u–v path of length k − 1 in G, unless h roots B1 and
B2 and both u and v are unfinished.

Proof. Let x ∈ B1 ∩ B2. Note that G being k-fantastic implies that x roots at least one
of these blocks, and that x ∕= u, v due to u and v having block distance 2. First consider
the case that x roots both B1 and B2. We claim that either u or v are finished. If x = h,
then this is true by assumption, and if x ∕= h, then one of the blocks B1 or B2 must be
finished by Property 9, so one of u or v must be finished, and we assume without loss of
generality that u is finished in B1. Then by Lemma 12, there is a u–x path of length k−2
which can be extended using the edge xv to a path of length k − 1 that ends at v, so we
are done in this case.

Now assume x roots only one of the blocks, say without loss of generality B2. Since
B1 is the stem of x, x is finished in B1 by Property 9, so by Lemma 12 there is a path of
length k − 2 from u to x, which can be extended to a u–v path of length k − 1 using the
edge xv. Thus in all cases we are done.

The next two lemmas will help us in situations in which our opponent plays an edge
that is incident with a nearly h-dominated block.

Lemma 15. Let G′ be a C-free graph with specified vertex h. If B is a nearly h-dominated
block and u ∈ B is the vertex not adjacent to h, then G′ + uh is C-free.

Proof. If adding the edge uh creates a cycle in C, this cycle would be contained in the
vertices of B, which implies that there must be a u–h path of length at least k − 1 in B,
and hence an h-avoiding path of length k − 2 in B, but this contradicts Lemma 10.

We remind the reader that only unfinished H-umbrellas are in H, which in particular
means the unique neighbor of the handle in an h-umbrella of H must be unfinished. We
also recall for k " 6, we require that both Ck and Ck+1 are in C for C to be k-dense (but
for k = 5 we do not require C6 ∈ C).

Lemma 16. Let G be k-fantastic for k " 6. Let u, v ∈ H − h be distinct vertices such
that one of the following holds:
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1. u and v are in distinct nearly h-dominated blocks,

2. u and v are both handles in distinct h-umbrellas, or

3. One of u, v is in a nearly h-dominated block while the other is the handle in an
h-umbrella.

Let B be the block containing the edge uv in G′ := G + uv, and let a, b ∈ B − h be the
vertices such that ah, bh ∕∈ E(G′). If G′ is C-free, then both G′ + ah and G′ + bh are also
C-free.

Proof. Towards a contradiction, we may assume G′ + ah contains a cycle from C, so
there is an a–h path in B of length ℓ with ℓ " k − 1 such that Cℓ+1 ∈ C, say the path
P = (v0 := a, v1, v2, . . . , vℓ−1, h). We can assume without loss of generality that the
vertices a and u are both in the same nearly h-dominated block or h-umbrella in G (and
consequently the same is true for b and v).

We claim that this path contains the vertices u and v in that order. If not, then
P is either completely contained inside a nearly h-dominated block, which contradicts
Lemma 15, or P is completely contained inside an h-umbrella in H. By the definition of
H, the neighbor of a in this h-umbrella v1 must be unfinished, but (v1, v2, . . . , vℓ−1) is an
h-avoiding path of length ℓ− 2 " k − 3, giving us a contradiction and proving the claim.

Let A1 denote the sets of vertices in the nearly h-dominated block or h-umbrella in G
containing a and u, and let A2 denote the set of vertices in the nearly h-dominated block
or h-umbrella in G containing b and v. Then u = vi and v = vi+1 for some 0 ! i ! ℓ− 1,
and note that {vj | 0 ! j ! i} ⊆ A1 while {vj | i+ 1 ! j ! ℓ− 1} ⊆ A2.

We now claim that we can find a cycle of length ℓ + 2 in G′ of the form (h, x, a =
v0, v1, . . . , vℓ−1, h) for some vertex x ∈ A1. Indeed, if A1 is an h-umbrella, we can choose
x to be the unique neighbor of a in A1, then by the definition of u, we have that u = a,
so (h, x, a = u = v0, v = v1, v2, . . . , vℓ−1, h) is such a cycle. Thus we may assume that A1

is a nearly h-dominated block. Since A1 is 2-connected and non-trivial, a has a neighbor
x that is not v1 (nor h since ah /∈ E(G′)). We consider two cases based on x.

Case 1: The vertex x = vj for some 0 ! j ! ℓ− 1. Note that 2 ! j ! i since x ∈ A1.
This implies that vj−1 ∈ A1−a−h, and so hvj−1 is an edge. Then (h, vj−1, vj−2, . . . , v0 =
a, x = vj, vj+1, . . . , vℓ−1, h) is a Cℓ+1 in G′, a contradiction to Cℓ+1 ∈ C.

Case 2: The vertex x ∕= vj for any 0 ! j ! ℓ− 1. Since x ∈ A1 − a− h, hx ∈ E(G).
Then (h, x, a = v0, v1, . . . , vℓ−1, h) is a Cℓ+2 in G′ with h and a at distance 2 along the
cycle.

Thus, we have exhibited a cycle (h, x, a = u = v0, v = v1, v2, . . . , vℓ−1, h) as claimed.
This implies that Cℓ+2 ∕∈ C. Since k " 6, we have Ck, Ck+1 ∈ C. We conclude ℓ " k and
that vk−2 and vk−1 are defined. We now show that G′ contains either a Ck or a Ck+1,
which will give us a contradiction. Indeed, since vk−2, vk−1 ∕= a = v0, we have that h is
adjacent to at least one vertex vj with j ∈ {k − 1, k − 2}, so (h, x, v0, v1, . . . , vj, h) is a
Cj+2 in G, where j + 2 ∈ {k, k + 1}, proving the claim and completing the proof.
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Our next lemma characterizes what moves within the cycle saturation game will leave
the graph k-fantastic. For the rest of the section, we refer to a legal move as an allowable
move in the C-saturation game for the implied family C which is k-dense.

Lemma 17. If G is k-fantastic, and u, v ∈ F are vertices such that uv is a legal move,
then G+uv is also k-fantastic. Further, G+uv does not contain any nearly h-dominated
blocks which were not in G.

Proof. Note that adding an edge within a block does not interfere with any of the prop-
erties of being k-fantastic nor create a nearly h-dominated block. Thus we can assume
bd(u, v) = s " 2. If s " 3, by Lemma 13 there is a path of length ℓ for every ℓ with
s + 1 ! ℓ ! (k − 2)(s − 2) + 2, which implies that uv would complete a cycle in C, a
contradiction. Thus, we may assume s = 2.

Since uv is a legal move there is no u–v path of length k − 1. By Lemma 14, both u
and v are adjacent to h. Then h still dominates the block resulting from adding u and
v (in particular meaning it is not nearly h-dominated), and all the properties of being
k-fantastic are retained as desired.

The following lemma will allow us to focus our attention only on those cases in which
our opponent makes a move that results in a graph that is not k-fantastic.

Lemma 18. If G is k-fantastic but not C-saturated, then there exists a legal move uv
such that G+uv is k-fantastic. Moreover, if G has at most one nearly h-dominated block,
then uv can be chosen so that G+ uv has no nearly h-dominated blocks.

Proof. First assume G contains a nearly h-dominated block with x the vertex in this block
not adjacent to h. By Lemma 15 we can add hx, which creates a rooted block with root
h. This makes G k-fantastic with no nearly h-dominated blocks. Thus we may assume
that G contains no nearly h-dominated blocks.

Assume G has an isolated vertex x. If h is adjacent to a vertex of degree 1, say y,
then xy is a legal move making an h-umbrella. Otherwise hx is a legal move. Thus we
may assume G contains no isolated vertices.

Suppose G contains an h-umbrella in H, say with handle y and x its unique neighbor,
and recall that x cannot be finished. Thus yh can be added without creating a forbidden
cycle or nearly h-dominated block. We can then assume that G contains no h-umbrellas
in H, and consequently that H = {h} is trivial.

Since H is trivial and there are no isolated vertices, we must have G = F . By
hypothesis there exists a legal move involving two vertices of F , and by Lemma 17 and
any such move leaves the graph k-fantastic, so we are done.

3.3 Main Results for k-Dense Families

We are now ready to prove our main structural result for this section.

Proposition 19. Let C be a k-dense set of cycles for some k " 5. Then either player
can play the C-saturation game such that at the end of each of their turns, the graph is
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k-fantastic. Moreover, if k = 5, then that player can guarantee that the graph contains
no nearly h-dominated blocks at the end of each of their turns.

Proof. Note that G(0) and G(1) are both trivially k-fantastic and do not contain nearly
h-dominated blocks. Now let us assume that G(t) is k-fantastic for some t " 0, and if
k = 5 that further G(t) contains no nearly h-dominated blocks. We will show that we can
play such that G(t+2) is k-fantastic, unless G(t+1) is already C-saturated. In the analysis
that follows, when k = 5 we will not verify that our own move does not create a new
nearly h-dominated block, but it is easy to verify that the only time our strategy has our
move creating such a block is when k " 6 in Case 5c.

We consider cases based on the edge added at time t+ 1 which we denote by e = uv.
We also let I denote the set of isolated vertices of G(t).

Case 0: G(t+1) is k-fantastic. In this case we may apply Lemma 18, and in particular
this leaves it so that G(t+2) has no nearly h-dominated blocks when k = 5. Note that by
Lemma 17 this handles the case that u, v ∈ F .

Case 1: u, v ∈ I. We play the edge uh, which creates an h-umbrella in H and
maintains G(t+2) being k-fantastic.

Case 2: u = h. First note that we do not need to consider the case when v ∈ F since
h ∈ F as well.

Case 2a: v ∈ H − h. If hv is contained inside a nearly h-dominated block, then this
block becomes rooted with root h, so G(t+1) is k-fantastic and we are in Case 0. The only
other possibility is that v is the handle of an h-umbrella since all other vertices in H are
adjacent to h. As such, adding the edge hv causes this h-umbrella to become a single
block which is rooted with root h, so the graph is still k-fantastic and we are in Case 0.

Case 2b: v ∈ I. If h was not adjacent to a degree 1 vertex in G, then we are still
k-fantastic and in Case 0. Otherwise, by Property 9 there is exactly one other degree 1
vertex x adjacent to h, and adding the edge vx creates a block rooted at h, leaving the
graph k-fantastic.

Case 3: u ∈ F − h and v ∈ I. This adds an unfinished K2 block rooted at u. We
only consider the cases where u is the root of another unfinished block (which violates
Property 9), and the case where u is an unfinished vertex (which violates Property 9). In
any other case, G(t+1) remains k-fantastic since the Proprieties 9 and 9 cannot be affected
by a new unfinished K2 block, and thus we are in Case 0.

Case 3a: u is the root of an unfinished block B. We add an edge from v to some
unfinished vertex x ∈ B. This does not create any cycle of length at least k since x was
unfinished, so this is a legal move. Now u is only adjacent to at most one unfinished block
again, and Property 9 holds. Since v is adjacent to the root of this block, Property 9
holds as well.

Case 3b: u is an unfinished vertex in some block B. We add the edge vrB. This does
not create a cycle of length at least k since u was unfinished, so this is a legal move. The
resulting block is rooted with root rB, so properties 9 and 9 hold in G(t+2). Thus, G(t+2)

is k-fantastic.
Case 4: u ∈ H − h and v ∈ I.
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Case 4a: u is in a nearly h-dominated block B. We add the edge containing h missing
from B, which is legal by Lemma 15. This creates an h-umbrella, and thus G(t+2) is
k-fantastic.

Case 4b: u is in an h-umbrella consisting of blocks B1 and B2 with h ∈ B1. Let y
be the handle and x its unique neighbor (possibly with x = u or y = u). Then by the
definition of H, x is unfinished. Then we can add the edge yh as this does not create
a cycle in C due to the fact that x is unfinished. Then B̃1 := B1 ∪ B2 becomes a block
rooted at h, and so if B̃2 is the block containing uv, B̃1 and B̃2 constitute an h-umbrella,
and thus G(t+2) is k-fantastic.

Case 5: u, v ∈ H − h.
Case 5a: u and v are in the same nearly h-dominated block or the same h-umbrella in

H. If u and v are both in a nearly h-dominated block, then this block remains nearly h-
dominated. If u and v are both in the same h-umbrella, this either remains an h-umbrella
or if either u or v was the handle in G, this becomes a nearly h-dominated block. In either
case G(t+1) is k-fantastic, so we are in Case 0.

Case 5b: u is in an h-umbrella and is not the handle. By Case 5a, we may assume
that v is not in the same h-umbrella as u. If v is in a nearly h-dominated block or v is the
handle of an h-umbrella, then the block containing uv in G(t+1) is nearly h-dominated, so
by Lemma 15, we can add the edge to turn this block into a rooted block with root h,
which results in an h-umbrella so G(t+2) is k-fantastic.

It remains to consider when v is also in an h-umbrella but not the handle. Note that
the addition of the edge uv forms a block rooted at h, adjacent to two rooted K2 blocks
in G(t+1). Let x and y be the handles of the original h-umbrellas containing u and v
respectively, and let x′ and y′ be the neighbors of x and y. If either x′ or y′ are unfinished
in G(t+1), then we can add the edge xh or yh creating an h-umbrella and leaving G(t+2)

k-fantastic. If both x′ and y′ are finished in G(t+1), then all these blocks are in F , so
G(t+1) is k-fantastic and we are in Case 0.

Case 5c: The conditions of Case 5a and Case 5b are not met. Then one of the following
holds:

1. u and v are in distinct nearly h-dominated blocks,

2. u and v are both handles of distinct h-umbrellas, or

3. One of u, v is in a nearly h-dominated block while the other is a handle of an
h-umbrella.

Note that if k = 5, then we do not have nearly h-dominated blocks, and u and v cannot
both be handles of h-umbrellas as uv would create a C5, which is forbidden. Hence, we
may assume k " 6. Let B be the block containing uv in G(t+1), and note that B is only
adjacent to other blocks at h. By Lemma 16, in all cases we can add an edge containing
h and some other vertex of B, which will turn B into a nearly h-dominated block, leaving
G(t+2) k-fantastic. Since this case only happens with k " 6, we do not create h-dominated
blocks when k = 5, as desired.

Case 6: u ∈ F − h and v ∈ H − h.
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Case 6a: The block distance s := bd(u, h) " 2. By Lemma 13 we have a u–h path of
length ℓ for every s ! ℓ ! (k − 2)(s − 1) + 1, and thus G(t+1) contains a Cℓ′ for every ℓ′

satisfying
s+ d(h, v) + 1 ! ℓ′ ! (k − 2)(s− 1) + 1 + d(h, v) + 1.

If s = 2, then since 1 ! d(h, v) ! 2, we have that G(t+1) contains cycles of every length
ℓ′ with 5 ! ℓ′ ! k + 1. In particular it contains Ck, a contradiction, so we may assume
s " 3. If d(h, v) = 1, then we have cycles of length ℓ′ for all s + 2 ! ℓ′ ! 3 + (k −
2)(s− 2) < 3 + (k − 2)(s− 1), contradicting the fact that C must contain one such cycle.
If d(h, v) = 2, then let s′ := s + 1, and note that we have cycles of all lengths ℓ′ with
s′+2 ! ℓ′ ! (k−2)(s′−2)+3 < (k−2)(s′−2)+4, again a contradiction to the definition
of C being k-dense.

Case 6b: The block distance s := bd(u, h) = 1. Since h roots every block contained in
F that h is in, uh ∈ E(G). Let B be the block containing the edge uh. If v is in a nearly
h-dominated block or is the handle of an h-umbrella, then the addition of uv just creates
a nearly h-dominated block, leaving G(t+1) k-fantastic. If v is in an h-umbrella but not
the handle, then the addition of uv creates a larger h-umbrella, which again leaves G(t+1)

k-fantastic. Thus we are in Case 0.

We can now prove our main result of this section.

Proof of Theorem 6. By Proposition 19, Mini can play such that at the end of each of
her turns, G(t) is k-fantastic. In particular, with this strategy, either G(T ) or G(T−1) is
k-fantastic. Lemma 11 implies that either G(T ) or G(T−1) contains no cycles of length k
or more, and so by Theorem 1, we must have

|E(G(T ))| ! (k − 1)(n− 1)

2
+ 1.

3.4 Near Optimality of the Conditions for k-dense Families

Our work in the previous subsection shows that if C is a family of k-dense cycles, then
either player can play so that G(t) always has circumference less than k, which gives
our desired bound on satg(n, C) by Theorem 1. In this subsection we show that a slight
loosening of the definition of k-fantastic families makes such a strategy impossible. More
precise, we prove the following.

Proposition 20. Let k " 5. If C is a set of cycles such that there exists an s " 3 with
Cℓ /∈ C for all s ! ℓ ! 4 + (k − 2)(s− 2) + 2(k − 2)2, then for n sufficiently large, either
player can play the C-saturation game such that the game ends with circumference at least
k.

As a point of comparison, we remind the reader that for k-dense families and any
s " 3, we have Cℓ ∈ C for some

s+ 2 ! ℓ ! 3 + (k − 2)(s− 2),
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which is very close to the conditions of Proposition 20 when s is large in terms of k.
To emphasize, Proposition 20 does not say that satg(n, C) will not be linear for C as in

the proposition, only that any strategy in the C-saturation game which tries to guarantee
that G(t) has circumference smaller than k is doomed to fail. Thus new ideas would be
needed for computing satg(n, C) for families of this form.

To prove Proposition 20, we first establish the following technical lemma.

Lemma 21. Let G be a graph of circumference less than k " 3 and P = (x1, . . . , xm) a
path of maximum length in G. For all m′ ! m, we have that the longest path between x1

and xm′ has at most m′ − 1 + 2(k − 2)2 edges.

Proof. Let Y be a longest path between x1 and xm′ and let S = V (P ) ∩ V (Y ).
If all the vertices in S have indices less than or equal to m′, then Y together with

(xm′+1, . . . , xm) defines a path in G from x1 to xm, which cannot be longer than P since P
is a path of maximum length. Thus in this case we have |E(Y )| ! m′ − 1, which satisfies
the condition of the lemma.

Thus we can assume there is some vertex in S with index greater than m′. Order the
set S based on the order that the vertices appear in Y , so that x1 is the first vertex of S
and xm′ the last. Let xj be the smallest vertex of S which has j > m′, and let xi be the
vertex which immediately precedes xj in S based on the ordering of S. We claim that
xi ∈ {xm′−k+3, . . . , xm′−1}. Indeed, i < m′ by definition of j, and if i < m′ − k + 3, then
the portion of the path Y between xi and xj together with the portion of the path P
between those two vertices forms a cycle of length at least k, a contradiction.

Let I = {xm′−k+3, . . . , xm′+k−3} and let V (Y ) ∩ I = {xj1 , . . . , xjp} with the vertices
xji in the order in which they appear along the path Y . Notice in particular that
xjp = xm′ , which by the previous claim implies xj1 ∈ {xm′−k+3, . . . , xm′−1}, and also
that V (Y ) ∩ I ∕= ∅. Decompose Y into the subpaths Y ′, Y ′′ separated at xj1 . By the ar-
gument in the previous paragraph, Y ′ contains no vertices to the right of xj1 along P , so
Y ′ together with the path along P from xj1 to xm defines a path in G from x1 to xm, which
cannot be longer than P . Hence |Y ′| ! m′ − 1. We will now show that |Y ′′| ! 2(k − 2)2.

For each 1 ! i ! p − 1, let Yi be the subpath of Y ′′ from xji to xji+1
. We claim that

|Yi| ! k− 2 for all i. Indeed, Yi is disjoint from the subpath Pi in P that goes from xji to
xji+1

because Yi only intersects I at xji and xji+1
. Thus Pi and Yi give rise to a cycle of

length at least |Yi| + 1 in G. Since the circumference of G is strictly less than k, Yi can
have at most k − 2 edges.

Since xj1 , . . . , xjp ∈ I, we have p ! 2(k− 3) + 1. Thus we have at most 2(k− 3) paths
Yi, 1 ! p− 1. In total, Y ′′ can be decomposed into at most 2(k− 3) many paths of length
at most k − 2, so |Y ′′| ! 2(k − 2)2. Combining this with the bound |Y ′| ! m′ − 1 gives
the desired result.

With this we can now prove our main result for this subsection.

Proof of Proposition 20. Let k′ = 3 + (k − 2)(s − 2) with s as in the hypothesis of the
proposition. Initially we play as follows: if there is no path with at least k′ vertices in
G(t) at the start of our turn, then we add an edge between an isolated vertex and the
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endpoint of some longest path in the graph. If n is sufficiently large, then eventually this
will lead us to start our turn with some longest path in G(t) of length at least k′, call
it (x1, . . . , xm) with m " k′. Once this is achieved, we subsequently attempt to add the
edge x1xk′ to G(t). If this is a legal move, then we are done since k′ " k, and we have the
desired result.

We can thus assume that adding the edge x1xk′ is not a legal move. That is, G(t)

must contain a path Y = (y1, y2, . . . , yq) with y1 = x1, yq = xk′ and Cq ∈ C. Note by
the previous lemma and the assumption (x1, . . . , xm) a longest path implies q ! k′ − 1 +
2(k − 2)2, so by hypothesis of C we must have q < s.

Let i1 be such that xi1 is the first xi vertex to appear in Y (so i1 = 1), and define
i2, . . . , ip in an analogous same way. This implies for all 1 ! j < p that G(t) contains a
cycle of length at least ij − ij−1 + 1. Thus we can assume ij ! ij−1 + k − 2 for all j, as
otherwise G(t) contains a cycle of length at least k. By applying this bound repeatedly
we find

1 + (k − 2)(p− 1) " ip = k′ = 3 + (k − 2)(s− 2).

Thus we must have s ! p ! q, contradicting that q < s from above. Therefore it must be
the case that x1xk′ is a legal move, allowing us to create a graph with circumference at
least k.

4 Concluding Remarks

In this paper we considered the saturation game where Max made the first move, and
one could instead consider the analogous game where Mini makes the first move. It was
shown by Hefetz, Krivelevich, Naor, and Stojaković [8] that in general these two saturation
games can have dramatically different scores. However, all of our proofs allowed for either
player to implement the proposed strategies, and from this one can easily show that all
of the bounds of our theorems continue to hold even if Mini makes the first move.

Many of the results in this paper and in [13] focused on families of odd cycles. This is
because in theory the game saturation number of a family of odd cycles could be anywhere
between linear and quadratic. Motivated by this, we ask the following.

Problem 22. Determine whether Theorem 6 continues to hold if k-dense families do not
require Ck+1 ∈ C for k odd.

We have already shown that this is true for k = 5, and we believe that with more
work one can use our methods to show that this also holds for k = 7 and possibly k = 9,
but beyond this new ideas are needed.

In this paper we focused primarily on upper bounds for the game saturation number
of a family of (odd) cycles. It would be of interest to consider lower bounds as well.

Problem 23. Determine non-trivial asymptotic lower bounds on satg(n, Co
k) for k " 5

odd.
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We can prove one such bound when k = 5. By essentially the same argument used in
the proof of Theorem 3, one can show that Mini can maintain that G(t) has circumference
at most 4 in the Co

5-saturation game. It was proven by Ferrara, Jacobson, Milans, Ten-
nenhouse, and Wenger [6, Theorem 2.17] that sat(n, {C5, C6, C7, . . .}) = 10

7
(n− 1), which

implies that satg(n, Co
5) " 10

7
(n− 1).

Lastly, we note that all of our examples of families of cycles C with linear game
saturation number contained infinitely many cycles. It is unclear if every family of cycles
with linear game saturation must have infinite size.

Problem 24. Determine whether satg(n, C) = ω(n) whenever C is a finite collection of
cycles.
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