Unknotted Cycles

Christopher Cornwell Nathan McNew

Department of Mathematics
Towson University
Maryland, U.S.A.

{ccornwell ,nmcnew}@towson.edu

Submitted: Feb 1, 2022; Accepted: Jul 19, 2022; Published: Sep 9, 2022
(©) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Noting that cycle diagrams of permutations visually resemble grid diagrams
used to depict knots and links in topology, we consider the knot (or link) obtained
from the cycle diagram of a permutation. We show that the permutations which
correspond in this way to an unknot are enumerated by the Schroder numbers,
and also enumerate the permutations corresponding to an unlink. The proof uses
Bennequin’s inequality.

Mathematics Subject Classifications: 05A15, 57K10

1 Introduction

A convenient way to visualize a permutation is to draw a plot of the permutation on an
n X n grid, placing a dot in the box at each of the locations (i,0(7)). The permutation’s
cycle structure can be represented by making the plot to be a cycle diagram [13]. At each
index ¢ we draw a vertical line from (4,4) to the point (i,0(7)), followed by a horizontal
line to (o(i),0(¢)). If i is a fixed point, i = o (i), no additional lines are drawn. The result
is a diagram in which the cycles of the permutation can be traced out along the lines of
the diagram in a natural way.
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Figure 1: The cycle diagram of m = 467513298.
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For example, from the cycle diagram for the permutation m = 467513298 (written in
one line notation) depicted in Figure 1, one can readily identify the cycle decomposition
m = (145)(2637)(89) (written in cycle notation) by tracing out the lines of the diagram.

Note that the only corners in a cycle diagram occur at the plotted points of the
permutation and along the line y=x. The appearance of these diagrams strongly resembles
grid diagrams which are a useful tool in the study of knots in topology.

Formally, a grid diagram is an n x n lattice where each row, and each column, has
exactly two marked boxes (traditionally marked X and O) and a line is drawn between
the marked boxes in each row and column. The diagram is interpreted as a knot (an
embedding of S! in R?) or a link (multiple copies of S*) by designating all of the vertical
lines to be overcrossing and the horizontal lines as undercrossing. (Section 2 provides an
overview of necessary basic notions from knot theory, see also [8,11,20].)

Crucially, the only distinctions between diagrams that are valid cycle diagrams and
those that are valid grid diagrams are:

e In cycle diagrams one of the two designated points in each row/column must lie on
the y = x line, which isn’t necessarily the case for grid diagrams.

e In grid diagrams, it is not allowed to have a single point in a row or column as occur
in cycle diagrams when there are fixed points.

In light of the second point, so long as we take a permutation without fixed points (called

a derangement) then by drawing its cycle diagram and interpreting it as the grid diagram

of a link we can build a link corresponding to any derangement. We refer to this link as the

link associated to a permutation or, when the permutation is a cycle, as the knot associated

to a cycle. We do not associate a link to a permutation that is not a derangement.
Many natural questions arise, including;:

1. Which knots (links) are associated to some derangement?
2. How many different derangements are associated with a given link?

While we do not have a complete answer to question (1), the answer is certainly not “all
knots” (or links), as explained at the end of Section 2.1.

As to question (2), in this paper we enumerate the cycles that are associated to
the unknot (called an unknotted cycle) as well as permutations associated to an unlink
(unlinked permutations). Our main result is the following.

Theorem 1. The unknotted cycles are enumerated by the shifted sequence of (large)
Schroder numbers S,,. FEnumerating these numbers as S1 = 1, Sy = 2,.... The num-
ber of unknotted cycles of length n is S, _1.

The Schroder numbers count a wide array of combinatorial objects, notably separa-
ble permutations of length n, and lattice paths from (1,1) to (n,n) consisting of north
(0,1), east (1,0) and northeast (1,1) steps which never go above the diagonal [21]. Their
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generating function is S(z) = Y 77, S,a™ = 1 (1 — 2 — V1 — 6z + x2), which satisfies the
recursion S(z) = z + zS(x) + S(z)?. Asymptotically [18, Ex. 2.2.1-12]

V2 -1
N

The relationship between cycle diagrams and grid diagrams does not appear to have
been considered before in the literature. A related body of work is the study of random
knots, particularly via the random grid model [15]. A common question in this area con-
siders the probability of a random knot being equivalent to a fixed knot K. Particularly,
for each given integer n > 0, random knot models select a knot K,,; as n — 0o, does the
probability that K, is equivalent to K approach zero, and what are the asymptotics? A
broadly construed conjecture is the Frisch-Wasserman-Delbriick conjecture (see [15] for
discussion).

In the random grid model, K, is given by selecting a random pair of n-cycles (o, 7),
independently and uniformly. Let o be (oy,...,0,) in cycle notation (so o(0;) = 0,41 for
each i, 0,41 = 01 = 1, say), and likewise for 7. A grid diagram is then determined by
drawing, for each 1 < i < n, a vertical line from (o;,7;) to (0;,7i+1), and from there a
horizontal line to (0,41, 7i+1). Then K, is the knot of this grid diagram (a knot since o
and 7 are n-cycles). In this model, Witte has shown that the probability of K, being a
given knot (e.g. the unknot), is O(n='/1%) as n — oo (this is implied by Theorem 6.0.1 of
25)).

When o = 7, the grid diagram in the above model is the cycle diagram of . So, on

the diagonal of the random grid model, Theorem 1 gives an exact probability of K, being

Sn— - 3+v8)\"
the unknot, equal to 255 ~ gﬁﬂ; e( Z\f)

the probability of K, being the unknot decays super-exponentially as n — oc.

We show that unknotted cycles are counted by the Schroder numbers by establishing
a bijection between them and the rooted-signed-binary trees defined in Section 3. We first
define a way to construct an unknotted cycle of size n + 1 from a rooted-signed-binary
tree of size m in Section 4, then show in Section 4 that it is well defined and one-to-one
on equivalency classes of these trees. Finally, in Section 5 we use results from topology
to prove that it is surjective — all unknotted cycles can be obtained in this way. Finally,
we enumerate the unlinked permutations in Section 6 and note a potential relationship
to the Diaconis-Graham inequality.

S, (3+V8)"n =32 (1)

using (1) and Stirling’s formula. Hence,

2 Knots and Links

Informally, in this article, a knot is a closed curve in R? which has no self-intersections.
In addition, two knots K and K’ are considered to be equivalent if there is a continuous
deformation that takes K to K’, such that, at each time during the deformation of K, it is
a knot. More precisely, a knot K is the image of a piecewise C'-embedding, S' < R3, and
K is equivalent to a knot K’ if there is an ambient isotopy of R? (see [19]) carrying one
to the other. When there are multiple knots, no two of which intersect, the multi-curve
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is called a link. The notion of equivalent links is analogous to equivalent knots. We use
“links” inclusively, so a link could be a knot (having just one component curve).

A link is oriented by choosing a consistent positive tangent along each component
curve; in figures the positive tangent will be indicated by an arrow.

L X

Figure 2: Positive and negative crossings.

2.1 Link diagrams

Often, knots and links are studied via “sufficiently generic” projections to a plane, in
which any self-intersections that arise from the projection have independent tangent di-
rections. The self-intersections are crossings. Projections of equivalent links can have
different numbers of crossings. The projection plane is understood to have a positive nor-
mal direction, allowing us to say that one of the branches at the crossing has a “higher”
projection preimage; this branch is the overcrossing strand, and the other is the under-
crossing strand. In figures, the overcrossing strand appears to pass on top of the other.
With this crossing information, the projection is called a knot (or link) diagram. A given
link diagram determines the corresponding link, up to equivalence.

In the diagram of an oriented link, a sign is given to each N
crossing. If, possibly after a rotation, a neighborhood of the +
crossing appears as on the left side of Figure 2 then the crossing ( /-Q/ /
is positive (note the directionality of the arrows). Otherwise, it gl
appears as on the right of the figure and the crossing is nega- =
tive. The writhe of the diagram equals the number of positive \
crossings minus the number of negative crossings. The diagram
of Figure 3 has writhe equal to 0.

Given a link K, we will regularly discuss a related link that
is known as the mirror (image) of K. Owing to K being a
subset of R3, define the mirror of K to be a link equivalent to
the image of K under the orientation-reversing map (z,y, z) — (x,y, —z) sending R? to
itself. We may use a link that is equivalent to K instead; the mirror of a link is well-
defined on equivalence classes. Additionally, we may understand the mirror through link
diagrams. Given a link diagram of K, at every crossing of the diagram change which
strand is overcrossing and which is undercrossing. The result is a link diagram for the
mirror of K (for more details, refer to [9, Chapter 1.4]).

The cycle diagrams introduced in Section 1 are examples of link diagrams; each cross-
ing has a vertical overcrossing strand and a horizontal undercrossing strand. The choice
to set vertical strands to be overcrossing is standard when using grid diagrams in the
knot theory literature. A consequence of this choice is that the knots associated to cycle

Figure 3: An oriented
knot diagram which has
writhe equal to 0.
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diagrams are mirror images of knots from a well-studied class, positive knots, rather than
being in that class (see more discussion below). Nevertheless, we find it preferable to
follow the literature on grid diagrams.

As a convention, the orientation of the link associated to a cycle follows the order
in which the permutation goes through the indices. That is, vertical (resp. horizontal)
segments above the diagonal are oriented up (resp. rightward), and below the diagonal
are oriented down (resp. leftward).

Recalling the sign given to crossings in an oriented link diagram, as in Figure 2, note
that every crossing that appears in a cycle diagram is a negative crossing. Hence, if a
knot is associated to a cycle diagram, its mirror is in a class of knots called positive knots.
Many knot types, even among those with a small number of crossings, do not fit into this
class. Some obstructions to being positive are known (e.g. see [7]).

A well-known construction from knot theory is the closure of a braid, which associates
a link to an element of the braid group B,. For every link there exists n > 1 so that
the link is the closure of some braid in B, (for a survey, see [4]). The most common
presentation of B, uses the Artin generators. If we restrict to braids expressible with
only positive powers of Artin generators, the associated links are positive braid closures,
a subclass of positive links with interesting applications in geometric topology.

From the form of the cycle diagram construc-

- tion, it is tempting to think that knots associated

| to cycles are mirrors of positive braid closures, and
3 this is the case for all small cycles. However, it is
} not true in general. Consider the knot associated
3 to (4,12,7,14,10,3,5,13,6,8,1,9,11,2), a cycle in
| one-line notation, depicted in Figure 4. Call the
| mirror of this knot Ky, which is a prime knot. The

i grid diagram for this cycle has 14 crossings, so K| is
i vy among knots with crossing number 14 or less (which
have been enumerated). The only such knot with a
Jones polynomial in agreement with Kg is 14ns644
(in the Hoste-Thistlethwaite enumeration). We con-
clude that Ky is the knot 14nsg44, which is not a
positive braid closure (cf. [1]).!
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Figure 4: A cycle associated to the
mirror of 14n5644, which is not a pos-
itive braid closure.

2.2 Boundaries of surfaces

Every (oriented) link can be realized as the boundary of a connected, oriented surface in
R3. Such a surface is called a Seifert surface of the link, after Herbert Seifert who gave

IThis cycle was found by finding the knot associated to each cycle of length at most 14, computing
its Jones polynomial and comparing it to the Jones polynomials of all positive braid closures of genus at
most 5 enumerated in [1]. The Jones polynomial of (the mirror of) every knot, associated to a cycle of
length at most 13, having minimal degree 5 or smaller, agrees with the Jones polynomial of a positive
braid closure, so the counterexample given is minimal in that sense. The knot 14n5¢44 has genus 5 and is
listed in [1] among the positive fibred arborescent knots of weight 2, but not the positive braid closures.
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an algorithm for producing one, given a link diagram [23] (the existence of a surface was
known earlier [16]).

If a link L has b component curves then a Seifert surface X of L will have b boundary
components. A closed orientable surface > may be defined as an identification space from
Y. (starting with the disjoint union of ¥ and b disjoint disks, identify the boundary of each
disk to one of the boundary components of ¥). The genus of ¥ is the genus of ; g is
that genus, then X(i) = 2 — 2g; it must be that the Euler characteristic of ¥ is 2 —2g —b.
The minimal genus of a Seifert surface of a link L is called the genus of L, written g(L).
Equivalent links have equal genus. In addition, the mirror of L has genus equal to the
genus of L, since the map (z,y, z) — (z,y, —z) carries any orientable surface to another
orientable surface with the same genus.

A part of Seifert’s algorithm, to be used in Section 5, involves determining Seifert
circles from an oriented link diagram. To define Seifert circles, consider a crossing (with
an orientation, so each strand has an incoming and outgoing end). Remove the crossing
point and connect the coherently oriented strands (“smooth” the crossing), as in Figure
5. By smoothing every crossing of the diagram, we obtain a collection of pairwise disjoint
circles in the plane (circles in a topological sense). These are the Seifert circles of the
diagram. See an example in Figure 12.

A o0

Figure 5: Smoothing a crossing: remove the crossing, then reconnect the remaining edges
in the same orientation without crossing.

2.3 Legendrian links

Related to the modern study of contact geometry are Legendrian links. Loosely speaking,
given a contact structure on R®, a knot or link is Legendrian if it satisfies a tangency
condition based on the contact structure (additionally, equivalence of two Legendrians
is constrained by the tangency condition). We refer the interested reader to the survey
article [14].

In the “standard” contact structure, Legendrian links are often studied via a specific
planar projection, the front projection. This projection has some peculiarities: it has no
vertical tangencies, but has cusps (locally like the cuspidal cubic); also, at a crossing, the
more negatively-sloped branch is always the overcrossing strand. A link diagram having
these two properties (and being smooth except at cusps), is the front projection of a
(unique) Legendrian link.

A grid diagram determines a knot or link (simply viewing it as a link diagram, with
vertical overcrossings). We will also determine a Legendrian link from a grid diagram
as follows.? First, rotate the grid diagram 45° clockwise. Then, turn what were origi-

20ur method of determining a Legendrian from a grid diagram is not typical in the literature [20];
however, our method is closely related, and convenient for our purposes.
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nally lower-left and upper-right corners into cusps, and smooth out the upper-left and
lower-right corners (now local extrema vertically). Finally, at each crossing interchange
overcrossings with undercrossings (see Figure 6; the grid diagram has vertical overcrossing
strands, and the front projection has negatively-sloped overcrossing strands).

For a grid diagram D, thinking of D as a link diagram, let K (D) be the associated
link. Let A(D) be the Legendrian link of the front projection that we described above.
Then, as a regular link, A(D) is equivalent to the mirror of K (D). This fact will have very
little effect on our arguments. Indeed, we use the construction when K (D) is an unknot;
an unknot and its mirror image are equivalent knots. As crossings of a cycle diagram D
are negative, every crossing of A(D) is positive for us.

Figure 6: A grid diagram (left) and its front projection (right).

An invariant of Legendrian knots and (oriented) links that is of interest to us is the
Thurston-Bennequin number. Given a Legendrian A, let F), be its front projection. The
Thurston-Bennequin number tb(A) is equal to the writhe of £, minus one-half the number
of cusps. Note that one-half the number of cusps is the same as the number of “right
cusps” — cusps that point to the right:

tb(A) = writhe(F)) — (F#right cusps in Fy).

In Section 5 we will use the Bennequin-Eliashberg inequality [12], which says that if A is
equivalent, as a regular knot or link, to some K, then

th(A) < 29(K) — 1.

3 Signed Trees

Various authors [5,24] introduce separating trees to study separable permutations. A
separating tree is a rooted binary tree in which each internal node is designated as either
positive or negative, and then trees are divided into equivalence classes under certain
allowable tree rotation operations. (See also [6].) Using separating trees as motivation,
we define a similar structure, which will be useful in the enumeration of unknotted cycles.

Definition 2. A rooted-signed-binary tree is a rooted binary tree in which each node
except the root is given a sign, positive or negative. Furthermore, we say two binary rooted
trees are equivalent if one can be obtained from another by a series of tree rotations. A
tree rotation (see Figure 7 for an example) is allowed at a given node if either:
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Figure 7: The result of a single tree rotation. The child node ¢ is described as being rotated
into place of its parent p. The node ¢’ is created by the rotation. As represented by the
triangles, descendants to the right of p become descendants to the right of ¢’; descendants
to right of ¢ become descendants to the left of ¢’. The relative positions internal to the
triangles S; remain unchanged.

1. The parent node has the same sign as the child rotating into its place.

2. The parent node is the root, in which case the newly created node is assigned the
same sign as the node that was rotated into the position of the root.

For example, the seven trees depicted in Figure 8 are all equivalent, and represent all
of the allowed rotations of the given tree.

Figure 8: All seven unique tree rotations of a rooted-signed-binary tree. The top row
depicts all of the possible trees obtained starting with the leftmost tree and performing
rotations at the the root vertex. The second row shows the trees that can be obtained by
rotating at other vertices.

Frequently in the remainder of the paper we will use the term rooted-signed-binary-
trees to refer to equivalence classes of such trees. As our rooted-signed-binary-trees differ
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slightly from the separating trees which are known to be in bijection with separable
permutations, we give a proof that the number of such trees with n nodes is counted by
the Schroder Numbers.

Proposition 3. The number of (equivalence classes of ) rooted-signed-binary-trees with n
nodes is counted by the n-th Schroder number, S,,.

Proof. We show this using generating functions. Let T'(x) be the ordinary generating
function for such trees, and take as our representative for each equivalence class of rooted-
signed-binary-trees the tree in which all possible left rotations have been made. Note that
such a tree has a root node with no right child.

There are three possibilities for the left child: no left child, a left child which itself has
no right child, or a left child whose right child has the opposite sign. These three cases

are counted by z, 227 (x), and 227 () <T2(;) — %) = T(x)? — 2T (z) respectively. The last
two require brief explanations. Trees where the left child of the root has no right child can
be constructed by taking any tree (counted by T'(x)), assigning the root node either of
2 signs and then making that node the left child of a new signless root node, (increasing
the size by 1) giving 22T (x).

Now, if the left child of the root has a right child of the opposite sign, the possibilities
for that right child can be counted by % — 1. The T(z)/x counts the trees with the
unlabelled root node removed, dividing by 2 accounts for the fact that the sign of this
right child must be the opposite of the node above it, and subtracting one eliminates
the possibility of this being empty. Adding these three cases together and simplifying we
obtain

T(z) =z + 2T (x) + T(z)?,

the same recurrence as the generating function of the Schroder numbers. O]

4 The bijection

In this section we establish a bijection between (equivalence classes of) rooted-signed-
binary-trees and the unknotted cycles. In doing so we will frequently build these trees
by inserting (or removing) leaf nodes into existing trees. If T is a rooted-signed-binary
tree and v is a (non-root) leaf of that tree, then we denote by 7' — {v} the tree obtained
by removing the node v. Sometimes we may also remove multiple nodes (and write
T —{v,...}). However, we will never remove an internal node without also removing its
descendants.

We enumerate the positions that a new leaf-node could be inserted from left to right
and refer to them as follows. (Note that in a tree with n nodes there are always n + 1
positions where a new leaf can be inserted.)

Definition 4. Suppose a tree T' has n nodes, and v is a leaf of 7. We say that v is in
relative position ¢, where 1 < ¢ < n, if there are exactly ¢ — 1 places where a leaf could
be inserted in 7" to the left of v (not counting the left child position of v). We also say
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that a node is inserted in position ¢, meaning that after insertion the node is in relative
position 1.

Remark 5. The relative position of a leaf is unaffected by any tree rotation of the tree so
long as it was not being rotated into the place of its parent.

We can now describe how to construct an unknotted cycle from a fixed rooted-signed-
binary-tree. We will define our construction by describing how each node added to the tree
affects the corresponding cycle. We start with the rooted-signed-binary-tree consisting
only of the unlabelled root, which corresponds to the trivial cycle, 21 which is clearly
unknotted.

At any point in this construction our tree will have as

Eﬂ many places where a new node can be added as the length

of the permutation thus far constructed (which is one more

Figure 9: The cycle 21. than the number of nodes in the tree).

When the tree consists of only the root node, there are

two places where a node can be added, as either left or right

children of the root node, corresponding to positions 1 and 2 of the trivial cycle respec-
tively.

Now, when a new node is added a new point is inserted into the diagram, and other
points are shifted up and to the right. We define functions

gm(k):{k k<m )

k—+1 kE>m.

When a node is added to the tree in relative position ¢, it changes the corresponding cycle
0 = 51825, (in one line notation) into a new cycle o’ = s{s,--- s/ s, according to
the following rules:

1. If a positive node is added, then o changes as below.

8182 Sp — fz’+1(51)fi+1(52) e 'fi+1(5i—1) [i‘H] fz’+1(5z’) o '§i+1(5n) =0

To be clear, this means that s = & y1(s;) for 1 < j <i—1,s; =i+ 1, and that
S; = &+1(S]‘_1) for ¢ +1 g] < n+ 1.

2. If a negative node is added, then o changes as below.
sis2-Sn = &i(51)&i(s2) - &ilsi) [1] &ilsign) -~ &ilsn) =2 0
Note that, in this case, sj,; = i.

In terms of the cycle diagrams, this has the effect of taking one of the corners where
the diagram made a right angle at the y = z line and changing it into a notch or a kink
with a new off-diagonal point in the cycle diagram. The exact change depends on the

behavior of the lines in the diagram prior to the insertion, and are summarized in Table
1.
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Before insertion | After inserting & | After inserting &

Table 1: A graphical depiction of how the cycle diagram changes when a node is added
to the tree. The first column depicts the corner on the diagonal before the new point is
inserted. Note, when a @ node is inserted, a corner is created above the diagonal, and
conversely, if a © is inserted, the new corner is below the diagonal.

From these pictures it is clear visually that these changes will not affect the knot of
the cycle diagram, up to equivalence. (Formally, each of the changes is either planar
isotopy or a Reidemeister I move.) Thus if a given cycle is unknotted before one of these
operations is performed, it will still correspond to the unknot afterward. The proof of the
following proposition follows immediately.

Proposition 6. Inserting an off-diagonal element to a permutation o (ani+1 in position
i or an i in position i+ 1) and shifting the points above or to the right in the cycle diagram
results in a permutation associated to the same link as o.

By repeated application of this proposition we get the following theorem.

Theorem 7. If a cycle o is obtained from a rooted-signed-binary-tree by the construction
above (processing nodes in some order) then o is an unknotted cycle.

We illustrate this by building the cycle corresponding to the tree in Figure 8. We use
the second diagram of the top row depicted in that figure. The reader is invited to verify
the same cycle is obtained for any equivalent tree and irrespective of the order the nodes
of the tree are considered, as we subsequently prove.

Example 8. We consider the nodes from the second tree appearing in Figure 8 one at a
time. Starting with the root node, we have the trivial cycle 21, shown in Figure 9.

We first process the positive, left child of the root. This positive node is in relative
position 1, so we insert 2 into position 1, obtaining 231. We could also have found this
from the cycle diagram, noting the corner in position 1 was a lower left corner (row 3 of
table 1) and replacing the corner in the diagram with the picture in the second column.
The cycle 231 is is depicted first in figure 10.
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Figure 10: The cycles 231, 2341, 24531 and 246315.

Now consider the leftmost leaf. It again is positive, in relative position 1, so we get
2341. Then continue to the negative node to the right of the node just considered. The
two potential children of the previous, positive, node corresponded to positions 1 and 2 of
the cycle, so this node occupies position 3. As it is negative, we insert a 3 after position
3 of the cycle, obtaining 24531, depicted third in figure 10.

Last we consider the right, negative child of the root. It is in relative position 5, so
we insert 5 after the last position of the cycle, obtaining our final cycle, 246315.

Note in this case all 3 of the elements of the permutation on the off diagonal, the
elements 2,3 and 5 (in positions 1,4 and 6 respectively) correspond to leaf nodes. This is
not the case for all representations of the tree, after certain rotations only some of these
off-diagonal points still correspond to leaves.

From the description it isn’t immediately clear this construction produces the same
cycle regardless of the order in which nodes are processed, even before potential tree
rotations are taken into account. We will show that the bijection is well-defined on a
fixed tree diagram. First, to reduce the number of cases we must consider later, we
demonstrate a relationship between the cycle constructed from a rooted-signed-binary
tree and the one obtained from the “negative” of that tree.

Lemma 9. Let T be a rooted-signed-binary tree and T the rooted-signed-binary tree ob-
tained from T by reversing the sign of each node. If o is the cycle produced by processing
the nodes of T in some fived order, then processing the (oppositely signed) nodes of T in
the same order produces o~! the functional inverse of o.

Proof. The statement is certainly true when 7" consists of only the root node. As the root
is unsigned, T'= T and the associated cycle 21 is its own inverse.

Before continuing, in the cycle diagram of ¢ suppose that for indices i, j, with ¢ < j,
there is a consecutive vertical-horizontal pair of segments between diagonal points (i, 1)
and (j,j). By definition, if the segments are above the diagonal then (i) = j; if they are
below the diagonal then o(j) = i. It follows that the cycle diagram obtained by reflecting
the cycle diagram of ¢ across y = & corresponds to the permutation o~ 1.

Now, suppose the statement holds for any rooted-signed-binary tree of size n. Let
T be a tree of size n + 1, and v a leaf of T. Let o be the permutation obtained from
processing the nodes of T'— {v} in some order. By induction, 7' — {v} corresponds to o~*
(processing the oppositely-signed nodes in the same order) and the corresponding cycle
diagram is the reflection across the diagonal.
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Exchanging the role of T and T if necessary, assume v is positive and inserted in
position 7. Thinking of the cycle diagram of o as determined by its n non-diagonal points
(1,0(1)), the effect of inserting v into T' — {v} is to move all points with height greater
than ¢ up one position, and shift all points in horizontal position at least ¢ to the right
by one. Additionally, a point at (i,7 4+ 1) is inserted. On the other hand, inserting a
negative vertex in position 7 of T — {v} shifts points in the diagram of o~! that are in
horizontal position greater than ¢ to the right, and moves points with height at least ¢ up
one position. Additionally, a point at (i + 1,4) is added.

We know that points which were unchanged, from the diagram corresponding to T" —
{v} to the one for T, reflect across the diagonal to points of the diagram for 7" — {v}. The
observations above explain why those points which were shifted (or added) upon insertion
of v will reflect across the diagonal to those which shift (or are added) when v is inserted.
Thus the permutations corresponding to T and T (processing nodes in that fixed order)
are functional inverses. O

Proposition 10. The cycle produced by applying the above construction to the nodes of
a fized representation of a rooted-signed-binary tree is the same, regardless of the order in
which the nodes of the tree are processed.

In order to prove Proposition 10 we will first prove the following.

Lemma 11. The cycle produced by the above construction is not changed when the order
of processing the last two leaves of the tree changes.

Proof. Suppose T' is a rooted-signed-binary tree with at least two leaves with n + 2 posi-
tions where a new leaf could be inserted. Fix two distinct leaves, v and w of T' in relative
positions ¢ and j respectively of ' — {v,w} where i < j.

By processing the nodes of T'— {v, w} in some order, our construction assigns a cycle
otoT —{v,w}. Write 0 = s182---5, (in one line notation). We show v and w can be
added to the tree in either order, and the corresponding changes to ¢ produce the same
cycle.

First note we can assume by Lemma 9 that v is signed negatively (if it weren’t we
could swap T for T and show that the inverse cycle can be constructed unambiguously
regardless of the order in which the leaves are added). Recall the function &, defined in
(2). For any two integers [ < m it is easily verified that

§i(&m (k) = &mr1(&(k)) (3)

holds for all integers k. We consider two cases, based on the sign of w.
Case 1: w is positive. Inserting the negatively-signed v first, in position i of T—{v, w},
we transform the associated permutation to
5152+ 8p — &i(51)&i(52) -+ - &i(s4) [i] &l Sig1) -+ - &ilsn).- (4)
Since w is to the right of v, w is now in relative position j 4+ 1 of ' — {w}. Also &(s;) is
the (j + 1)-element in (4), so inserting the positively signed w results in

o §a(&i(80)) 642 ()& 12(Gilsi1)) -+ - §ira(&i(s5-1)) [T42] &a(&ilsy)) -+
= &i(&r1(s) 1] &Gi(&ia(sitn)) - &il&i(si—1)) [1+2] &i(&Gva(s5)) - - (5)
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where the second line was obtained using (3) to interchange the two functions. On the
other hand, if we first add w to T' — {v, w}, the first permutation obtained is

$182° 80 = §i41(81)541(82) - §ia(sj-1) U + 1] §1(s5) - - Eira(sn)-

Inserting the negatively signed v into position i of 7' — {v} is then seen to immediately
yield (5) since &(j +1) = j + 2.

Case 2: w is negative. As in case 1, if we first insert the negatively-signed node v we
obtain (4). Again, w is to the right of v in 7', so w is now in relative position j + 1 of
T — {w}. Inserting the negatively signed w in position j + 1 results in

&1 (6i(80)) &1 (€541 (Gilsiv1)) - - - §1(&ils) [T+1] i (&ilsjsn)) -+
= &(&(s0)) 1] &Gl&5(siv)) - &i(&5(s5)) 1] &(&i(s541)) -+ (6)

interchanging the two functions using (3). If, instead, we first add w to 7" — {v,w}, the
first, intermediate, permutation obtained is

s189 S — &i(51)&5(82) -+ - §5(s5) 7] &5(8j41) -+ - &5(Sn)-

Now, inserting the negatively signed v into position i of T'— {v} again transforms this to
(6) after noting that &(j) =7 + 1. O

Proof of Proposition 10. Suppose for contradiction there exist trees for which the cycle
construction described is ambiguous, and let T" be a minimal-sized counterexample. Say
that T has n nodes, and that processing these nodes in two orders, given by vy, vs, ..., v,
and wy, wsy, ..., w,, results in two different cycles. It must be that v, and w, are both
leaves of T'; also v,, # w,, since otherwise the cycle construction on 7'—{v, } is ambiguous.

Because T is a minimal counterexample, any order of processing the nodes of T'—{v,, }
must result in the same cycle. And so we can assume w, = v, (i.e. w, is the last
node inserted into 7' — {v,}). Likewise, we may assume in the order wy, wy, ...w, that
v, = wy,_1. Thus, each ordering first constructs a cycle for T'— {v,, w, } and by minimality
the two cycles so constructed on T'—{v,, w, } must agree. Since, by assumption, processing
T in the order vy, vo, ..., v, gives a different cycle than the order wq, ws, ..., w,, we have
contradicted the statement of Lemma 11. O

Lemma 12. Suppose o is a cycle of length at least 3 obtained from a rooted-signed-binary
tree T. If o(i) —i = 1, then T' can be transformed by a series of rotations to a tree T"
with a positively signed leaf in relative position i or, if o(i) —i = —1, a negatively signed
leaf in relative position i — 1.

Proof. Note that if o(i) —7 = —1 then 07'(: — 1) — (i — 1) = 1. By Lemma 9 we can
reduce to the case o(i) —7 = 1 by considering the inverse cycle with the oppositely signed
tree. Hence, we consider only the case o(i) —i = 1.

The cycles of length 3 are 231 and 312. Only the former has o(i) —i = 1 (for i = 1,2).
In this case T has one positive leaf, which can be rotated into either position 1 or 2. Now,
suppose the claim holds for all cycles of length n — 1. Let ¢ have length n, o(i) — 7 = 1,
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T a tree corresponding to o with a leaf w in relative position k. If £ = ¢ and w were
positive we are done. If k = i with w negative then o(i + 1) = i. But (i) =i+ 1 by
assumption, and since o is a cycle we would be left with ¢ = 21. This is not the case so
we can assume k # 1.

Let o* be the cycle corresponding to T'— {w}. If w is negative and k = i + 1, then
o(i+2) =i+ 1 = o(i) which is impossible. Thus it is straightforward to check that if
k > i then 0*(i) = o(i) = i + 1 and, respectively, if k < i that o*(i — 1) = 0(i) — 1 = 4,
regardless of the sign of w. Since o* has length n — 1, there exists a rotation of T'— {w},
call it (T'— {w})’, containing a positive leaf u in relative position i (respectively i — 1) of
(T'— {w})’. Note the children of u would be in relative positions i and i + 1 (respectively
i—1and i).

If either £ < i —1 or k > ¢+ 1 then u would still be a leaf after w is inserted into
position k of (T'—{w})" and, in either case, u will be in position . Since tree rotations do
not affect the relative position of any leaf (so long as the rotation doesn’t cause the node
to no longer be a leaf) applying the same rotations to 7' required to transform 7' — {w}
into (T — {w})" will result in a tree having a leaf in the desired position.

If £ =i—1 and w were negative, then o(i) = i — 1 which isn’t the case, soif k =i —1
or k =i+ 1 then w is positive, and a child of the leaf u in 7’. In either case we can
perform a tree rotation of w into u producing a positively signed vertex in position i as
desired, and the same argument as above applies. O]

Proposition 13. The construction of cycles from rooted-signed-binary trees is injective;
trees that aren’t related by tree rotations don’t produce the same cycle.

Proof. This is clear if o = 21.

Let n > 2. Suppose that for any cycle of length n, and for any two rooted-signed-
binary trees that produce this cycle, the two trees are related by tree rotations. Now, let
o be a cycle of length n+1, and let T and 7" be rooted-signed-binary trees that produce
o. We will show T and T” are related by tree rotations.

Choose a leaf v of T'; say that v is in relative position i. Note that 7" and 7" are related
by tree rotations if and only if 7" and T" are related by tree rotations. Thus, by taking the
negative trees T and T’ and renaming, if necessary, we may assume that v is a positive
node.

As v is positive, the construction of ¢ is such that o(i) = i+ 1. Since 7" produces o as
well, Lemma 12 implies that there is a tree that is related to 7" by tree rotations, which
has a positively signed leaf w in relative position 7. And so, we may as well assume that
T’ has a positive leaf w in relative position 7.

Let o* denote the cycle, with length n, produced from T"— {v}. The procedure for
how we obtain ¢ from ¢*, upon inserting v in position i of T'— {v}, is reversible. Thus,
since w is positive, in relative position ¢ in 7", and T” produces o, it must be that the tree
T" — {w} produces the cycle o*.

By assumption, there is a sequence of tree rotations taking 7'— {v} to 7" — {w}. Since
v is not present, each of the rotations consists of a child node (that is not v) being rotated
into the place of its parent. Therefore, the same sequence of rotations can be performed
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on 7T and, in the result, the leaf v is still in the relative position i (recall Remark 5). That
is, these tree rotations have transformed 7" into 7".
O

So far we have not considered the allowed tree rotations of a rooted-signed-binary tree.
In this section we show that two such trees which can be obtained from one another by
allowed tree rotation moves correspond to the same cycle.

Theorem 14. Any rooted-signed-binary-trees T and T related by the rotations of Defi-
nition 2 produce the same cycle under the construction of Section 4.

Proof. 1t suffices to show that any single tree rotation results in the same cycle, which
we will prove by induction on the number of nodes in T. The result holds vacuously if T’
consists only of the unsigned root node. Suppose now the result holds for all trees smaller
than T', and suppose T" is related to T by a tree rotation at some vertex v. By swapping
T and T" if necessary, we suppose this rotation is a “clockwise” rotation, which rotates
the left child of v into the place of v and creates a new right child of that vertex in 7".

Note, v and its left child must have the same sign. If this sign is negative we can
replace T and 7" with T and T” respectively so (by Lemma 9) we can suppose v and its
left child are both positive (v could be the root, which is unsigned, but we still assume
that its left child is positive, which doesn’t change the argument that follows.) We can
draw the relevant portion of 7" and 7" (showing only the vertex v and its descendants)
as in Figure 7, where S;, S, and S5 are the relevant subtrees for descendants of v and its
left child.

Suppose w is a leaf appearing in one of these subtrees. Since w is not involved in the
rotation it is a leaf of both 7" and T”. The trees T'— {w} and T" — {w} are related by the
same tree rotation at v and, since both are smaller than 7", both correspond to the same
cycle o, by induction. Since w appears in the same relative position in both 7" and 7",
adding w to either of T'— {w} or 7" — {w} would produce the same change to o, thus T’
and T” correspond to the same cycle.

This leaves us with the case where all the subtrees S, Sy and S3 are empty. Then the
vertex v in T has a single positive left child w (with no children), while in 7" the vertex w
(now rotated into the place v occupied) only has a right child, say v’. Note that T'— {w}
is the exact same tree as 7" — {v'}. Let i be the relative position of v in T'— {w} and let
o be the cycle associated to T — {w}.

Since v is a positive leaf of T'— {w} we can write

0 = 8182 *S;—1 [Z+1] Si+1° " Sp

where s; # i+ 1. Now, the left and right children of v correspond to the positions ¢ and
1 + 1 respectively. We check what occurs to the cycle ¢ when a positive node is inserted
in either place. If a positive left child is inserted (creating 7') then our rules dictate that
an 7+ 1 is inserted in position 7 of o, and all elements of sigma with value ¢ + 1 or higher
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are increased by 1. Thus this insertion results in

ir1(s1)&ir1(52) -+ G (sim1) [0+ 1] La (0 + &1 (Si41) -+ - Giva(Sn)
= Gi1(s1)&ir1(s2) -~ Gia(sim1) [0+ 1[0+ 2] Gaa(sivn) -~ S (sn)- (7)
If a positive vertex is inserted as the right child of v (position i + 1), creating 7", then

our rules dictate that an ¢ 4 2 is inserted in position i + 1 of o, and all elements of sigma
with value ¢ 4+ 2 or higher is increased by 1. Thus this insertion results in

iva(s1)&ivals2) - Cira(sio1)ira (i 4+ 1) [P + 2] &ialsivr) - Sira(sn)

= Giva(s1)Gir2(s2) -~ Sivalsio1) [0+ 1[0+ 2] Gaa(sivr) - - Sivalsn)- (8)
Since &41(s;) = &iya(s;) so long as s; # i + 1, we see that (7) and (8) are the same
expression, and so T' and T” correspond again to the same cycle. O

5 Surjectivity

In this section we prove that the map from rooted-signed-binary trees to unknotted cycles
is surjective. The proof relies on Bennequin’s inequality [2], or more precisely a refor-
mulation of it for Legendrian knots [12] — an important early result in modern contact
geometry. We begin with some notation.

Definition 15. Let o be a derangement. Define (7, j) to be a C-pair if either
i<j<o(i)<o(y) or i>j>0(i)>0o(j).
Additionally, define ¢ to be a U R-index if
o 1(i) < i and o(i) <.

Remark 16. Note that (7,7) is a C-pair if and only if two segments of the cycle dia-
gram cross each other, one of the segments occurring between diagonal points (i,4) and
(0(i),0(i)) and the other occurring between (7, j) and (o(j),0(j)). Such a pair appears
as depicted in the left-most image of Figure 11 (or its reflection across the diagonal). All
crossings in cycle diagrams have this form.

Also, i is a U R-index if and only if the cycle diagram has an upper right corner at
(i,1), as in the right-most image of Figure 11.

Figure 11: The cycle diagram at a C-pair (left) and U R-index (right).
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Proposition 17 (Bennequin-Eliashberg Inequality). Let D be a cycle diagram and let
K (D) be the knot associated to D. Define C(D) to be the number of C-pairs of D and
UR(D) the number of UR-indices. Recalling that g(K) is the genus of K, then

C(D) — UR(D) < 2g(K (D)) — 1.

Proof. Let A(D) be the Legendrian defined in Section 2. Cycle diagrams have all negative
crossings, and so recall that each crossing of the front projection of A(D) is positive, and
so its writhe is C'(D). Points on D at a U R-index correspond to right cusps, and so

C(D) — UR(D) = th(A(D)).

Recalling that the mirror of K (D) is equivalent to A(D) (simply as links), and that
genus does not change under mirroring, the Bennequin-Eliashberg inequality [12] gives

th(A(D)) < 29(K(D)) — 1. 0

Remark 18. In fact, for cycle diagrams D representing a knot K we have that tb(A(D)) =
2g(K)—1, as the Seifert surface obtained directly from D has negative Euler characteristic
agreeing with tb(A(D)). Yet, the inequality suffices for our purposes (see also [17]).

Proposition 19. Suppose that o is an n-cycle where |o(i) —i| = 2 for all 1 < i < n.
Then the number of C-pairs of o is at least as many as the number of U R-indices.

Let D, be the cycle diagram of o. Our proof uses the Seifert circles of D,, introduced
in Section 2.2. The Seifert circles provide a convenient combinatorial device for our proof;
knot theoretic constructions associated with them are not used. Recall the orientation
convention for D, (found in Section 2). To each Seifert circle S associate a set C(S) of
crossings of D, — the crossings which, when smoothed, created a portion of the Seifert
circle.

e
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Figure 12: The cycle diagram of the unknotted cycle 864275193 and the corresponding
Seifert circles obtained by smoothing the three crossings.

To prove the proposition, we will use few lemmas.

Lemma 20. The number of Seifert circles of D, is equal to the number of U R-indices of
D,.
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Proof. First, make a key observation: due to the orientation on D, , smoothing a crossing
cannot create a local extremum of the function x + y on a Seifert circle. Therefore, any
such local extremum must correspond to a point on D, itself. So it is a diagonal point,
at a U R-index if it is a local maximum.

As a Seifert circle is a closed planar curve, it has at least one local maximum of x + y,
and so passes through at least one diagonal point that is at a U R-index.

The Seifert circles of D, have an induced orientation that agrees with the orientation
on D, away from the crossings (oriented clockwise in the case of cycle diagrams). If S
is a Seifert circle of D,, then at each point where S passes through the diagonal, it goes
from above the diagonal to below it. Hence, S cannot pass through two U R-indices since,
were it to do so, it would spiral either inward or outward and be unable to form a simple
closed curve. Thus, every Seifert circle passes through exactly one U R-index. O]

Remark 21. Similarly, there is exactly one lower-left corner on the diagonal (an LL-index,
say) contained in any Seifert circle of a cycle diagram.

Now, place a partial ordering on the set of Seifert circles. If S and S’ are Seifert
circles, then we say that S” < S when S’ is contained in the bounded planar region that
is enclosed by S.

Lemma 22. There is a unique maximal Seifert circle of D,, larger than every other
Seifert circle.

Proof. Let S be a maximal Seifert circle (in some maximal chain). If there exist Seifert
circles in the unbounded region of S, then at least one such circle S” must share a crossing
with S. Otherwise it would not be a knot (¢ would not be a cycle).

Now, suppose that the U R-index for S is less than the U R-index for S’. Since S £ ',
the UR-index of S is also less than the unique LL-index of S’. However, this makes it
impossible for there to be a crossing in C(S) N C(S’). Likewise, if we suppose that the
U R-index of S is greater than that of S’, then the LL-index of S must also be larger,
making a shared crossing impossible.

Hence, every other Seifert circle is in the bounded region of S. O

Lemma 23. If D, has a crossing, then any Seifert circle S has at least 1 associated
crossing. Also, under the hypothesis of Proposition 19, if |C(S)| = 1, then S is the
mazimal Seifert circle.

Proof. The first statement is clear, since otherwise S is a closed curve already in the
(unsmoothed) cycle diagram and, as the diagram has a crossing elsewhere, there would
need be multiple components (a link, rather than a knot).

Suppose C(S) contains only one crossing. It must be that either S is a minimal element
in the partial order, or it is maximal. If this weren’t so, then there would be a Seifert
circle in both the bounded and unbounded regions of S. But the fact that the knot has
a single component then necessitates another crossing in C(.5).

Now, suppose S is minimal. Let ¢ be the LL-index of S and let r be the U R-index
(which is unique by Lemma 20). Since S is minimal, S must intersect every diagonal
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point between ¢ and r. We can divide S into segments, each having one vertical part and
one horizontal part. FEach segment will start and end on the diagonal: for some ¢ and j
the segment has a vertical segment from (i,7) to (i, ;) followed by a horizontal segment
to (j,7). Call such a segment a step of S, with length |i — j|.

If any step of length 1 occurs in S, from (7,7) to (i + 1,7 + 1) for some i, then there
is a smoothed crossing that was located at (i,7 + 1); likewise, if there is a step of length
1 from (¢ 4+ 1,7+ 1) to (4,4), then prior to smoothing out crossings there was a crossing
located at (i + 1,47) — a step of length 1 could not have existed in D, by the hypothesis
of Lemma 19. So if we show that S has at least two steps of length 1, then we have a
contradiction. Note that this is automatic if » — ¢ = 1 (with one step above the diagonal
and one below), so we assume that r — ¢ > 1.

For any ¢ with ¢ < i < r, the point (4, 1) is part of two steps of .S, either both above the
diagonal or both below. Now consider the point (¢ + 1,¢ + 1). As it is part of two steps
(and is not an LL-index), it must be connected to (¢,¢), a step of length 1. A similar
argument holds for » — 1 and r, giving another step of length 1. These steps are not the
same as r — ¢ > 1. By the above argument, |C(S)| > 1, a contradiction.

Therefore, S cannot be minimal in the partial order when |C(S)| = 1, and S is the
(unique) maximal Seifert circle. O

Proof of Proposition 19. By Lemma 20, we must show that the the number of Seifert
circles of D, is at most the number of crossings. Let s denote the number of such Seifert
circles. Since each crossing is associated to two Seifert circles, and by Lemma 23 every
Seifert circle S has |C(S)| = 2 (except possibly the maximal Seifert circle), the total
number of crossings must be at least (%w =s. [

If K is an unknot, then it bounds a disk and so the Seifert genus is g(K) = 0. Hence
we obtain the following.

Proposition 24. If the link associated to the cycle diagram for o is the (single component)
unknot, then there is some i such that |i — o(i)] = 1.

Proof. Let D, be the cycle diagram. Since g(K') = 0, Proposition 17 implies that C(D,) <
UR(D,) — 1. By Lemma 19 we must have some i such that |i — o(i)| < 2. The fact that
o is a derangement thus implies the conclusion. O]

Proposition 25. Fvery unknotted cycle is obtained from a rooted-signed-binary tree
through the construction of Section 4.

Proof. The proof will be by induction on the length of the cycle. A cycle of length 2 it
must be ¢ = 21 which corresponds to the tree containing only the root.

Let D be the cycle diagram of an unknotted cycle o of length n. By Proposition 24,
there is an 4, with 1 < i < n so that |i — o(i)] = 1. If i — o(i) = 1 then, near the "
diagonal point, D must be like the depiction in one of the rows in the third column of
Table 1. Let Dy be the cycle diagram obtained by collapsing the ¢ and ¢ — 1-st rows and
columns of D, replacing them with what appears in the same row, but first column of 1.
(Thus, Dy is a cycle diagram with one fewer row and column than D.) If i — (i) = —1
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instead, then D must be like the depiction in one of the rows of the second column of
Table 1. In similar manner to the previous case, define Dy by using the same row, but in
the first column.

As it has fewer diagonal nodes, we may assume that Dy is obtained from a rooted-
signed-binary tree Ty. Now, define a tree T' by adding a node to Tp: if i — o(i) = 1 then
add a negative node to Ty at position i — 1; if i — o(i) = —1 then add a positive node to
T, at position ¢. Then clearly T is assigned cycle diagram D by the construction. O

6 Further Results

Extending these ideas, we can count all unlinked permutations (derangements). By an
unlink, we mean the knot corresponding to each cycle of the permutation is an unknot
in the grid diagram, and furthermore each of these unknots are not “linked” with one
another. We obtain a bivariate generating function that keeps track of both the size of
the permutation and the number of knots in the link.

Theorem 26. Let U be the set of unlinked derangements and denote by cyc(o) the num-
ber of cycles in o (equivalently knots in the link associated to o). Define the bivariate
generating function
Flu,z) =14 uv@zl (9)
oeU
to count unlinked permutations by length and number of components. Then F(u,x) satis-
fies the recurrence

2+ (ux — 2)F(u, z) — ux®F(u, 2)* — urF (u, x)y/1 — 62F (u, z) + 22F(u,2)2) = 0 (10)
or, equivalently,
1+ (ux — 2)F(u, ) + (1 — uz — ux®)F(u, 2)? + (ua® + u?2*)F(u, z)* = 0.

Setting u=1 we recover the generating function f(z) for the sequence of all unlinked
permutations, and find that f(x) satisfies the recurrence

L+ (=24 ) f(z) + (1 — 2z —2®) f(x)* + (2> + 2°) f(2)* = 0

corresponding to the sequence 1, 2, 8, 32, 143, 674, 3316, 16832,87538 . ... This is listed,
along with the sequences counting unlinked permutations with k disjoint cycles for each
k <5, in Table 2. Note that the number of unlinked permutations of 2n with n compo-
nents is the n-th Catalan number, which is easy to prove by relating the nested links to
Dyck paths.

To prove Theorem 26 we need the following result.

Lemma 27. Let o be an unlinked permutation, with cycle decomposition o = o109 - - - 0.
Then each of the component cycles o; are unknotted cycles, and the cycle diagrams of any
two cycles are noncrossing.
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k # k-component unlinked permutations Generating Function

1 0,1,2,6,22,90,394, 1806, 8558, 41586 . . . % (x — 22 — Va2 — 63+ 1)
2 | 0,0,0,2,10,48,238,1216,6354,33760 ... | Jo?—3u 4! —fr e 20
3 0,0,0,0, 0, 5, 42, 280,1752,10710... -

4 0,0,0,0, 0, 0, 0, 14, 168, 1440... e

all | 0,1,2,8,32,143,674, 3316, 16832, 87538 .. f(z)

Table 2: The number of unlinked permutations by the number of components in the link.

Proof. We show that the cycle diagrams of two different component cycles of an unlinked
permutation cannot cross each other by considering the linking number of the corre-
sponding unknots. Let K and K’ be two different components of a link L, and consider
a diagram in the plane of L. Define ¢y (resp. ¢_) to be the number of positive (resp.
negative) crossings in the diagram, where we only count crossings that involve one strand
from K and one strand from K’. The linking number of K and K’ equals 1/2(cy — c_).

For any planar diagram that represents a link equivalent to L there will be two compo-
nents corresponding to K and K'. It is well-known (see e.g. [19, pg. 11]) that the linking
number (in that diagram) of those two components must be equal to the previously com-
puted number, 1/2(cy — ¢_). That is, the linking number of K and K’ is invariant under
change of diagram. (In fact, one can verify this by checking that the linking number will
be unchanged by Reidemeister moves.)

Since there is a diagram of the cyc(o) component unlink which has no crossings at all,
the linking number of any two components in any diagram must be zero. However, all
crossings are negative in cycle diagrams. If two component cycle diagrams cross at any
point, then the linking number of those components cannot be zero, and so the diagram
cannot be that of an unlinked permutation. ]

Define the support of a length n permutation o, sup(c) = {1 <i < n|o(i) # i}.

Lemma 28. Suppose o is a derangement of n whose cycle diagram contains no crossings
between different components of its cycle diagram. Let o’ denote the cycle of o containing
lTandletl =0} <oy <--- <0} be the elements of sup(o’). Then there exist permutations
T1, To, ..., T; with

o=comomno--oTy (11)

such that the support of T; is precisely the integers between o; and o},
sup(r;) = {klo; < k < ol }, fori < j and sup(r;) = {k‘|0} < k< n}. (12)

Example 29. Take 0 = 732541698 (one line notation) as depicted in Figure 13. Writ-
ten in cycle notation o = (176)(23)(45)(89). Then (in cycle notation) o' = (176),
oy =1,0,=6,0, =7 and 7, = (23)(45), 7 is the identity, and 75 = (89).

Proof of Lemma 28. For each 1 < ¢ < j, define 7; to be the permutation consisting of all
cycles from o that contain in their support at least one element strictly between o) and
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Figure 13: o = 732541698.

0iy, (or strictly greater than o7, in the case of 7;). It suffices to show that every element
in sup(7;) is contained in the desired range, between o; and o7, (or greater than o}, when
i=7).

To this end, suppose to the contrary there were a k < of,; with 7;(k) > of,;. (The
case where 7;(k) < o} proceeds similarly.) While 7; need not consist of a single cycle,
there must exist some k' € sup(r;) so that &' > o} ,, and yet 1 < 7;(k’) < o], (the first
iteration of 7, n > 1, so that k' = 77*(k) > o/, but 77 (k) < ol.,).

Recall that if & < o(k), the corresponding vertical and horizontal segments of the cycle
diagram for o must be above the diagonal, while if k& > o(k), the corresponding segments
must be below the diagonal. Thus, the elements k, k' determine a cycle component whose
corresponding diagram surrounds the diagonal point (o7, ,,0;,,). That component’s di-
agram is a closed curve in the plane, as depicted in Figure 14. Since elements in the
support of 7; must all be greater than 1, the point (1,1) lies in the unbounded region
for this closed curve, and the diagram for ¢’ must reach the bounded region to arrive at
(0),1,0%,1). There must then be a crossing between these components, contradicting the
assumption there is no such crossing. O]

Finally, we count unlinked permutations.

K Proof of Theorem 26. In the definition of the bivari-
il s : ate generating function F'(u,x) the initial term 1 ac-
1 s s Bl R B counts for an empty derangement, which will be useful
: J' % i o : in the recursion. For the remainder of the proof we as-
3 __k_ . — sume we are counting nontrivial derangements, which

necessarily have length at least 2.

We now construct all such unlinked derangements
as follows. We select first the cycle containing the
element 1. Once we fix the number of number of el-
ements to be in this cycle, k, then by Theorem 1 the
number of possible choices for a cycle supported on k
elements is S_1. (Note that the knot type is unchanged when the numbers in the support
of the cycle are changed, so long as their relative order is preserved, as shifting the values,
without changing their order has the effect only of changing the lengths of the lines in the
corresponding cycle diagram.)

Figure 14: The cycle diagram
lines for 7;.
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Having chosen the number of elements permuted by the cycle containing 1, o’ as well
as the relative cycle type on those elements, we can apply Lemma 28, which tells us that
in between each of the elements of ¢’ we can insert any unlink (including potentially the
empty unlink) which is counted by our original generating function F'(u, ). Since we can
insert such an unlink between any of the k elements of ¢/, as well as after the last element,
there are a total of k places where such an unlink can be inserted. Adding together these
possibilities, we have

Flu,z) =1+ Z Sp_1ur®F(u, 2)* = 1+ uarF(u, x) Z Sy (zF (u, a:))k
=1+ uzF(u,z)S(zF(u, z)).

Using that S(z) = 1 (1 — 2 — V1 — 6z + 22) now gives

Flu,z) =1+ %F(u,x}(l —aF(u,x) — /1 —62F(u,z) + (zF(u, x))?))

which simplifies to (10). O

Finally, one could instead choose to consider all permutations, rather than just de-
rangements, with the convention that any fixed points in the permutation correspond
to infinitesimal unknot components of the unlink. In this case, we obtain the following
modification of Theorem 26 by the same argument.

Theorem 30. Let V be the set permutations whose cycle diagram corresponds to an
unlink (treating fixed points as their own component of an unknot) and define the bivariate
generating function

Gu,x) =1+ Z uve) glol, (13)

oeV

Then G(u,x) satisfies the recurrence

2 + (3uz — 2)G(u, 2) — ur®G(u, )? — uzG(u, 2)\/1 — 62G(u, z) + r2G(u, 2)2 = 0, (14)
or equivalently
ur®G(u, )® + (2u*r? — ur® — 3uxr + 1)G(u, v)* + (3ur — 2)G(u,z) + 1 = 0.

Setting u = 1 the sequence counting such permutations with any number of compo-
nents begins
1,2,6,23,103,511, 2719, 15205, 88197, . ..

which appears to match entry A301897 in the OEIS. This sequence counts permutations
with the following property. Given a permutation o, let inv(o) be the number of inversions,
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cyc(o) the number of cycles, and td(o) the total displacement, defined by Diaconis and
Graham [10] to be

lol

td(o) = |o(i) — i
i=1
(see also [22]). Diaconis and Graham prove that
inv(o) + (|o| — cye(o)) < td(o). (15)

The OEIS sequence above counts those permutations for which the Diaconis-Graham
inequality is an equality. Recently, Alexander Woo has shown, using the results of this
paper, that this set of permutations is the same as permutations that give an unlink
[26]. Also, since this paper was first published on the arXiv, Berman and Tenner [3]
showed that the “fundamental bijection” sending cycle notation to one-line notation re-
stricts to a bijection between cycles for which (15) is an equality and the set of separable
permutations.
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