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Abstract

The shuffle product has a connection with several useful permutation statistics
such as descent and peak, and corresponds to the multiplication operation in the
corresponding descent and peak algebras. Gessel and Zhuang formalized the notion
of shuffle-compatibility and studied various permutation statistics from this view-
point. They further conjectured that any shuffle compatible permutation statistic is
a descent statistic. In this note we construct a counter-example to this conjecture.

Mathematics Subject Classifications: 05A05

1 Introduction

For the purposes of this note, we define a permutation σ = σ1σ2 · · ·σn to be a sequence
of any n distinct integers, not necessarily the numbers between 1 and n. We call |σ| = n
the size of the permutation σ and denote the set of permutations of size n with Pn.
We further set P =

⋃
n Pn. Two permutations σ and φ of the same size are said to be

order-isomorphic, denoted σ ∼ φ, if they have the same relative order, i. e. σi > σj if
and only ifφi > φj for all i, j 6 n. For example we have 1342 ∼ 2894, but they are
not order-isomorphic to 2891, as the order of the first and last integers is different. Note
that every permutation of size n is order-isomorphic to exactly one permutation of the
numbers 1, 2, . . . , n.

Two permutations said to be disjoint if they do not share a number. Given two disjoint
permutations σ and φ, a shuffle of σ and φ is a permutation of size |σ|+ |φ| that contains
both σ and φ as subsequences. We denote the set of shuffles of σ and φ with σ� φ.
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A function st on permutations is said to be a permutation statistic if st(σ) = st(φ)
whenever σ ∼ φ. Some examples of permutation statistics are defined below:

1(σ) = 1,

Des(σ) = {i | σi > σi+1},
Inv(σ) = {(i, j) | i < j and σi > σj}.

We will also make use of multisets, where unlike the regular sets we are allowed to repeat
elements. We will use to notation · · · when describing a multiset instead of a regular set.

Definition 1 ([1]). A permutation statistic st is said to be shuffle-compatible if for
all disjoint permutations σ and φ, the multiset {{st(γ)|γ ∈ σ � φ}} depends only on
st(σ), st(φ), |σ| and |φ|.

From the examples above, 1 and Des are shuffle-compatible, whereas Inv is not.The
paper [1] by Gessel and Zhuang provides an in-depth exploration of shuffle-compatible
permutation statistics. In that, they conjecture [1, Conjecture 6.11] that any shuffle-
compatible permutation statistic st is a descent statistic, meaning if σ, φ ∈ Pn satisfy
Des(σ) = Des(φ), then st(σ) = st(φ). In this note we disprove the conjecture by con-
structing a permutation statistic that is shuffle-compatible, but not a descent statistic.

Proposition 2. Let st be a shuffle-compatible statistic. For |σ| = |φ| < 4, Des(σ) =
Des(φ) implies st(σ) = st(φ).

Proof. For sizes 0, 1 and 2, any two permutations with the same descent set are order-
isomorphic, so there is nothing to show. Let us focus on size 3. As these are permutation
statistics, we can limit our attention to permutations of 1, 2, 3. There are two pairs of
non-order-isomorphic permutations with the same descent set: 213− 312 and 231− 132.
The calculations below show that st(213) = st(312) and st(231) = st(132).

{{st(σ) | σ ∈ 12� 3}} = {{st(σ) | σ ∈ 13� 2}},
⇒{{st(123), st(132), st(312)}} = {{st(132), st(123), st(213)}},
{{st(σ) | σ ∈ 23� 1}} = {{st(σ) | |σ ∈ 13� 2}},

⇒{{st(231), st(213), st(123)}} = {{st(132), st(123), st(213)}}.

This proposition shows that the minimum size we can have permutations that have
the same descent set, but different values for some shuffle-compatible statistic is 4.

Let σ be a permutation of a1 < a2 < a3 < a4. Set

Inv12(σ) =

{
1 if a1 is to the left of a2 in σ,

−1 otherwise,

Adj34(σ) =

{
1 if a3 is adjacent to a4 in σ,

−1 otherwise,

Λ(σ) = Inv21(σ) · Adj34(σ).

For example, σ = 2413 has Inv12(σ) = −1 and Adj34(σ) = −1, so Λ(2413) = (−1) ·
(−1) = 1. For φ = 1423, Inv12(φ) = 1 and Adj34(φ) = −1, so Λ(1423) = 1 · (−1) = 1.
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Definition 3. We define a permutation statistic Ψ : P −→ Z as follows:

Ψ(σ) =

{
Λ(σ) if |σ| = 4,

1 otherwise.

Proposition 4. The function Ψ is not a descent statistic.

Proof. For σ = 2413 and φ = 1423, Des(σ) = Des(φ) = {2}, but Ψ(σ) = 1 6= Ψ(φ) =
−1.

Theorem 5. The function Ψ is shuffle-compatible.

Proof. Let σ and φ be two permutations. Note that if |σ| + |φ| 6= 4, the multiset
{{Ψ(γ)|γ ∈ σ � φ}} contains only 1s, and the number of those depends only on |σ|
and |φ|. So we can focus on when |σ| + |φ| = 4. As we are working with a permutation
statistic, it is enough to verify the result when the integers used are 1, 2, 3 and 4. Further
note that the shuffle operation is symmetric, and Ψ is symmetric under exchanging 3 and
4.

Case 1: |σ| = 3, |φ| = 1. We claim that in this case {{Ψ(γ)|γ ∈ σ � φ}} =
{{−1,−1, 1, 1}}. If φ = 3, then independent of the placement of 4, of the four elements
of σ� φ, exactly two have 3 and 4 adjacent, and the order of 1 and 2 is the same for all
of them, so the claim holds. Same argument applies for the case φ = 4 by symmetry. The
6 other possibilities are illustrated at Table 1, left.

Case 2: |σ| = |φ| = 2. We claim that {{Ψ(γ)|γ ∈ σ � φ}} = {{−1,−1,−1, 1, 1, 1}}.
As exchanging 3 and 4 does not alter the Ψ value, there are 6 possible pairings we need
to consider, all illustrated in Table 1, right.

Ψ = +1 Ψ = −1
134� 2 1234, 1342 1324, 2134
314� 2 2314, 3214 3124, 3142
341� 2 3412, 3241 3421, 2341
234� 1 1234, 2314 2341, 2134
324� 1 3241, 3214 3124, 1324
342� 1 3412, 1342 3421, 3142

Ψ = +1 Ψ = −1
12� 34 1234, 1342, 3412 1324, 3124, 3142
13� 24 1234, 1243, 2413 2134, 2143, 1324
13� 42 4213, 1432, 1342 4132, 4123, 1423
21� 34 2314, 3241, 3214 2134, 2341, 3421
23� 14 2314, 1243, 1234 1423, 2134, 2143
23� 41 4213, 2413, 4231 4123, 2341, 2431

Table 1: Ψ values of shuffles of pairs σ and φ.

Corollary 6. Conjecture 6.11 from [1] is incorrect.

Note that this counterexample mainly depends on how Ψ acts on permutations of size
4. Even though taking only two order-isomorphism classes at size 4 limits our options for
larger sizes, it does not force the existence of only one order-isomorphism class at each
level, that is just selected for simplicity.

A question that arises from this counterexample is whether it is possible to refine the
conjecture by adding extra conditions to ensure the resulting statistics only depend on
descent. One such result was recently proved by Grinberg in [2]:
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Definition 7 ([2]). A permutation statistic st is left-shuffle-compatible if for disjoint
permutations γ and φ satisfying σ1 > γ1, the multiset {{st(γ) | γ ∈ σ� φ and γ1 = σ1}}
depends only on st(σ), st(φ), |σ| and |φ|.

Proposition 8 ([2]). Any shuffle-compatible and left-shuffle-compatible statistic is a de-
scent statistic.

Note that our counter-example does not violate this result, as it is not left-shuffle-
compatible:

{{Ψ(γ) | γ ∈ 24� 31, γ1 = 1}} = {{Ψ(2431),Ψ(2341),Ψ(2314)}} = {{−1,−1, 1}},
{{Ψ(γ) | γ ∈ 34� 21, γ1 = 3}} = {{Ψ(3421),Ψ(3241),Ψ(3214)}} = {{−1, 1, 1}}.

There are examples of shuffle-compatible descent statistics that are not left-shuffle-
compatible, so the above proposition does not offer a complete characterization.

2 Addendum

The following wonderful proof for Theorem 5 was contributed by Darij Grinberg as an
alternative that underlines the connection with Lie theory:

Let F be the free Q-algebra on generators a, b, c, d. We identify each permutation on
the letters a, b, c, d with a corresponding word in F , by writing it in one-line notation and
replacing the numbers 1, 2, 3, 4 by a, b, c, d respectively. For example, the permutation
3142 becomes identified with cadb, whereas the permutation 341 becomes cda. When σ
and φ are two disjoint permutations, the shuffle product of the corresponding words in
the free algebra F is given by sum of the words corresponding to the permutations in
σ�φ. Let S be the span of all nontrivial shuffles in F - that is, of all shuffles of the form
u� v where u and v are two nonempty words (We disallow empty words, since otherwise
S would be the whole F).

We also consider the free Lie subalgebra L of F generated by a, b, c, d. Note that L
is given by the span of all iterated commutators of a, b, c, d including the elements a, b,
c, d themselves. For example, [[b, [c, [a, d]], [b, d]] ∈ L. The elements of L are called Lie
polynomials.

There is an inner product < ·, · >: F ×F → Q with respect to which the words form
an orthonormal basis (i.e., for any two words u and v we have < u, v >= δu,v. Let

x := [a, [c[b, d]]] + [d, [c, [b, a]]] + [b, [c, [d, a]]] ∈ L.

Expanding x, we easily see that x is the signed sum of the words corresponding to all 24
permutations with entries 1, 2, 3, 4. Furthermore, each such permutation σ appears with
sign Ψσ in this signed sum. Thus for every permutation σ of 1, 2, 3 and 4, we have

Ψ(σ) =< x, σ > . (1)

However, it is a known fact (easily follows from Theorem 1.4 in [3]) that < S,L >= 0,
that is we have < u � v, w >= 0 for every nontrivial shuffle u � v ∈ S and every Lie
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polynomial w ∈ L. This is a consequence of the fact that < ·, · > is a graded duality
pairing between the shuffle Hopf algebra and the tensor Hopf algebra, and that S is the
square of the augmentation ideal of the shuffle Hopf algebra, while L is the space of
primitives of the tensor Hopf algebra.

Thus, for every nontrivial shuffle u� v ∈ S we have < u� v, x >= 0. In particular,
if σ and φ are two disjoint nonempty permutations we have:∑

γ∈σ�φ

Ψ(γ) = 0.

As Ψ can only take the values ±1, this completely characterizes the multiset σ � φ and
proves that Ψ is indeed shuffle compatible.
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