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Abstract

An embedding of a rooted tree S into another rooted tree T is a mapping of the
vertex set of S into the vertex set of T that is order-preserving in a certain sense,
depending on the chosen tree family. Equivalently, S and T may be interpreted as
tree-like partially ordered sets, where S is isomorphic to a subposets of T . A good
embedding is an embedding where the root of S is mapped to the root of T .

We investigate the number of good and the number of all embeddings of a rooted
tree S into the family of all trees of given size n of a certain family of trees. The tree
families considered are binary plane trees (the order of descendants matters), binary
non-plane trees and rooted plane trees. We derive the asymptotic behaviour of the
number of good and the number of all embeddings in all these cases and prove that
the ratio of the number of good embeddings to that of all embeddings is of the order
Θ(1/

√
n) in all cases, where we provide the exact constants as well. Furthermore,
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we prove some monotonicity properties of this ratio. Finally, we comment on the
case where S is disconnected.
Mathematics Subject Classifications: 05C05, 05A15, 05A16, 60G40, 06A07

1 Introduction

This paper studies the number of occurrences of a given rooted tree in the family of
(plane and non-plane) binary trees, as well as planted plane trees. We call a rooted tree
plane if the descendants of any vertex are ordered, and non-plane otherwise. Here, the
notion of occurrence is wider than just a copy. We call it an embedding and we distinguish
between plane embeddings (addressed to plane structures) and non-plane embeddings
(for non-plane structures). In the non-plane case it is convenient to explain the notion
of embedding we work with in terms of partially ordered sets (in short: posets). Recall
that a partial order is a reflexive, antisymmetric and transitive relation. Note that any
rooted tree may be interpreted as a Hasse diagram of some poset. Thus in the non-plane
case we assume the investigated structures to be posets and by saying that there exists
an embedding of S into T we understand that a poset S is a subposet of T . For the plane
case assume that S and T are both rooted trees. Then a plane embedding of S into T is
any subposet of T isomorphic to S in which the order of descendants of each node of S is
inherited from T . We also distinguish between good embeddings in which the roots of S
and T coincide and bad embeddings in which they do not.

The number of good and bad embeddings of a rooted structure in a complete bi-
nary tree was first investigated by Morayne [37]. His research was motivated by optimal
stopping problems. The ratio of the number of good embeddings to the number of all
embeddings and its monotonicity properties were used in estimates of conditional prob-
abilities needed to obtain an optimal policy for the best choice problem considered on a
complete (balanced) binary tree. This and similar results first served just as tools but
soon became interesting questions about the structural features of posets on their own
and resulted in a series of self-standing papers [29, 30, 22]. Counting chains and antichains
in trees took a special place in this pool [33, 34, 31].

In this paper we present a follow-up and generalization of the results obtained by
Kubicki et al. [29, 30] and Georgiou [22]. We give the asymptotic behaviour of the number
of good and all embeddings of a rooted tree S in the family of plane and non-plane binary
trees, as well as planted plane trees, on n vertices. The ratio of the number of good
embeddings to the number of all embeddings is shown to be of order Θ(1/

√
n) in all

cases and the exact constants are provided. Furthermore, we show that this ratio is
asymptotically non-decreasing in S (that is, if S1 may be embedded in S2, then the
asymptotic ratio of good to all embeddings of S1 is smaller or equal to the one for S2).
Such a monotonicity property was the center of attention of the aforestated papers. The
detailed discussion on this matter is presented in Section 8. To obtain our results we use
an approach based upon analytic combinatorics, which has not been used so far in the
realm of posets.

The results of our paper may also be put into the framework of counting patterns in
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large structures. This is a vast field where many different types of structures have been
considered. We only mention subgraph avoidance (and characterizing whole graph classes
like series-parallel or planar graphs in that way) or subgraph counts in random graphs
(see [27, 1] for general graphs, [12] for subcritical graphs and [38, 46] for planar graphs),
pattern avoidance in permutations (see [5]) or in trees (see [10]), or pattern avoidance in
lattice paths and words, where many particular patterns have been treated separately (see
[9] or the introduction of [2] for a survey) and eventually put under a unifying umbrella
in [2].

The closest to the present work is pattern counting in trees. One of the earliest
investigations of this kind was [42], where the enumeration of given stars as subgraphs
in trees (equivalently nodes of fixed degree) was treated. Later generalizations are found
in [11, 40] (multivariate setting), in [35] (distinct patterns) or [24] (large patterns of that
type). A method to deal with general contiguous patterns in trees by means of generating
functions was developed in [6], which was partially generalized to planar maps recently
[14, 7, 13]. Pattern avoidance in trees was the topic of [43], where also the concept of Wilf
equivalence was dealt with, which was adopted from pattern avoidance in permutations.

Except for permutations, where most of the patterns that have been studied so far are
non-contiguous, the considered patterns in other domains are typically contiguous. To
our knowledge, the first work considering non-contiguous patterns in trees is [8]. In the
present paper, the tree which is embedded becomes in general a collection of (partially)
non-adjacent nodes in the tree where it is embedded. It can therefore be seen as a non-
contiguous pattern occurring in that tree. Thus, our paper deals with certain enumeration
problems for non-contiguous patterns in trees.

The paper is organized as follows. Section 2 introduces basic definitions, notation and
presents tools (mainly from analytic combinatorics) used throughout the paper. Section 3
provides possible applications of our results in optimal stopping problems. In Section 4,
using the symbolic method, we obtain generating functions for the number of good and
the number of all embeddings of a rooted tree in the family of all plane binary trees
with a given number of vertices. We also briefly discuss the case when the embedded
structure is disconnected, i.e. it is a forest. Next, in Section 5, we use singularity analysis
to derive the asymptotics of the number of good and bad embeddings when the size of
the underlying tree is tending to infinity. Sections 6 and 7 present analogous results for
the families of non-plane binary trees and planted plane trees, respectively. Moreover, in
Section 8 we investigate the asymptotics and the monotonicity of the ratio of good to all
embeddings of a rooted tree in all three mentioned families, which is a continuation of
work of Kubicki et al. [29, 30] and Georgiou [22]. A discussion of the obtained results as
well as an outlook into some related future problems is given in Section 9.

2 Preliminaries, methodology and concepts

We are dealing with several tree structures that will be presented in the following subsec-
tion. In all classes that we are studying the trees are considered as unlabelled graphs.
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The subsequent subsections provide the methodology from analytic combinatorics.
Here we present only a brief account of the symbolic method and singularity analysis. For
a detailed presentation of the theory see [16].

Finally, we present the definitions of all the concepts that are central to our investi-
gations.

2.1 Structures

By Bn we denote the family of plane binary trees with n nodes. A binary tree is a tree in
which each node has either 0 or 2 descendants and by plane we understand that the order
of subtrees of a given node matters, i.e. we distinguish between the different embeddings
of a tree in the plane. It is commonly known that for odd n the cardinality |Bn| of Bn
satisfies |Bn| = C n−1

2
, where Ck is the k-th Catalan number given by Ck = 1

k+1

(
2k
k

)
. Note

that all binary trees have odd sizes and thus, for even n the cardinality |Bn| is zero. All
plane binary trees of size 5 are shown in Figure 1. We assume also that all edges are
directed towards the descendants. Therefore, the in-degree of the root, as well as the
out-degree of each leaf, is always 0. A vertex is said to be d-ary if its out-degree equals
d. Subsequently, the root of a tree T will be denoted by 1T .

By Vn we denote the family of non-plane binary trees with n nodes. By non-plane we
understand that the subtrees of a given node are treated as a set of subtrees, i.e. there is
no ordering. E.g., there is only one non-plane binary tree of size 5, see Figure 1. Again for
even n the cardinality |Vn| is zero. For odd n the values |Vn| are known as Wedderburn-
Etherington numbers and do not have a closed form (|V1| = 1, |V3| = 1, |V5| = 1, |V7| =
2, |V9| = 3, . . .).

Planted plane trees (also known as Catalan trees) are rooted plane trees where each
internal node can have arbitrarily many descendants. We denote the family of planted
plane trees of size n by Tn. For all n the cardinality of Tn satisfies |Tn| = Cn−1.

T1 T2

Figure 1: The family B5 = {T1, T2} of plane binary trees is of size |B5| = C2 = 2, while
the family V5 = {T1} of non-plane binary trees has the size |V5| = 1.

2.2 Tools from analytic combinatorics – the symbolic method

Let N denote the set of natural numbers including 0. A combinatorial class A is a pair
(A, | · |A) where A is a countable set whose elements are called (combinatorial) objects
and | · |A : A → N is the size function of A. We require that for all n ∈ N the set of
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all objects of size n has finite cardinality an. The counting sequence of A is the sequence
(an)n>0.

Two combinatorial classes A and B are said to be combinatorially isomorphic (or,
simply, isomorphic) if and only if their counting sequences are identical. Then we write
A ∼= B. The generating function of a combinatorial class A is the generating function of
its counting sequence (an)n>0, i.e. the formal power series A(z) =

∑
n>0 anz

n. By [zn]A(z)
we denote the coefficient of zn in the formal power series A(z); thus [zn]A(z) = an.

The neutral class E is defined as the class consisting of a single object of size 0; the
atomic class containing only a single object of size 1 will be denoted by {•}. The following
combinatorial constructions for combinatorial classes are going to be used throughout the
paper. We list them together with the relations between the corresponding generating
functions.

1. Sum (disjoint union). Let B = (B, | · |B) and C = (C, | · |C) be combinatorial
classes such that B ∩ C = ∅. Then A ∼= B + C if and only if A = (A, | · |A) where
A = B ∪ C and |ω|A = |ω|B if ω ∈ B and |ω|A = |ω|C if ω ∈ C. If A ∼= B + C then
A(z) = B(z) + C(z).

2. Product. Let B = (B, | · |B) and C = (C, | · |C) be combinatorial classes. Then
A ∼= B × C if and only if A = (A, | · |A) where A = B × C (the Cartesian product)
and |(b, c)|A = |b|B + |c|C. If A ∼= B × C then A(z) = B(z) · C(z), where · denotes
the Cauchy product.

3. Sequence. Let A be a combinatorial class with no object of size 0. We define

B := Seq(A) = E +A+ (A×A) + (A×A×A) + · · · .

Then B(z) = 1/(1− A(z)).

4. Multiset of size 2. Let A be a combinatorial class. Then we define

B :=MSet2(A) = (A×A)/R,

with R being the equivalence relation defined by (α1, α2)R(β1, β2) if and only if
(β1, β2) = (α1, α2) or (β1, β2) = (α2, α1). The multiset {a, b}, a 6= b, is associated
with the two ordered pairs (a, b) and (b, a) whereas {a, a} is associated with (a, a).
The set of all pairs (a, a) is called the diagonal of A×A and denoted by ∆(A × A).
The above explained correspondence translates to the following combinatorial iso-
morphism,

MSet2(A) +MSet2(A) ∼= A×A+ ∆(A×A).

As the generating function of ∆(A×A) is A(z2), we get

B(z) =
1

2

(
A(z)2 + A(z2)

)
.

We remark that a similar argument works for sets. With C = Set2(A) we have

C(z) =
1

2

(
A(z)2 − A(z2)

)
. (1)
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5. Pointing. Let A be a combinatorial class. Pointing of a class A means distinguish-
ing an atom (atoms are objects of size 1) and objects with a distinguished atom are
called pointed objects. Precisely, the pointed class is the class of all pointed objects
made from an object of A. It is denoted by B = Θ(A) and formally defined as

Θ(A) =
∑
n>0

An × {ε1, . . . , εn},

where {ε1, . . . , εn} is a fixed collection of distinct neutral objects of size 0. With
an being the number of objects of size n in A, the quantity nan is apparently the
number of pointed objects of size n in B, as each of the n atoms may be pointed at.
In terms of generating functions the relation reads as B(z) = zA′(z).

2.3 Trees

From now on let B denote the class of plane binary trees, V the class of non-plane bi-
nary trees, M the class of Motzkin trees (defined below) and T the class of planted
plane trees. Let also B(z) =

∑
n>0 bnz

n, V (z) =
∑

n>0 vnz
n,M(z) =

∑
n>0mnz

n and
T (z) =

∑
n>0 tnz

n be their corresponding generating functions where z marks the num-
ber of nodes (e.g., bn is the number of plane binary trees with n nodes), thus

B(z) = C0z + C1z
3 + C2z

5 + C3z
7 + · · · ,

V (z) = z + z3 + z5 + 2z7 + 3z9 + · · · ,
M(z) = z + z2 + 2z3 + 4z4 + 9z5 + · · · ,
T (z) = C0z + C1z

2 + C2z
3 + · · · .

Each of the classes may be specified by a recursive relation using the symbolic method.
Obviously, we have

B = {•}+ {•} × B × B,

since a plane binary tree consists either of a single vertex or of a root with two plane
binary trees attached to it. Translating into generating functions gives the quadratic
equation B(z) = z + zB(z)2 with one of its solutions being a power series. Thus

B(z) =
1−
√

1− 4z2

2z
.

A Motzkin tree is a plane rooted tree in which each vertex has either zero, one or two
children that are themselves Motzkin trees. This yields the specification

M = {•}+ {•} ×M+ {•} ×M×M. (2)

Similarly, we define planted plane trees by

T = {•} × Seq(T ).
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The specifications of Motzkin trees and of planted plane trees lead to the quadratic equa-
tions M(z) = z + zM(z) + zM(z)2 and T (z) = z/(1 − T (z)), respectively, giving rise
to

M(z) =
1− z −

√
1− 2z − 3z2

2z
and T (z) =

1−
√

1− 4z

2
.

In non-plane binary trees, the two subtrees attached to the root do not form a pair,
but a multiset instead. This yields

V = {•}+ {•} ×MSet2(V)

and so
V (z) = z +

z

2
(V (z)2 + V (z2)). (3)

2.4 Singularity analysis and other auxiliary results

We will use singularity analysis to get a relation between the behaviour of a generating
function near its dominant singularities (i.e. its singularities on the circle of convergence)
and the asymptotics of its coefficients. Precisely, we take advantage of the following
lemma. (We use the standard notation f(n) ∼ g(n) if limn→n0

f(n)
g(n)

= 1.)

Lemma 1 (Compare Theorems VI.4 and VI.5 in [16]). Define

∆0 = {z ∈ C||z| < ρ+ ε, z 6= ρ, |arg(z− ρ)| > ν}

for some ρ > 0, ε > 0, 0 < ν < π
2
. Let r > 0, ρj = ρeiφj , for j = 0, 1, . . . , r with

φ0 = 0 and φ1, . . . , φr ∈ (0, 2π). Consider T (z) =
∑

n>0 Tnz
n to be an analytic function

in ∆ :=
⋂r
j=0 e

iφj∆0 and satisfying for each j = 0, . . . , r

T (z) ∼ Kj

(
1− z

ρj

)−αj
, as z → ρj in ∆,

where αj /∈ {0,−1,−2, . . .} and the Kj are constants. Then

[zn]T (z) ∼
r∑
j=0

Kj
nαj−1

Γ(αj)
ρ−nj , as n→∞.

Remark 2. Note that the assumptions of Lemma 1 imply that {ρ0, ρ1, . . . , ρr} is exactly
the set of all singularities of the power series

∑
n>0 Tnz

n on its circle of convergence.

Finally, the following lemma will be helpful when investigating the asymptotic mono-
tonicity of ratios of good to all embeddings.

Lemma 3 (Gautschi’s inequality, [21]). Let x be a positive real number and let s ∈ (0, 1).
Then

x1−s <
Γ(x+ 1)

Γ(x+ s)
< (x+ 1)1−s.
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2.5 Embeddings

This paper concentrates on investigating the number of embeddings of any rooted tree
(or a forest of rooted trees - a disconnected graph whose components are rooted trees) in
all trees from either family Bn, Vn or Tn. An embedding of a rooted tree S into another
rooted tree T can be seen as a kind of generalized pattern occurrence of S in T , where we
distinguish between the plane and the non-plane case. As we are extending some results
on posets, we interpret S and T as posets and formulate the definitions in the language of
posets (see e.g. [48] for basic concepts and terminology), but give the equivalent definition
in terms of trees afterwards.

Definition 4 (Non-plane embedding). Let S and T be two non-plane rooted trees. When
interpreting T as the cover graph of a poset, rooted at the root of T , i.e. at the single
maximal element of the poset, then an embedding of S into T can be defined is any
subposet of T that is isomorphic to S.

Definition 4’ (Non-plane embedding). Let S and T be two non-plane rooted trees with
vertex sets V (S) and V (T ), respectively. Then an embedding of S into T is a subset
M ⊆ V (T ) for which there is a bijection ϕ : M → V (S) such that x is a descendant of y
in T if and only if ϕ(x) is a descendant of ϕ(y) in S.

Remark 5. Note that there exists a non-plane embedding of a binary tree S into a binary
tree T if and only if S is a minor of T .

Remark 6. Instead of starting from a tree as combinatorial structure and then interpreting
it as a poset, we may also start from posets and then define a tree poset as a poset P
which has exactly one maximal element and such that any Hasse diagram of P looks like
a (combinatorial) tree. This is equivalent to the definition of a tree poset given in [19].1
Likewise, an embedding of a tree poset S into another tree poset T , as defined in [19],
matches exactly the definition of a non-plane embedding given above.

Definition 7 (Plane embedding). Let S and T be two plane rooted trees. If we interpret
T to be a Hasse diagram of a poset, then an embedding of S into T is defined as any
subposet of T isomorphic to S in which the left-to-right order of the children of each node
of S is inherited from T (one may think of it as of a plane version of a subposet).

Remark 8. So, in the plane case S and T can be interpreted as Hasse diagrams of posets,
and whenever S can be embedded in T it follows that S is a subposet of T . However,
note that the respective posets can possibly be represented as different Hasse diagrams in
such a way that no embedding of the corresponding trees is possible.

Definition 7’ (Plane embedding). Let S and T be two plane rooted trees with vertex
sets V (S) and V (T ), respectively. Then an embedding of S into T is a subset M ⊆ V (T )
for which there is a bijection ϕ : M → V (S) meeting the following two constraints: x is

1For the sake of better distinction from a combinatorial tree, we use the term “tree poset” for what is
simply called “tree” in [19].
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a descendant of y in T if and only if ϕ(x) is a descendant of ϕ(y) in S; if for two vertices
v and w the left subtree of their last common ancestor z contains v (and thus w is in the
right subtree attachted to z), then ϕ(v) is in the left subtree of the last common ancestor
u of ϕ(v) and ϕ(w).

Note here: Usually ϕ−1(u) 6= z, yet in general we even have z /∈M .

We say that an embedding of S into T is good if it contains the root of T . Otherwise
we call it a bad embedding. If there exists at least one embedding of S into T , we write
S ⊆ T . All embeddings of a cherry, (i.e. a tree composed only of a root and its two
children) in a given binary tree of size 5 are given in Figure 2. Four of them are good and
the last one is bad.

S:

Figure 2: All five plane embeddings of a cherry S in a given plane binary tree of size 5.
Or all four non-plane embeddings of a cherry S in a given non-plane binary tree of size
5, since in the non-plane case the two rightmost pictures in the upper row represent the
same embedding (they can easily be mapped onto each other via a simple automorphism
that changes the order of the two leftmost leaves).

Subsequently, the size of the tree S will always be denoted by m, while the size of T is
consistently denoted by n. Thus, for the asymptotic analysis of the number of embeddings
of a tree S into a class of trees of size n, the quantity m is considered to be a constant,
while n tends to infinity.

For S, the structure that we embed, we define its degree distribution sequence as
dS = (d0, d1, . . . , dm−1), where di is the number of vertices in S with out-degree equal to i.
Note that d0 is simply the number of leaves, which will be, interchangeably, denoted by l
(i.e. l = d0). Similarly, d1 is the number of unary nodes, which will be, interchangeably,
denoted by u (i.e. u = d1). The number of all embeddings of a given tree S in T will be
denoted by aT (S) and the number of its good embeddings in T by gT (S).

The number of all embeddings of S in a finite family F = {F1, . . . , F`} will be denoted
by aF(S) and understood as the cumulative number of embeddings of S into all elements
of F , i.e. aF(S) =

∑`
i=1 aFi(S). Analogously, we define the number of good embeddings

of S in F : gF(S) =
∑`

i=1 gFi(S). For S being a cherry and F = B5 = {T1, T2} from
Figure 1, we obtain aT1(S) = aT2(S) = 5, gT1(S) = gT2(S) = 4, thus aB5(S) = 10 and
gB5(S) = 8 (compare Figure 2).
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Moreover, for each considered family F of trees with Fn denoting the subfamily of
all trees of size n, we define the generating functions of the numbers of all and good
embeddings of a structure S as

AS(z) =
∑
n>0

aFn(S)zn and GS(z) =
∑
n>0

gFn(S)zn.

3 Applications in optimal stopping problems

The most prominent problem in the area of optimal stopping is the so-called “secretary
problem” (consult [36, 15, 17, 44]), where one assumes a linear order on the applicants for
a secretary position concerning their qualifications. The applicants are interviewed in a
random order and the decision whether to hire an applicant has to be made immediately
after the interview - a rejected applicant cannot be hired at a later point. Thus, if we
interview all the candidates, we have to hire the last applicant. The goal is to find
the optimal stopping strategy to hire the best applicant. Thus, we want to stop at the
time maximizing the probability that the present applicant is the best one overall, i.e. the
maximum element in the linear order. It has been proved (see for example [36, 23]) that for
a large number of applicants it is optimal to wait until approximately 37% (more precisely
100
e

%) of the applicants have been interviewed and then to select the next relatively best
one. This optimal algorithm returns the best applicant with asymptotic probability of 1/e.
The secretary problem has been extended and generalized in many different directions.
One of these is the extension to partially ordered sets, possibly with more than one
maximal element, see [45, 25]. Optimal strategies for particular posets were investigated
among others in [37, 28]. Versions for unknown poset, when the selector knows in advance
only its cardinality, were presented in [41, 18, 20]. Another interesting generalization was
to replace the underlying poset structure by a directed graph. This version was first
considered on directed paths by Kubicki and Morayne in [32] and later extended to other
families of graphs and different versions of the game (consult [47, 26, 3, 4]).

In the remainder of this section we give examples of stopping problems in which
either the value aVn(S) or the ratio gVn(S)/aVn(S) (both investigated in this paper) plays
a crucial role in estimating the conditional probabilities needed to obtain the optimal
policy. One can consider analogous examples for the families Bn or Tn as well.

Let us think about elements of Vn as of Hasse diagrams of posets. Consider the
following process. Elements (i.e. nodes) of some T from Vn appear one by one in a
random order (all permutations of elements of T are equiprobable). At time t, i.e. when
t elements have already appeared, the selector can see a poset induced on those elements.
He knows that the underlying structure is drawn uniformly at random from Vn.

Example (Best choice problem for the family of binary trees). The selector’s task is to
stop the process maximizing the probability that the element that has just appeared is the
root of the underlying structure. He wins only if the chosen element is indeed 1T . Note
that it neither pays off to stop the process when the induced structure is disconnected
nor when the currently observed element is not the maximal one in the induced poset.
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The selector wonders whether to stop only if the emerged element at time t is the unique
maximal element in the induced structure. In order to take a decision whether to stop
at time t, he needs to know the probability of winning if he stops now. Let Wt denote
the event of winning when stopping at time t, St the event that at time t he observes a
certain structure S with degree distribution sequence dS and Ri denote the event that Ti
has been drawn as the underlying structure, where we use the notation Vn = {T1, . . . , TN}
with N = |Vn|. Then the probability of winning if he stops at time t is given by

P[Wt|St] =
N∑
i=1

P[Wt|St ∩Ri]P[Ri|St] =
N∑
i=1

gTi(S)

aTi(S)

P[St|Ri]P[Ri]

P[St]
.

Since P[Ri] = 1/N , P[St|Ri] = aTi(S)/
(
n
t

)
(t vertices were revealed till time t; among all(

n
t

)
equiprobable choices of t vertices from Ti, aTi(S) of them admit the embedding of S

in Ti) and

P[St] =
N∑
i=1

P[St|Ri]P[Ri] =
N∑
i=1

aTi(S)(
n
t

) 1

N
=
aVn(S)

N
(
n
t

)
we get

P[Wt|St] =
N∑
i=1

gTi(S)

aTi(S)

aTi(S)(
n
t

) 1

N

N
(
n
t

)
aVn(S)

=
gVn(S)

aVn(S)
.

Example (Identifying complete balanced binary trees). The selector has to identify
whether the underlying structure is a complete balanced binary tree or not. The payoff of
the game, if he stops the process at time t, is n− t if he guesses correctly and 0 otherwise.
He has to maximize the expected payoff. At moment t he observes a structure S, which is
not necessarily connected. Again, in order to make a decision whether to stop, he needs
to know what is the probability that the currently observed structure is a subposet of a
complete balanced binary tree. For a rooted tree S this probability is given by

aTb(S)

aVn(S)
,

where Tb ∈ Vn denotes the complete balanced binary tree of size n.

4 Generating functions for the number of embeddings in Bn

4.1 Embedding rooted trees in Bn

In this subsection we derive explicit expressions for the generating functions for the se-
quences aBn(S) and gBn(S), where S is a given rooted plane tree of size m. In order to
do so, we use the symbolic method as outlined in Section 2.

Theorem 9. Consider a rooted tree S with dS = (l, u, d2, . . . , dm−1) being its degree
distribution sequence. The generating function AS(z) of the sequence aBn(S), which counts
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the number of all embeddings of S into all trees of the family Bn, is given by

AS(z) =

(
1

1− 2zB(z)

)m+l−1

zl+u−1 B(z)l+u 2u
m−1∏
i=3

(Ci−1)di , (4)

where B(z) is the generating function of the family of plane binary trees.

Remark 10. Note that AS(z) depends only on the degree distribution sequence dS, not
the particular shape of S. Thus, as long as dS1 and dS2 are the same, AS1(z) and AS2(z)
coincide even if S1 and S2 are not isomorphic. However, we use the subscript S to provide
a transparent notation. Moreover, note that AS(z) does also depend on the tree class Bn
in which we embed the tree S. In order to avoid a large number of indices we will omit to
indicate this dependence and just emphasize at this point that the generating functions
AS(z) may differ according to the underlying tree classes.

Proof. Case 1: S is a Motzkin tree.
In the proof we heavily use the definitions class B of binary trees and the class M

of Motzkin trees from Section 2. We start the proof of the expression of AS(z) with the
case where S is a Motzkin tree. and thereby we must distinguish between the three cases
whether S is a single node, or the root of S is a unary node, or a binary node, and hence
falling into the respective subclass ofM among the subclasses that we find as summands
on the right-hand side of Eq. (2). In particular, if the root is a unary node, then there is
one Motzkin tree attached to it that we call S̃. If the root is a binary node, it has a left
and a right subtree attached to it that we call SL and SR, respectively.

The generating function AS(z) for the number of embeddings of S into the family Bn
can then be recursively defined by

AS(z) =


zB′(z) if S = •,

2zB(z)

1− 2zB(z)
AS̃(z) if S = (•, S̃),

z

(1− 2zB(z))2
ASL(z)ASR(z) if S = (•, SL, SR),

(5)

where the three cases correspond to the cases described above. The first case, which yields
a factor zB′(z), corresponds to marking a node in the underlying tree T (i.e. pointing at
a node), because obviously a single vertex can be embedded in every node. We can also
interpret it as counting the number of pairs (T,E) where E is an embedding of S into T .

Now we show how an embedding of S into T can be constructed in a recursive way -
see Figure 3 for a visualization of the used approach. We start with the case that the root
of S is a unary node. This root has to be embedded at some point in the tree T . The part
of T that is above the embedded root of S can be expressed as a path of left-or-right trees,
which contributes a factor 1/(1− 2zB(z)). The embedded root of S itself yields a factor
z, since the generating function of an object of size one is given by z. To the embedded
root we have to attach an additional tree T in order to create a binary structure, yielding
a factor B(z), as well as the remaining tree that contains the embedding of S̃. The factor
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leaf

B

zB′

unary node

S̃

AS̃ B

2zB
1−2zBAS̃

binary node

SL SR

ASL ASR

z
(1−2zB)2

ASLASR

=

B

B

B

B

1
1−2zB

Figure 3: Sketch of the recursive construction of the generating function AS(z). If S is
a Motzkin tree (plane binary case), then the three cases above can appear. Here B each
time refers to an abstract object representing any tree from family Bn.

2 that appears in the coefficient in the second case of (5) indicates that we work with
plane trees - the substructure S̃ can be embedded either in the left or in the right subtree
of the unary vertex.

The third case of (5), where S starts with a binary node, is similar to the previous
case. Thus, the factor 1/(1 − 2zB(z))2 corresponds to two consecutive paths of left-or-
right trees, which are separated by the embedded root which itself gives the additional
factor z. At some point the lower path splits into two subtrees containing the embeddings
of the subtrees SL and SR.

By simple iteration one can see that in case of embedding a Motzkin tree S, the
generating function AS(z) reads as

AS(z) =

(
z

(1− 2zB(z))2

)l−1(
2zB(z)

1− 2zB(z)

)u
(zB′(z))l, (6)

where l denotes the number of leaves and u the number of unary nodes in S. The exponent
l − 1 in (6) arises from the fact that a Motzkin tree with l leaves has l − 1 binary nodes,
and for each of these nodes we get the respective factor.

Case 2: S contains vertices with more than two children.
Finally, we consider the general case where S is an arbitrary plane tree without any

restrictions on the degree distribution sequence. Then we proceed as follows. Every d-
ary node with d > 3 together with its d children is replaced by a binary tree having d
leaves, which are then replaced by the successors of the original d-ary node. There are
exactly Cd−1 possible ways to construct such a binary tree. Unary and binary nodes
stay unaltered. Applying this for all nodes results in constructing a Motzkin tree, called

the electronic journal of combinatorics 29(3) (2022), #P3.52 13



S ′, and the number of Motzkin trees that can be constructed in that way is
∏m−1

i=3 Cdi
i−1.

These Motzkin trees are then embedded with the approach described above.
In short, the goal is now to make S correspond to a collection of Motzkin trees

C = {S1, . . . , Sk} with k =
∏m−1

i=3 Cdi
i−1 and each embedding of S into T could then

be regarded as an embedding of some S ′ ∈ C and vice versa.2 This would imply

AS(z) =
k∑
i=1

ASi(z) = kAS′(z),

where the second equation is true, because ASi(z) only depends on the number of unary
nodes and the number of leaves of Si, but not on its actual shape.

In order to determine AS′ note that replacing a d-ary node v with d > 3 by a binary
tree (with more than 1 internal nodes) introduced further vertices into S. In particular,
v becomes a binary node, and as there were d successors before, the binary tree arising
from v must have d− 1 internal nodes, thus giving rise to d− 2 auxiliary vertices. Since
S has m vertices, S ′ has therefore m+

∑m−1
i=3 (i− 2)di = 2l + u− 1 vertices.

Furthermore note that the auxiliary vertices have to be embedded into T , but they do
not belong to S. This causes a special treatment (see Figures 4 and 5 for an illustration).
Consider two subtrees S1 and S2 of S ′ whose last common ancestor (in S ′) is an auxiliary
vertex, say w, and let v be the last common ancestor of w and its sibling in S ′ (which
exists, as auxiliary nodes only appear when dissolving vertices of arity 3 or more). Of
course, any vertex on the path from v to w may serve as auxiliary vertex instead of w.
But as w does not belong to S, its actual position is unimportant. Hence, for the sake of
not overcounting, the auxiliary vertices are always placed at the last possible position, see
Figure 5 for the local picture and Figure 4 for the global picture. This eventually yields a
factor z/(1−2zB(z)) for each binary auxiliary node. As there are 2l+u−m−1 auxiliary
nodes and m− l − u other binary nodes, this gives altogether

AS(z) =

(
z

1− 2zB(z)

)2l+u−m−1(
z

(1− 2zB(z))2

)m−l−u
·
(

2zB(z)

1− 2zB(z)

)u
(zB′(z))l

m−1∏
i=3

(Ci−1)di

=
2uzl+u−1B(z)u

(1− 2zB(z))m−1
(zB′(z))l

m−1∏
i=3

(Ci−1)di .

Using the identity zB′(z) = B(z)/(1− 2zB(z)), which holds for plane binary trees, yields
the desired result.

2Caveat : S′ has more vertices than S, and these must be embedded in a canonical, unique way. How
this can be achieved is discussed in the subsequent paragraphs.
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S:

· · · · · ·

B

B

B

B B

B

B B B B

B B B

B B

Figure 4: Sketch of the principle of embedding an arbitrary plane tree (plane binary
case). When embedded into a binary structure, the quarternary node is replaced by one
of the five possible plane binary trees, whereas the unary node and its child stay in their
position, of course. The last two cases, not shown here, are symmetric to the first and
second one.

Corollary 11. Let S be a rooted tree. The generating function of the sequence gBn(S),
which counts the number of good embeddings of S into all trees of the family Bn, is given
by

GS(z) = (1− 2zB(z))AS(z).

Proof. The corollary follows immediately, as the only difference in the case of good em-
beddings is that the root of S is always embedded in the root of the underlying tree.
Thus, we have to omit the path of left-or-right trees in the beginning. This corresponds
to a multiplication by the factor (1− 2zB(z)).
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auxiliary binary node

SL SR ASL ASR
z

1−2zBASLASR

Figure 5: Extension of the recursive construction of the generating function AS(z) shown
in Figure 3 if the auxiliary binary vertex occur. It is embedded according to the picture
above and depicted as a red square.

5 Asymptotics of the number of embeddings in Bn

In this section we will do a singularity analysis of the generating functions obtained in the
previous section in order to crank out the coefficient asymptotics. Then we will generalize
the result to embeddings of disconnected structures.

5.1 Asymptotics of aBn(S) and gBn(S)

Theorem 12. Consider a rooted tree S with dS = (l, u, d2, . . . , dm−1) being its degree
distribution sequence. Let C =

∏m−1
i=3 (Ci−1)di. The asymptotics of the number of all

embeddings of S into Bn is given by

aBn(S) ∼ C · 2 5−m−3l
2

Γ(m+l−1
2

)
· 2n · n

m+l−3
2

for n being odd and aBn(S) = 0 for n being even. The asymptotics of the number of good
embeddings of S into Bn is given by

gBn(S) ∼


C · 2 6−m−3l

2

Γ(m+l−2
2

)
· 2n · n

m+l−4
2 if m+ l − 2 > 0;

√
2 · 2n√
πn3

if m+ l − 2 = 0

for n being odd and gBn(S) = 0 for n being even.

Proof. Recall that aBn(S) = [zn]AS(z). The function AS(z) has two dominant singularities
at ρ0 = 1/2 and ρ1 = −1/2, coming from the function B(z) and from the zero in the
denominator of the expression for AS(z) given in (4). Expanding AS(z) into its Puiseux
series for z → ρ0 = 1/2 gives

AS(z) = C · 2
3−m−3l

2 ·
(

1− z

ρ0

)−m+l−1
2

(
1 +O

((
1− z

ρ0

) 1
2

))
.
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Note that m+ l− 1 > 1, since always l > 1 and m > 1. Expanding AS(z) into a Puiseux
series for z → ρ1 = −1/2 gives

AS(z) = −C · 2
3−m−3l

2 ·
(

1− z

ρ1

)−m+l−1
2

(
1 +O

((
1− z

ρ1

) 1
2

))
.

By Lemma 1 we get

[zn]AS(z) ∼ C · 2 3−m−3l
2

Γ(m+l−1
2

)
· (ρ0)−n · n

m+l−3
2 − C · 2 3−m−3l

2

Γ(m+l−1
2

)
· (ρ1)−n · n

m+l−3
2

=


C · 2 5−m−3l

2

Γ(m+l−1
2

)
· 2n · n

m+l−3
2 if n is odd,

0 if n is even.

The asymptotic analysis for the number of good embeddings is analogous. Again, gBn(S) =
[zn]GS(z) and GS(z) has two dominant singularities at 1/2 and −1/2. For m+ l− 2 > 0
we obtain

[zn]GS(z) ∼


C · 2 6−m−3l

2

Γ(m+l−2
2

)
· 2n · n

m+l−4
2 if n is odd,

0 if n is even.

The case m+ l − 2 = 0 needs to be treated separately. Note that then m = 1 and l = 1,
thus the structure S that we embed is a single vertex. Therefore the number of good
embeddings is just the cardinality of Bn, i.e. gBn(S) = C n−1

2
∼
√

2·2n√
πn3

. (Note also that for

S being a single vertex we have aBn(S) = nC n−1
2
∼
√

2·2n√
πn

.)

5.2 Embedding disconnected structures in Bn

Now, let us briefly discuss the case of embedding disconnected structures in Bn. Note
that in this case all the embeddings must be bad (the underlying structure T has only
one maximal element 1T ; as long as the induced structure is disconnected, we can be sure
that it does not contain the root 1T ).

Assume that S is a forest, i.e. a set of rooted trees S1, S2, . . . , Sr (r > 2) with
the degree distribution sequence dS = (l, u, d2, . . . , dm−1). The underlying structure T is
connected, thus S1, S2, . . . , Sr always have a common parent in T . Let σ = (σ1, σ2, . . . , σr)
be a permutation of the set {1, 2, . . . , r}. Define S(σ) to be a structure constructed as
shown in Figure 6 - we add an additional vertex 1S(σ) to S, which is a common parent
of S1, S2, . . . , Sr appearing in the order given by σ. Now, instead of counting the number
of embeddings of S into T we can simply count the numbers of good embeddings of S(σ)

in T for all permutations σ generating non-isomorphic structures S(σ) and sum them up.
Thus,

aBn(S) =
∑
σ∈Σ

gBn(S(σ)),
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where Σ is a set of permutations of {1, 2, . . . , r} such that whenever σ, τ ∈ Σ and
σ 6= τ then S(σ) and S(τ) are not isomorphic. Moreover, whenever τ is a permuta-
tion of {1, 2, . . . , r} and τ /∈ Σ then there exists σ ∈ Σ such that S(σ) and S(τ) are
isomorphic.

1S(σ)

vv || �� "" ((
Sσ1 Sσ2 · · · · · · Sσr

Figure 6: The structure of S(σ), σ = (σ1, σ2, . . . , σr).

Note that the asymptotics of gBn(S(σ)) is the same for all σ ∈ Σ since the degree distri-
bution sequence of S(σ) is the same for all σ ∈ Σ. It is given by dS(σ) = (d̃0, d̃1, . . . , d̃m−1) =
(l, u, . . . , dr−1, dr + 1, dr+1, . . . , dm−1). Therefore, by Theorem 12

aBn(S) ∼


m!

k1!k2! · · · k`!
C̃ · 2 6−m−3l

2

Γ(m+l−2
2

)
· 2n · n

m+l−4
2 if n is odd,

0 if n is even

where ` is the number of equivalence classes of the set {S1, S2, . . . , Sr} with respect to the
equivalence relation of being isomorphic and k1, k2, . . . , k` are the cardinalities of those
classes. Here C̃ =

∏m−1
i=3 (Ci−1)d̃i . (Note that here we do not consider the casem+l−2 = 0

from Theorem 12, because by r > 2 we always have m+ l − 2 > 0.)

6 Non-plane case - embeddings in Vn

6.1 Embedding rooted trees in Vn

In this subsection we explain how to take advantage of the results obtained for the plane
case in order to infer about the asymptotics of good and all embeddings of a rooted tree
S in the family of non-plane binary trees Vn.

Theorem 13. Consider a rooted tree S with dS = (l, u, d2, . . . , dm−1) being its degree
distribution sequence. The generating function AS(z) of the sequence aVn(S), counting
the number of all embeddings of S into the family Vn, is given by

AS(z) =

(
1

1− zV (z)

)m+l−1

zl+u−1 V (z)l+u CS (1 + o(1)), as z → ±ρ, (7)

where CS is a constant dependent on the structure of S, V (z) is the generating function of
the family of non-plane binary trees, cf. (3), and ρ ≈ 0.6346 is the radius of convergence
of V (z).
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Remark 14. It is well known that V (z) has two dominant singularities, ±ρ, a result going
back to Otter [39]. Note that the value for ρ stated above does not coincide with the one
reported in [16, Chapter VII], since we use different size functions: There the size of a tree
was defined as the number of internal nodes, while we count the total number of nodes.
This is the reason why in our model the coefficients vn = [zn]V (z) are zero for even n,
which yields a periodicity in the generating function that results in the presence of two
dominant singularities. However, the generating function N(z) of non-plane binary trees
where z solely marks the number of internal vertices can easily be connected with our
generating function V (z) via V (z) = zN(z2). Thus, with the result from [16] that

N(z) ∼ 1

σ
− a
√

1− z

σ
, as z → σ

with σ ≈ 0.4027 and a ≈ 2.8062, we immediately know that there are two dominant
singularities of V (z) = zN(z2) at z = ±

√
σ and we get

V (z) = zN(z2) ∼ ±
√
σ

(
1

σ
− a
√

2

√
1∓ z√

σ

)
, as z → ±

√
σ.

Finally, by setting ρ =
√
σ ≈ 0.6346 and b = a

√
2σ ≈ 2.5184 we obtain

V (z) ∼ ±
(

1

ρ
− b
√

1∓ z

ρ

)
, as z → ±ρ.

Proof. This time we introduce a bivariate generating function, where z still marks the
total number of vertices of a tree, while u is associated with classes of vertices. Two
vertices v, w are meant to belong to the same class whenever there exists an isomorphism
f : T → T such that f(v) = w. From [35] we have

V (z, u) = zu+
zu

2
(V (z, u)2 − V (z2, u2) + 2V (z2, u)). (8)

This can be seen from specifying V in a different way:

V = {•}+ {•} × Set2(V) + {•} ×∆(V × V).

Indeed, if the subtrees of the root are non-isomorphic, then we simply inherit the vertex
classes from the subtrees. Translating into generating function (see the set construction
presented in Section 2 and Equation (1)) gives the first two summands of (8). Otherwise,
the subtrees of the root are identical. This doubles the number of vertices, but each vertex
is in the same vertex class as its duplicate. This yields the term V (z2, u).

By Vu(z, u) we denote the derivative of V (z, u) with respect to u, i.e. Vu(z, u) = ∂V (z,u)
∂u

.
What we will need is Vu(z, 1). Differentiating Equation (8) with respect to u and plugging
u = 1 yields

Vu(z, 1) =
V (z)

1− zV (z)
. (9)
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Case 1: S is a Motzkin tree.
We proceed as in the plane case and start with recursively defining the generating

function AS(z) for the number of embeddings of S into the family Vn, when S is a
Motzkin tree. As in the plane case, we denote the single subtree attached to the root by
S̃ in case of a unary root and the two subtrees by SL and SR (arbitrarily chosen order)
in case of a binary root. We obtain

AS(z) =



Vu(z, 1) if S = •,
zV (z)

1− zV (z)
AS̃(z) if S = (•, S̃),

z

(1− zV (z))2
ASL(z)ASR(z) if S = (•, SL, SR) and SL 6∼= SR,

z

(1− zV (z))2

1

2
(ASL(z)2 + ASL(z2)) if S = (•, SL, SR) and SL ∼= SR.

The idea of setting up this recursive definition for AS(z) is similar to the plane case
with the following differences. In the first case, corresponding to embedding a single
node, we can mark an arbitrary vertex class, instead of an arbitrary vertex, since there
might be some non-trivial isomorphisms that would lead to multiple countings of the
same embedding. Furthermore, the paths of left-or-right trees from the previous section,
yielding a factor 1/(1 − 2zB(z)), are now replaced by paths of trees where we do not
distinguish between the left-or-right order, since we are in the non-plane setting. Thus,
these paths give a factor 1/(1− zV (z)). Finally, in the case when the Motzkin tree starts
with a binary root, we have to distinguish between the cases whether the two attached
trees are isomorphic or not. The non-isomorphic case works analogously to its plane
version, while in the isomorphic case we have to eliminate potential double-countings by
using the same idea as for Equation (3) (compare also with the multiset construction
presented in Section 2). We do not have to solve the recursion for AS(z) explicitly, since
we are solely interested in the asymptotic behaviour of its coefficients and it is easy to
see that asymptotically the contribution of the term ASL(z2) is negligible. Indeed, since
ρ < 1 the function AS(z2) is analytic at z = ρ. Thus, [zn]AS(z2) < (ρ + ε)−n, which is
exponentially smaller than Cρ−nnβ = [zn]AS(z).

Thus, by iterating we obtain

AS(z) ∼
(

z

(1− zV (z))2

)l−1

Vu(z, 1)l
(

zV (z)

1− zV (z)

)u(
1

2

)s
, as z → ρ,

where l denotes the number of leaves, u the number of unary nodes and s the number
of symmetry nodes in S (a symmetry node is a parent of two isomorphic subtrees). The
same expansion holds for z → −ρ.

Case 2: S contains vertices with more than two children.
In the general case where S is an arbitrary non-plane tree, i.e. a Pólya tree, we proceed

as in the previous section and consider the embeddings of all non-plane unary-binary trees
obtained by replacing d-ary nodes with d > 3 together with their children by binary trees
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with d leaves. Thus, again taking into account that there are m − l − u binary nodes
that were already there before the replacement (as binary or d-ary nodes with d > 3) and
2l + u−m− 1 auxiliary binary nodes that were introduced by the replacement, we get

AS(z) ∼
(

z

1− zV (z)

)2l+u−m−1(
z

(1− zV (z))2

)m−l−u
Vu(z, 1)l

(
zV (z)

1− zV (z)

)u
CS, (10)

as z → ρ,

and the analogous expansion for z → −ρ. The constant CS arises from the isomorphisms
and reads as

CS =
∑
t∈MS

s symmetry node of t

(
1

2

)s
, (11)

whereMS denotes the set of all non-plane unary-binary trees obtained from S by replacing
the d-ary nodes with non-plane binary trees with d leaves for d > 3.

Finally, substituting the expression given in (9) for Vu(z, 1) in Equation (10) yields
the desired result. Note that the asymptotic equivalence (10), or (7) respectively, is also
true for the case when S is a single node, i.e. l = 1 and u = s = 0.

Theorem 15. Consider a rooted tree S with dS = (l, u, d2, . . . , dm−1) being its degree
distribution sequence. The asymptotics of the number of all embeddings of S into Vn is
given by

aVn(S) ∼ 2CSb
−m−l+1ρ−m−l

Γ(m+l−1
2

)
· ρ−n · n

m+l−3
2

for n being odd and aVn(S) = 0 for n being even. The asymptotics of the number of good
embeddings of S into Vn is given by

gVn(S) ∼


2CSb

−m−l+2ρ−m−l+1

Γ(m+l−2
2

)
· ρ−n · n

m+l−4
2 if m+ l − 2 > 0

b√
π
· ρ−n · n−3/2 if m+ l − 2 = 0,

for n being odd and gVn(S) = 0 for n being even. Here b ≈ 2.5184, ρ ≈ 0.6346 and the
constant CS, given in (11), depends on the structure of S.

Proof. First, note that V (ρ) ∼ 1
ρ
, which was already outlined in Remark 14. Therefore,

the dominant part of the asymptotics of the coefficients of AS(z) comes from the factors
1/(1− zV (z)), which give

1

1− zV (z)
∼ 1

ρb
√

1− z
ρ

for z → ρ.

The result for aVn(S) follows immediately by use of Lemma 1. As in the plane case, the
generating function GS(z) for the good embeddings just differs from AS(z) by a factor
(1 − zV (z)) and thus, the asymptotic behaviour of its coefficients can be determined
analogously. Recall that m+ l− 2 = 0 represents the case where S is a single vertex. The
number of good embeddings is therefore just the cardinality of Vn (see Remark 14).
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6.2 Embedding disconnected structures in Vn

Now, let us comment on embedding disconnected structures in a non-plane case. Let S
be a forest, i.e. a set of rooted trees S1, S2, . . . , Sr, r > 2. Again, instead of counting all
embeddings of S into Vn, we can count the good embeddings of S̃ in Vn, where S̃ is a
forest S with an additional common parent that clips together all Si’s. Note that in the
non-plane case the order of Si’s does not matter, thus we simply have

aVn(S) = gVn(S̃).

7 Planted plane case - embeddings in Tn

In this section we extend the results from plane binary trees to planted plane trees, i.e.
to rooted trees where each internal node can have arbitrarily many child-nodes and the
order of the subtrees is important. The structures that we embed are as well planted plane
trees, and therefore every such a tree S is of the form S = (•, S1, . . . , Sk), where the Si’s
denote the subtrees that are attached to the root. We will present a lemma containing the
construction of the generating function AS(z) of all embeddings of the tree S in the family
Tn of planted plane trees of size n. But before doing so, we state another lemma that lists
all the building blocks of that construction together with their generating functions.

Lemma 16. The following constructions made from the class T are needed in the sequel:
The generating function associated with sequences of planted plane trees (plane forests),

denoted by Seq(T ), is z/(1− T (z)).
Let P denote the class of all paths of the following form: Take a path in the graph

theoretical sense (chain of vertices) as a spine and attach to each of its vertices a sequence
of planted plane trees left of the spine (left forest) and a sequence of planted plane trees
right of the spine (right forest). Then remove the last vertex, say v, of the spine, but keep
its edge as a separator between the left and the right forest attached to the parent node of
x. Then the generating function of P is

P (z) =
1− T (z)

1− 2T (z)
. (12)

The generating functions GS(z) and BS(z) associated with good and bad embeddings,
respectively, of S into T satisfy

GS(z) =
1− 2T (z)

1− T (z)
AS(z) and BS(z) =

T (z)

1− T (z)
AS(z). (13)

Proof. The first assertion was already presented in Section 2 and only listed for the sake
of completeness.

To prove the assertion on P , observe that P is built of segments made of the left forest,
the spine node and the right forest. So, we have actually a sequence of such segments.
Thus

P = Seq(Seq(T )× {•} × Seq(T )).
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Translating into generating functions gives

P (z) =
1

1− z
(1−T (z))2

=
1− T (z)

1− T (z)− z
1−T (z)

=
1− T (z)

1− 2T (z)
,

where we used the functional equation T (z) = z/(1− T (z)) in the last step.
A general embedding can be seen as a path of type P from the root of T to the

embedded root of S, call it v, and the subtree rooted at v. This subtree can in turn be
interpreted as a new tree with a good embedding of S. Thus AS(z) = P (z)GS(z), as
desired. Finally, BS(z) = AS(z)−GS(z).

Lemma 17. The generating function AS(z) of all embeddings of S = (•, S1, . . . , Sk) into
the family Tn of planted plane trees of size n can be recursively specified as

AS(z) =



zT ′(z) =
T (z)(1− T (z))

1− 2T (z)
if k = 0,

T (z)

1− 2T (z)
AS1(z) if k = 1,

T (z)2

(1− 2T (z))2(1− T (z))
AS1(z)AS2(z) if k = 2,

T (z)

(1− 2T (z))2

(
1− 2T (z)

1− T (z)
AS1(z)AS2,k

(z)

+
T (z)(1− 2T (z))

(1− T (z))2
AS1,k−1

(z)ASk(z)

+

(
1− 2T (z)

1− T (z)

)2 (
AS1,2(z)AS3,k

(z) + · · ·+ AS1,k−2
(z)ASk−1,k

(z)
))

if k > 2,

(14)

where T (z) denotes the generating function of the family of planted plane trees and Si,j
denotes the tree Si,j = (•, Si, . . . , Sj) that consists of a root to which the j− i+ 1 subtrees
Si, . . . , Sj are attached (in that order).

Proof. The case k = 0 is equivalent to the binary cases, and corresponds to marking
an arbitrary node in the tree T . Differentiating both sides of the specification T (z) =
z/(1 − T (z)) of planted plane trees with respect to z and solving for T ′(z) yields the
equality

zT ′(z) =
z

1− 2T (z)
=
T (z)(1− T (z))

1− 2T (z)
.

In the case k = 1 we have to embed the root of S at some node v and then its
single subtree S1 into one of the subtrees attached to v in T . Figure 7 visualizes such an
embedding. The generating function of this particular subtree is AS1(z). To the left and
to the right of this subtree we have a sequence of planted plane trees dangling from v.
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S1

P
v
Seq(T )

AS1

Figure 7: Sketch of the principle of embedding a plane tree S = (•, S1) into the family of
planted plane trees (case k = 1).

From the root to v there is a path of type P , the class presented in Lemma 16. Altogether,
this gives

AS(z) = P (z)
z

(1− T (z))2
AS1(z).

From z = T (z)(1− T (z)) and (12) we get the expression listed in (14) after all.
The obvious generalization to the case k = 2 is as follows: Embed the root of S into

a vertex v of T . When embedding S1 and S2, there will be a last common ancestor of the
roots of S1 and S2 until which the paths to the two subpatterns coincide and split into
two paths afterwards. Call this “splitting node” w. Then we have paths of type P from
the root (of T ) to v and from v to w, together contributing a factor P (z)2. Moreover, v
and w themselves contribute each a factor z and there is again a left forest and a right
forest dangling from v and likewise from w. At the splitting node, we have a left forest, a
middle forest and a right forest, separated by the two subtrees carrying the embeddings
of S1 and S2. Altogether, we obtain

AS(z) = P (z)2 z2

(1− T )5
AS1AS2 (15)

which simplifies to the expression listed in (14). Figure 8 visualizes the described approach.
The disadvantage of this approach is that in the general case the subtrees of the

splitting node may contain embeddings of more than one subtree of S, and we would have
to distinguish all cases induced by the possible partitions of the subtrees of S into the
subtrees of the splitting node. Hence, let us offer a second approach to the case k = 2 by
decomposing the structure in another way, which allows for easy generalization: We leave
the two paths of type P , the two forests dangling from v and the left forest dangling from
w as in the above construction. But then we decompose what remains into the subtree
containing the embedding of S1 (blue tree in Figure 9) and the remaining structure (green
tree in Figure 9). This remaining structure, which consists actually of the splitting node,
the middle and the right forest and the subtree with the embedding of S2 in the former
decomposition, is a tree rooted at w and containing the embedding of S2. Therefore it is
in fact a tree with a bad embedding of S2. Indeed, the root of S2 cannot be embedded at
the splitting node, as then we would have chosen the parent of w as splitting node. With
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S1 S2

Pv

Seq(T ) splitting node w

AS1 AS2

Figure 8: Sketch of the principle of embedding a plane tree S = (•, S1, S2) into the family
of planted plane trees (case k = 2, first approach).

this we get

AS(z) = P (z)2 z

(1− T )3
AS1BS2 = P (z)2 z

(1− T )3

T (z)

(1− T (z))
AS1AS2 ,

which is of course the same as (15).
Now, let us continue with the proof of the recurrence for the case k > 2. In order

to do so let us look at Figure 10 that visualizes how an embedding of a tree S in a tree
T can be constructed. Again we keep everything up to the splitting node, namely the
two paths of type P , the node v where the root of S is embedded, the left and right
forests attached to v and the left forest attached to the splitting node, altogether yielding
P (z)2z/(1−T (z))3 = T (z)/(1−2T (z))2 as a universal factor for all the subcases discussed
below.

As before, we call the subtree that is attached to the splitting and contains the em-
bedding of S1 the “blue subtree” and the remaining structure the “green subtree”, which
is a tree rooted at w. Note that the blue subtree may also contain embeddings of fur-
ther subtrees of S. If it also contains an embedding of Si, then planarity implies that
S2, . . . Si−1 are embedded into the blue subtree as well. Therefore we have the following
cases:

• Solely S1 is embedded in the blue subtree. Then the green subtree contains the
embeddings of S2, . . . , Sk, which is equivalent to embed S2,k = (•, S2, . . . , Sk), as
long as the root of S2,k is embedded into the splitting node in order to prevent
multiple counting. So, in this case the blue subtree is a tree that contains any
(good or bad) embedding of S1, giving a factor AS1(z), while the green subtree
can only contain a good embedding of S2,k, contributing a factor 1−2T (z)

1−T (z)
AS2,k

(z) by
Lemma 16.
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S1 S2

Pv

Seq(T ) w

AS1

BS2

Figure 9: Sketch of the principle of embedding a plane tree S = (•, S1, S2) into the family
of planted plane trees (case k = 2, second approach).

S1 S2 Sk

v

w

AS1

GS2,k

v

w

GS1,k−1

BSk

v

w

GS1,i

GSi+1,k

Figure 10: Sketch of the principle of embedding a plane tree S = (•, S1, . . . , Sk) (for
k > 2) into the family of planted plane trees. We distinguish three sub-cases: (left)
solely S1 is embedded in the blue subtree, (middle) solely Sk is embedded in the green
subtree, (right) neither the blue nor the green subtree contain embeddings of only one of
the subtrees S1, . . . , Sk.
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• Solely Sk is embedded in the green subtree. Here we count the good embeddings of
S1,k−1 in the blue subtree, as this is necessary for all cases where we consider more
than just one of the Si’s to be embedded in the same subtree. However, in this case
we have to count only the bad embeddings of Sk in the green subtree, since no node of
S (except the root of S) can be embedded into the splitting node (compare with the
case k = 2 above). Altogether this yields the factor 1−2T (z)

1−T (z)
T (z)

1−T (z)
AS1,k−1

(z)ASk(z).

• Neither the blue nor the green subtree contain embeddings of only one of the sub-
trees S1, . . . , Sk. Then we face a good embedding of S1,i into the blue subtree
and a good embedding of Si+1,k into the green subtree, yielding together a factor(

1−2T (z)
1−T (z)

)2

AS1,i
(z)ASi+1,k

(z).

Together with the universal factor from above we get the desired coefficients.

Remark 18. Note that for the cases k = 0, 1, 2 the generating function AS(z) of all
embeddings of S = (•, S1, . . . , Sk) into the family Tn of planted planes trees of size n
given in (14) is of the form fk(T ) · AS1(z) · · ·ASk(z), where fk(T ) is a function that
depends only on T (z) and on the size k of S, but not on the specific shape of S. We want
to emphasize that, by digging into the structure of S and by recursive application of the
formulas given in (14), it follows that AS(z) is in fact of the form

AS(z) = f(T ) · AS1(z) · · ·ASk(z),

for arbitrary S = (•, S1, . . . , Sk).

Now, we are in the position to obtain the asymptotic number of all and good embed-
dings of a given plane tree S in the family of planted plane trees.

Theorem 19. Consider a rooted tree S of size m with degree distribution sequence
dS = (l, d1, d2, . . . , dm−1). Let C =

∏m−1
i=1 (Ci−1)di. The asymptotics of the number of

all embeddings of S into Tn is given by

aTn(S) ∼
C · (1

2
)m+l

Γ(m+l−1
2

)
· 4n · n

m+l−3
2 .

The asymptotics of the number of good embeddings of S into Tn is given by

gTn(S) ∼
2C · (1

2
)m+l

Γ(m+l−2
2

)
· 4n · n

m+l−4
2 .

Proof. Triggered by the observation in Remark 18, let us set

f1(z) =
1

2(1− 2T (z))
, and fk(z) =

AS(z)∏k
i=1ASi(z)

for k > 1. (16)

Then (14) immediately gives f2(z) = T (z)2/((1− 2T (z))2(1− T (z))).
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Next, consider the last equation of (14) (the case k > 3) and observe that all generating
functions on the right-hand side which are associated with a composite structure are of the
form ASi,j(z), where the root of Si,j has degree at least two. Thus, dividing the equation
by
∏k

i=1 ASi(z) (and cancelling out all single ASj(z)) yields only quotients which can be
readily turned into f`(z) with suitable choices of `, because the case ` = 1 does not appear
here. A straight-forward simplification then gives

fk(z) =
T (z)

(1− T (z))2

k−1∑
j=1

fj(z)fk−j(z) for k > 3. (17)

Both sides of this equation tend to infinity, as z → 1/4, and we need their singular
behaviour for our analysis of AS(z). Hence, we set gk(z) = (1 − 2T (z))kfk(z) for k > 1.
Plugging this into (17) we observe that gk(z) satisfies the same recurrence as fk(z), but
with the initial values g1(z) = 1/2 and g2(z) = T (z)2/(1 − T (z)). As T (1/4) = 1/2, the
functions gk(z) are finite at z = 1/4. By evaluating the recurrence at z = 1/4 and setting
hk := 2gk(1/4), we get a recurrence for hk, which is in fact already valid for k > 2:

h1 = 1 and hk =
k−1∑
j=1

hjhk−j for k > 2.

This is exactly the recurrence for the Catalan numbers, and thus, hk = Ck−1.
Hence, for z → 1/4 and k > 2 we have

fk(z) ∼ 1

2
Ck−1(1− 4z)−k/2,

which implies that as z → 1/4 we have

AS(z) ∼ Ck−1

2
(1− 4z)−k/2AS1(z) · · ·ASk(z) =

(
m−1∏
i=1

(
Ci−1

2
(1− 4z)−i/2

)di)
(A•(z))l ,

where S = (•, S1, . . . , Sk), di denotes the number of nodes with out-degree i, l denotes
the number of leaves, i.e. l = d0, and the equation follows from recursively going into the
subtrees S1, . . . , Sk and using (16) until one encounters a leaf of S. Then each leaf yields
a factor A•(z). Using the equality A•(z) = zT ′(z) ∼ 1

2
(1 − 4z)−1/2, which follows from

(14) and the singular expansion of T (z), we get for z → 1
4

AS(z) ∼

(
m−1∏
i=1

(
Ci−1

2

)di)
(1− 4z)−(l+

∑m−1
i=1 idi)/2

(
1

4

)l
. (18)

Note that
∑m−1

i=1 idi = m − 1, since every vertex with out-degree i is counted exactly i
times and thus, we simply obtain the total number of nodes with in-degree greater than
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zero (i.e. all nodes except for the root). We also have
∑m−1

i=1 di = m− l thus (recall that
C =

∏m−1
i=1 (Ci−1)di) (

1

4

)l
·
m−1∏
i=1

(
Ci−1

2

)di
= C

(
1

2

)m+l

.

Finally, Lemma 1 gives

aTn(S) ∼
C · (1

2
)m+l

Γ(m+l−1
2

)
· 4n · n

m+l−3
2 .

The generating function of the number of good embeddings can be derived from the
generating function AS(z) by multiplication by the factor 1−2T (z)

1−T (z)
. This factor is respon-

sible for getting rid of the path of trees which could appear above embedded root of S
when we were considering all embeddings. Thus we have GS(z) = 1−2T (z)

1−T (z)
AS(z). Noticing

that

1− 2T (z)

1− T (z)
= 2

√
1− 4z

1 +
√

1− 4z
,

using (18) and applying Lemma 1 yields the desired result.

8 Asymptotics and monotonicity of the ratio gF(S)/aF(S)

Kubicki et al. [29] proved that if T is a complete balanced binary tree of arbitrary size
and S1, S2 are rooted trees in which each node has at most 2 descendants (i.e. S1 and
S2 are Motzkin trees) and S1 ⊆ S2, then gT (S1)

aT (S1)
6 gT (S2)

aT (S2)
. (From now on this property

will be interchangeably called “the ratio gT (S)
aT (S)

being weakly increasing with S”.) They
also conjectured that the inequality remains true for any rooted trees S1 and S2. One
year later in [30] they also stated an asymptotic result for the ratio gT (S)

aT (S)
when S is

an arbitrary rooted tree and T a complete binary tree of size n. They showed that
limn→∞

gT (S)
aT (S)

= 2l−1 − 1 where l is the number of leaves in S. Thereby they proved that
for any rooted tree S the asymptotic ratio gT (S)

aT (S)
is non-decreasing with S (the function

2l−1 − 1 increases with l and if S1 ⊆ S2 then the number of leaves of S2 equals at least
the number of leaves of S1).

The conjecture from [29] was disproved by Georgiou [22] who chose specific ternary
trees as embedded structures to construct a counterexample. He also generalized the un-
derlying structure to a complete k-ary tree and considered strict-order preserving maps
instead of embeddings. In this setting he proved that a correlation inequality (correspond-
ing to gTn (S1)

aTn (S1)
6 gTn (S2)

aTn (S2)
) already holds for S1, S2 being arbitrary rooted trees such that

S1 ⊆ S2.
Referring to the asymptotic result from [30], we show that in our case the asymptotic

ratios
√
n gBn (S)

aBn (S)
,
√
n gTn (S)

aTn (S)
and

√
n gVn (S)

aVn (S)
are all weakly increasing with S for S being an

arbitrary rooted tree. Using this asymptotic result we show later that also the ratios
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gBn (S)

aBn (S)
, gTn (S)

aTn (S)
and gVn (S)

aVn (S)
(unlike in the case from [29]) are eventually weakly increasing

with S for sufficiently large n.
We start with the asymptotics of the ratio of the number of good to the number of all

embeddings of S into any considered family.

Corollary 20. Consider a rooted tree S with dS = (l, u, d2, . . . , dm−1) being its degree
distribution sequence. Let k = m+l−2

2
and let Fn denote any of the families Bn, Vn, Tn.

The asymptotic ratio of the number of good embeddings of S into Fn to the number of all
embeddings into Fn is given by

gFn(S)

aFn(S)
∼


Γ(k + 1/2)

Γ(k)

cFn√
n

if k > 0,

1/n if k = 0,

where
cBn =

√
2, cVn = bρ and cTn = 2

(b and ρ are as in Theorem 15). For the families Bn and Vn we consider only n’s being
odd.

Proof. For Bn, Vn and Tn the corollary follows immediately from Theorems 12, 15 and
19, respectively.

Theorem 21. Let S1, S2 be rooted trees such that S1 ⊆ S2 and let Fn denote any of the
families Bn, Vn, Tn. Then

lim
n→∞

√
n
gFn(S1)

aFn(S1)
6 lim

n→∞

√
n
gFn(S2)

aFn(S2)
.

Proof. Let dS1 = (l1, u1, . . .), dS2 = (l2, u2, . . .), k1 = m1+l1−2
2

, k2 = m2+l2−2
2

(where mi

denotes the size of Si) and k1 > 0 (the case when k1 = 0 is trivial). By Corollary 20 we
have

lim
n→∞

√
n
gBn(S1)

aBn(S1)
=
cFn · Γ(k1 + 1/2)

Γ(k1)
and lim

n→∞

√
n
gBn(S2)

aBn(S2)
=
cFn · Γ(k2 + 1/2)

Γ(k2)
,

where
cBn =

√
2, cVn = bρ and cTn = 2.

Note that the values k1, k1 + 1/2, k2 and k2 + 1/2 all belong to the set {1
2
, 1, 3

2
, 2, 5

2
, . . .}.

First, we are going to show that the function f(k) = Γ(k+1/2)
Γ(k)

is increasing in k for
k ∈ {1

2
, 1, 3

2
, 2, 5

2
, . . .}. Indeed, applying twice Gautschi’s inequality (Lemma 3) we get for

k > 1/2
f(k + 1/2)

f(k)
=

Γ(k + 1)

Γ(k + 1/2)

Γ(k)

Γ(k + 1/2)
> k1/2(k + 1/2)1/2.

Thus, for k >
√

17−1
4
≈ 0.78, we obtain f(k+1/2)

f(k)
> 1. For k = 1/2 we also have

f(k+1/2)
f(k)

= π
2
> 1.
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Now, it suffices to show that whenever S1 ⊆ S2, then k1 6 k2 (equivalently m1 + l1 6
m2 +l2). Of course, m1 6 m2. Next, observe that if S1 ⊆ S2, then also l1 6 l2. Indeed, the
number of leaves in a tree is the cardinality of its largest antichain. If S1 has l1 leaves and
S1 ⊆ S2, then S2 needs to contain an antichain of cardinality l1 as a subposet, which means
that its number of leaves has to satisfy l2 > l1. Together we get m1 + l1 6 m2 + l2.

Theorem 22. Let S1, S2 be rooted trees such that S1 ⊆ S2 and let Fn denote any of the
families Bn, Vn, Tn. Then for sufficiently large n

gFn(S1)

aFn(S1)
6
gFn(S2)

aFn(S2)
.

Proof. Let dS1 = (l1, u1, . . .), dS2 = (l2, u2, . . .), k1 = m1+l1−2
2

, k2 = m2+l2−2
2

. Aim-
ing for a contradiction, assume that S1 ⊆ S2 and that there is an increasing sequence
n0 < n1 < n2 < · · · such that gFn (S1)

aFn (S1)
>

gFn (S2)

aFn (S2)
for all n ∈ {ni | i ∈ N}. Then by

Theorem 21

lim
n→∞

√
n
gFn(S1)

aFn(S1)
= lim

n→∞

√
n
gFn(S2)

aFn(S2)
=
cFn · Γ(k1 + 1/2)

Γ(k1)
=
cFn · Γ(k2 + 1/2)

Γ(k2)
,

where
cBn =

√
2, cVn = bρ and cTn = 2.

Recall that the function f(k) = Γ(k+1/2)
Γ(k)

is increasing in k for k ∈ {1
2
, 1, 3

2
, 2, 5

2
, . . .} thus

the above equality implies k1 = k2, or equivalently m1 + l1 = m2 + l2. By S1 ⊆ S2 we have
l1 6 l2 and m1 6 m2 (see the proof of Theorem 21), therefore we get l1 = l2 and m1 = m2.
Thus S1 and S2 are isomorphic and gFn (S1)

aFn (S1)
=

gFn (S2)

aFn (S2)
which is a contradiction.

9 Discussion

We proved that the ratio of the number of good embeddings to the number of all embed-
dings of a given tree S = (•, S1, . . . , Sk) into the families of trees Bn,Vn, Tn is asymptoti-
cally of the same order for all the three considered families of trees, namely plane binary
trees, non-plane binary trees and planted plane trees. Thereby we extended the results of
Kubicki et al. [29, 30] and Georgiou [22]. We expect that this result will also hold for the
family of Pólya trees, which are the closest counterpart to posets that admit a (rooted)
tree-like shape, i.e. they have a single maximal element and each interval between two
of their elements is a chain. In principle, the approach that we used within this paper
works for embeddings into the family of Pólya trees as well. However, one would have
to consider all possible partitions of S1, . . . , Sk, as any collection of isomorphic subtrees
within S1, . . . , Sk admits non-trivial isomorphisms between the Si’s, which can get rather
involved and is therefore omitted in this work.
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