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Abstract

We investigate the shellability of the polyhedral join Z∗M (K,L) of simplicial
complexes K,M and a subcomplex L ⊂ K. We give sufficient conditions and
necessary conditions on (K,L) for Z∗M (K,L) being shellable. In particular, we
show that for some pairs (K,L), Z∗M (K,L) becomes shellable regardless of whether
M is shellable or not. Polyhedral joins can be applied to graph theory as the
independence complex of a certain generalized version of lexicographic products of
graphs which we define in this paper. The graph obtained from two graphs G,H
by attaching one copy of H to each vertex of G is a special case of this generalized
lexicographic product and we give a result on the shellability of the independence
complex of this graph by applying the above results.

Mathematics Subject Classifications: 05E45, 05C76

1 Introduction

A finite simple graph G is a pair G = (V (G), E(G)) of a finite set V (G) and a set
E(G) ⊂ {e ⊂ V (G) | |e| = 2}. We drop adjectives “finite simple” and call G a graph.
v ∈ V (G) is called a vertex of G and e ∈ E(G) is called an edge of G. The independence
complex of G is an abstract simplicial complex I(G) defined by

I(G) = {σ ⊂ V (G) | {u, v} /∈ E(G) for any u, v ∈ σ }.

A simplex of I(G) is called an independent set of G.
A simplicial complex K is shellable if its facets can be arranged in a linear order

F1, F2, . . . , Ft (which we call a shelling) in such a way that the subcomplex
(⋃k−1

i=1 〈Fi〉
)
∩
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〈Fk〉 is pure and (dimFk − 1)-dimensional for all k = 2, . . . , t. (Note that this is “non-
pure” shellability defined by Björner and Wachs [3, 4].) A graph is called shellable if
its independence complex is shellable. The shellability (including vertex decomposability,
which is one of the sufficient conditions for a graph being shellable) of graphs has been
studied by many researchers, such as [6, 8, 9, 11]. In this paper, we focus on the following
result by Hibi, Higashitani, Kimura, and O’Keefe [6]. Here, a graph G is called well-
covered if every maximal independent set of G has the same cardinality.

Theorem 1 (Based on Hibi, Higashitani, Kimura, and O’Keefe [6, Theorem 1.1]). Let G
be a graph on a vertex set V (G) = {u1, . . . , un}. Let k1, . . . , kn > 2 be integers. Then the
graph G′ obtained from G by attaching the complete graph Kki to ui for i = 1, . . . , n is
well-covered and shellable.

Motivated by Theorem 1, we consider the graph G[H; {v0}] defined as follows. Let G,
H be graphs and v0 be a vertex of H. Define G[H; {v0}] as the graph obtained from

Gt
(⊔

u∈V (G) Hu

)
, where Hu is a copy of H, by identifying u ∈ G with v0 ∈ Hu. Theorem

1 implies that if H is a complete graph, then G[H; {v0}] is well-covered and shellable for
any graph G.

In this paper, we obtain a necessary and sufficient condition on H and v0 for G[H; {v0}]
being well-covered and shellable for any graph G.

Theorem 2. Let H be a graph and v0 be a vertex of H. Then the following two conditions
are equivalent.

(1) For any graph G, G[H; {v0}] is well-covered and shellable.

(2) H is well-covered, both H and H\{v0} are shellable, and for any maximal independent
set τ of H \ {v0}, there exists v ∈ τ such that {v0, v} ∈ E(H).

In order to prove Theorem 2, we need to investigate the independence complex of
G[H; {v0}]. With I(G) and I(H), the independence complex I(G[H; {v0}]) is described
as a polyhedral join. Polyhedral join is a construction of simplicial complexes introduced
by Ayzenberg [1, Definition 4.2, Observation 4.3]. It is similar to polyhedral product
ZK(X,A), a well-known construction of spaces, where K is a simplicial complex and
(X,A) = {(Xu, Au)}u∈V (K) is a family of pairs of spaces. The definition of polyhedral
joins is obtained from the definition of polyhedral products by replacing “pairs of spaces”
and “product of spaces” with “pairs of simplicial complex and its subcomplex” and “join of
simplicial complexes”, respectively. Polyhedral joins appear in previous studies, including
when they are called by other names. Bahri, Bendersky, Cohen, and Gitler [2, Definition
2.1] defined a simplicial complex K(J) for a simplicial complex K on V (K) = {1, . . . , n}
and a tuple J = (j1, . . . , jn) of positive integers. Using our notation of polyhedral joins,
K(J) is denoted by

Z∗K(∆J−1, ∂∆J−1), where (∆J−1, ∂∆J−1) = {(∆ji−1, ∂∆ji−1)}i∈{1,...,n}.
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Here, ∆d is the d-simplex and ∂∆d is its boundary. They obtained the decomposition of
polyhedral products, more precisely, moment-angle complexes, denoted by

ZK(D2, S1) = ZZ∗K(∆1,∂∆1)(D
1, S0).

We note that the above observation is mentioned by Vidaurre [10], who investigated the
polyhedral products over polyhedral joins. Another example is (j1, . . . , jn)-expansion of
K, which is introduced by Moradi and Khosh-Ahang [7, Definition 2.1]. It is denoted by

Z∗K(ptJ , {∅}), where (ptJ , {∅}) =
{(⊔

ji
pt, {∅}

)}
i∈{1,...,n}

.

They studied the shellability and vertex decomposability of expansions. We generalize
one of their results [7, Theorem 2.12].

This paper is organized as follows. In Section 2, we define terminologies and notations
on simplicial complexes and state some basic properties of shellable simplicial complexes.
Section 3 provides the definition of polyhedral joins and the explicit description of sim-
plices and facets of polyhedral joins. Section 4 is the main part of this paper. Here we
obtain two necessary conditions and two sufficient conditions for polyhedral joins being
shellable, giving counterexamples of converse propositions. Note that some of the results
are not relevant to Theorem 2. Finally, in Section 5, we apply the results obtained in
Section 4 to the independence complexes of graphs and prove Theorem 2.

2 Preliminaries

In the following, for a positive integer m, we set [m] = {1, 2, . . . ,m}.
An abstract simplicial complex K is a collection of finite subsets of a given set V (K)

such that if σ ∈ K and τ ⊂ σ, then τ ∈ K. In this paper, we drop the adjective “abstract”.
An element of K is called a simplex of K. An element of V (K) is called a vertex of K.
We suppose that {v} ∈ K for any v ∈ V (K). We set dimK = maxσ∈K |σ| − 1, where |σ|
is the cardinality of σ ⊂ V (K). If dimK = d, then K is called d-dimensional. A maximal
simplex with respect to the inclusion is called a facet of K. K is called pure if every facet
of K has the same cardinality.

L ⊂ K is called a subcomplex of K if L is a simplicial complex. In this paper, we
call (K,L) a pair of simplicial complexes if K is a simplicial complex and L ⊂ K is a
subcomplex of K. For a vertex v ∈ V (K) of K, we define a subcomplex dlK(v) of K by

dlK(v) = {σ ∈ K | v /∈ σ}.

Let {Ki}i∈[m] be a family of simplicial complexes. We define a simplicial complex
K1 ∗ · · · ∗Km, which we call the join of K1, K2, . . ., and Km, by

K1 ∗ · · · ∗Km =

σ ⊂ ⊔
i∈[m]

V (Ki)

∣∣∣∣∣∣ σ ∩ V (Ki) ∈ Ki for any i ∈ [m]

 .
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Let V be a finite set and F1, . . . , Ft ⊂ V be a collection of subsets of V such that
Fi * Fj for any i 6= j. Define a simplicial complex 〈F1, . . . , Ft〉 on V by

〈F1, . . . , Ft〉 = {σ ⊂ V | σ ⊂ Fi for some i ∈ [t]}.

As defined in Section 1, a simplicial complex K is shellable if its facets can be arranged
in a linear order F1, F2, . . . , Ft (which we call a shelling) in such a way that the subcomplex(⋃k−1

i=1 〈Fi〉
)
∩〈Fk〉 is pure and (dimFk−1)-dimensional for all k = 2, . . . , t. Here we state

some of the properties of shellable simplicial complexes without proofs.

Lemma 3 (Based on [3, Lemma 2.3]). Let K be a simplicial complex. An order F1, F2, . . . ,
Ft of the facets of K is a shelling if and only if for every i, k with 1 6 i < k 6 t, there
exists an index j with 1 6 j < k and a vertex x ∈ Fk \ Fi such that Fj ∩ Fk = Fk \ {x}.
Lemma 4 (Based on [3, Lemma 2.6]). Let K be a shellable simplicial complex. Then
there exists a shelling F1, F2, . . . , Ft such that |Fi| > |Fj| for any 1 6 i < j 6 t.

Lemma 5 ([4, Remark 10.22]). The join of two simplicial complexes is shellable if and
only if each of the simplicial complex is shellable.

For a simplicial complex X, we denote the set of all facets of X by FX . Note that for
a pair (K,L) of simplicial complexes, we have

FK \ FL = {σ ∈ FK | σ /∈ L} ,
FL \ FK = {τ ∈ FL | there exists σ ∈ FK \ FL such that τ ( σ} ,
FK ∩ FL = {σ ∈ FK | σ ∈ L} .

3 Facets of Polyhedral Joins

The main subject of this paper is polyhedral join. It is a construction of simplicial com-
plexes, which is based on the definition by Ayzenberg [1, Definition 4.2, Observation
4.3].

Definition 6. Let M be a simplicial complex on [m] and (K,L) = {(Ki, Li)}i∈[m] be
a family of pairs of simplicial complexes. For a simplex S ∈ M , we define a simplicial
complex (K,L)∗S by

(K,L)∗S = X1 ∗X2 ∗ · · · ∗Xm, Xi =

{
Ki (i ∈ S),

Li (i /∈ S).

(K,L)∗S is a subcomplex of K1 ∗ · · · ∗Km.
Z∗M(K,L) is a subcomplex of K1 ∗ · · · ∗Km defined by

Z∗M(K,L) =
⋃
S∈M

(K,L)∗S

(union is taken in K1 ∗ · · · ∗Km).
Let (K,L) be a pair of simplicial complexes. If Ki = K,Li = L for any i ∈ [m], we

write Z∗M(K,L) instead of Z∗M(K,L).
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We give an explicit description of simplices and facets of Z∗M(K,L).

Proposition 7. Let M be a simplicial complex on [m] and (K,L) = {(Ki, Li)}i∈[m] be a
family of pairs of simplicial complexes. For φ ⊂

⊔
i∈[m] V (Ki), we set

φi = φ ∩ V (Ki) (i ∈ [m]),

φ = {i ∈ [m] | φi /∈ Li}.

Then φ ∈ Z∗M(K,L) if and only if φi ∈ Ki for any i ∈ [m] and φ ∈M .

Proof. Let φ ∈ Z∗M(K,L). Then φ is a simplex of φ ∈ (K,L)∗S for some S ∈ M . So, by
the definition of the join, we have

• φ ∩ V (Ki) = φi ∈ Ki for any i ∈ S,

• φ ∩ V (Ki) = φi ∈ Li ⊂ Ki for any i /∈ S.

It follows that φi ∈ Ki for any i ∈ [m] and that φ ⊂ S. Since M is a simplicial complex
and S ∈M , we have φ ∈M .

Conversely, let φ ⊂
⊔
i∈[m] V (Ki) be a set such that φi ∈ Ki for any i ∈ [m] and φ ∈M .

By the definition of φ, i /∈ φ implies φi ∈ Li. So, we have φ ∈ (K,L)∗φ ⊂ Z∗M(K,L).

Proposition 8. Let M be a simplicial complex on [m] and (K,L) = {(Ki, Li)}i∈[m] be a
family of pairs of simplicial complexes. Then φ ⊂

⊔
i∈[m] V (Ki) is a facet of Z∗M(K,L) if

and only if

• φi ∈ FKi
∪ FLi

for any i ∈ [m],

• φ ∈M , and

• φ ∪ {i} /∈M for any i ∈ [m] such that φi ∈ FLi
\ FKi

.

Proof. Let φ be a facet of Z∗M(K,L). For k ∈ [m] and σ ∈ Kk, define φ(k,σ) ⊂
⊔
i∈[m] V (Ki)

by

φ
(k,σ)
i =

{
φi (i 6= k)

σ (i = k).

First, assume that there exists σ ∈ Kk such that φk ( σ for some k ∈ φ. We have
σ /∈ Lk since σ ⊃ φk /∈ Lk. Therefore, we get φ(k,σ) = φ ∈ M . So, φ(k,σ) is a simplex of
Z∗M(K,L) which satisfies φ(k,σ) ) φ, a contradiction. Thus, φk is a facet of Kk.

Second, assume that there exists τ ∈ Lk such that φk ( τ for some k /∈ φ. Since
φk, τ ∈ Lk, we get φ(k,τ) = φ ∈ M . So, φ(k,τ) is a simplex of Z∗M(K,L) which satisfies
φ(k,τ) ) φ, a contradiction. Thus, φk is a facet of Lk.

Finally, assume that there exists j ∈ [m] such that φj ∈ FLj
\ FKj

and φ ∪ {j} ∈ M .
Then there must be ρ ∈ Kj \ Lj such that φj ( ρ since φj is a facet of Lj and is not a
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facet of Kj. We get that φ(j,ρ) is a simplex of Z∗M(K,L) since φ(j,ρ) = φ ∪ {j} ∈M . This
is a contradiction to the maximality of φ. By the above three arguments, we conclude
that a facet φ of Z∗M(K,L) satisfies three conditions in the proposition.

Conversely, suppose that φ ⊂
⊔
i∈[m] V (Ki) satisfies three conditions in the proposition.

Since φi ∈ FKi
∪ FLi

⊂ Ki for any i ∈ [m] and φ ∈ M , φ is a simplex of Z∗M(K,L). We
assume that there exists ψ ∈ Z∗M(K,L) such that φ ( ψ and deduce a contradiction.
There must exists k ∈ [m] such that φk ( ψk. This means that φk is not a facet of Kk,
which implies φk ∈ FLk

\ FKk
. It follows that k ∈ ψ since φk ( ψk and φk is a facet

of Lk. Thus, we get φ ∪ {k} ⊂ ψ ∈ M , which contradicts to the third condition in the
proposition. Therefore, φ is a facet of Z∗M(K,L).

Remark 9. If FLi
⊂ FKi

for any i ∈ [m], then by Proposition 8, φ ⊂
⊔
i∈[m] V (Ki) is a

facet of Z∗M(K,L) if and only if φi ∈ FKi
for any i ∈ [m] and φ ∈M .

Before investigating the shellability of Z∗M(K,L), we show a necessary and sufficient
condition for Z∗M(K,L) being pure.

Theorem 10. Let M 6= {∅} be a simplicial complex which is not a simplex and K ) L
be a pair of simplicial complexes. Then Z∗M(K,L) is pure if and only if

• K is pure and FL ⊂ FK, or

• K,L,M are pure.

Proof. We set V (M) = [m].
Assume that Z∗M(K,L) is pure. For S ∈ FM , σ ∈ FK and τ ∈ FL, define ΦS(σ, τ) ⊂⊔

i∈[m] V (K) by

ΦS(σ, τ)i =

{
σ (i ∈ S)

τ (i /∈ S).

Here, remark that ΦS(σ, τ) is a facet of Z∗M(K,L) if σ ∈ FK \ FL or τ ∈ FK ∩ FL by
Proposition 8. If ΦS(σ, τ) is a facet of Z∗M(K,L), then we have

|ΦS(σ, τ)| =
∑
i∈[m]

|ΦS(σ, τ)i| = |S||σ|+ (m− |S|)|τ |.

Note that we have 0 < |S| < m since M is neither {∅} nor a simplex.
Suppose that FK ∩FL 6= ∅. Take S ∈ FM , σ0 ∈ FK \FL and τ 0 ∈ FK ∩FL. For any

facets σ, σ′ ∈ FK of K, ΦS(σ, τ 0) and ΦS(σ′, τ 0) are facets of Z∗M(K,L). Since Z∗M(K,L)
is pure, we have |ΦS(σ, τ 0)| = |ΦS(σ′, τ 0)|, namely

|S||σ|+ (m− |S|)|τ 0| = |S||σ′|+ (m− |S|)|τ 0|.

It follows from |S| > 0 that

|σ| = |σ′|.
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Therefore, K is pure. For any facets τ, τ ′ ∈ FL of L, ΦS(σ0, τ) and ΦS(σ0, τ ′) are facets
of Z∗M(K,L). Since Z∗M(K,L) is pure, we have |ΦS(σ0, τ)| = |ΦS(σ0, τ ′)|, namely

|S||σ0|+ (m− |S|)|τ | = |S||σ0|+ (m− |S|)|τ ′|.

It follows from |S| < m that

|τ | = |τ ′|.

Therefore, L is pure. Hence, we obtain

dimK = |τ 0| − 1 = dimL.

If there exists τ 1 ∈ FL \ FK , then there must exist σ1 ∈ FK \ FL such that τ 1 ( σ1. So,
we get

dimK = |σ1| − 1 > |τ 1| − 1 = dimL,

which is a contradiction. Thus, we conclude that FL \ FK = ∅, namely FL ⊂ FK .
Next, suppose that FK ∩ FL = ∅. Take S ∈ FM and τ 0 ∈ FL. Since τ 0 is not a facet

of K, there exist σ0 ∈ FK such that τ 0 ( σ0. For any facet σ of K, ΦS(σ, τ 0) is a facet
of Z∗M(K,L) since FK = FK \FL. Therefore, by the same argument as above, we obtain
that both K and L are pure. For any facet T, T ′ ∈ FM of M , ΦT (σ0, τ 0) and ΦT ′(σ

0, τ 0)
are facets of Z∗M(K,L). Since Z∗M(K,L) is pure, we have |ΦT (σ0, τ 0)| = |ΦT ′(σ

0, τ 0)|,
namely

|T ||σ0|+ (m− |T |)|τ 0| = |T ′||σ0|+ (m− |T ′|)|τ 0|.

It follows that

|T | = |T ′|

since σ0 ) τ 0. Therefore, we conclude that M is pure.
Conversely, assume that K is pure and FL ⊂ FK . Then for any facet φ ∈ FZ∗M (K,L),

we get

|φ| =
∑
i∈[m]

|φi| = m(dimK + 1).

Therefore, Z∗M(K,L) is pure.
Finally, assume that K,L,M are pure and that there exists τ ∈ FL \FK . Since there

exists σ ∈ FK \ FL such that τ ( σ, we get

dimK = |σ| − 1 > |τ | − 1 = dimL.
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So, we obtain FK ∩FL = ∅ since both K and L are pure. Thus, for any φ ∈ FZ∗M (K,L), φ

is a facet of M . This is because we have φ ∪ {i} /∈ M for any i /∈ φ since FL = FL \ FK .
Hence, we get

|φ| =
∑
i∈φ

|φi|+
∑
i/∈φ

|φi|

= |φ|(dimK + 1) + (m− |φ|)(dimL+ 1)

= (dimM + 1)(dimK + 1) + (m− dimM − 1)(dimL+ 1)

for any facet φ ∈ FZ∗M (K,L) since M is pure. Therefore, we conclude that Z∗M(K,L) is
pure.

4 Shellability of Polyhedral Joins

We first present two sufficient conditions for Z∗M(K,L) being shellable.

Theorem 11. Let M be an arbitrary simplicial complex and K ⊃ L be a pair of simplicial
complexes. Suppose that K,L satisfy the following three conditions.

(1) K is shellable,

(2) FL ⊂ FK, and

(3) there exists a shelling <K on K such that τ <K σ for any τ ∈ FL and any σ ∈
FK \ FL.

Then Z∗M(K,L) is shellable.

Proof. We set V (M) = [m]. Consider a linear order < on FZ∗M (K,L) such that φ < ψ if
and only if

φ1 = ψ1, . . . , φj−1 = ψj−1, φj <K ψj

for some j ∈ [m]. We show that this order is a shelling on Z∗M(K,L).
Let φ, ψ be facets of Z∗M(K,L) such that φ1 = ψ1, . . . , φj−1 = ψj−1, φj <K ψj. Since

<K is a shelling on K, there exists σ ∈ FK and x ∈ ψj \ φj such that σ <K ψj and
σ ∩ ψj = ψj \ {x} by Lemma 3. Define χ ⊂

⊔
i∈[m] V (K) by

χi =

{
ψi (i 6= j)

σ (i = j).

If ψj ∈ FK \ FL, then we have χ ⊂ ψ ∈M . If ψj ∈ FL, then by condition (3), σ must be
a facet of L since σ <K ψj. So, we have χ = ψ ∈ M . In both cases, we get that χ ∈ M ,
which implies that χ is a simplex of Z∗M(K,L). Furthermore, χ is a facet of Z∗M(K,L) by
Remark 9.
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We have χ < ψ because

χ1 = ψ1, . . . , χj−1 = ψj−1, χj = σ <K ψj.

Moreover, we have

χi ∩ ψi =

{
ψi (i 6= j)

σ ∩ ψj (i = j)

=

{
ψi (i 6= j)

ψj \ {x} (i = j).

Hence, we obtain

χ ∩ ψ = ψ \ {x}.

Finally, we have x ∈ ψ \ φ since x ∈ ψj \ φj. Therefore, by the above argument, we get
χ ∈ FZ∗M (K,L) and x ∈ ψ \ φ such that χ < ψ and χ ∩ ψ = ψ \ {x}. By Lemma 3, we
conclude that Z∗M(K,L) is shellable.

The following claim indicates that we cannot drop condition (2) in Theorem 11 for
some M .

Claim 12. Let (K,L) be a pair of simplicial complexes such that FL \FK 6= ∅. Then for
M = 〈{1, 2}, {3, 4}〉, Z∗M(K,L) is not shellable.

Proof. We assume that Z∗M(K,L) is shellable and deduce a contradiction. Take τ 0 ∈
FL \ FK . Fix a shelling on Z∗M(K,L) and define Φ,Ψ ∈ FZ∗M (K,L) by

Φ = min
{
φ ∈ FZ∗M (K,L)

∣∣ φ1 = φ2 = τ 0, φ3 ) τ 0, φ4 ) τ 0
}
,

Ψ = min
{
ψ ∈ FZ∗M (K,L)

∣∣ ψ1 ) τ 0, ψ2 ) τ 0, ψ3 = ψ4 = τ 0
}
.

Note that Φ,Ψ are well-defined because there exists σ ∈ FK \ FL such that σ ) τ 0 since
τ 0 ∈ FL \ FK .

We may suppose that Φ < Ψ. Then there exists χ < Ψ, j ∈ [m] and x ∈ Ψj \Φj such
that χ∩Ψ = Ψ \ {x}. Since Ψj \Φj 6= ∅, we obtain j ∈ {1, 2}. Here, we set j = 1. Then
for i = 2, 3, 4, we have χi ∩ Ψi = Ψi, namely χi ⊃ Ψi. So, we get χ2 = Ψ2 ∈ FK \ FL

since Ψ2 is a facet of K. Thus, 2 ∈ χ. This implies that χi ∈ FL for i = 3, 4. Therefore,
we obtain χi = τ 0 for i = 3, 4 since χi ⊃ Ψi = τ 0.

On the other hand, we have x ∈ Ψ1 \ Φ1 = Ψ1 \ τ 0 since Φ1 = τ 0. Then it follows
from τ 0 ⊂ Ψ1 that τ 0 ⊂ Ψ1 \ {x} = χ1 ∩Ψ1 ⊂ χ1. If χ1 = τ 0, then we have χ = {2} and
χ1 ∈ FL \ FK . This contradicts to Proposition 8 since χ is a facet of Z∗M(K,L). So, we
get χ1 ) τ 0. However, this is also a contradiction to the minimality of Ψ. Therefore, we
conclude that Z∗M(K,L) is not shellable.

Theorem 13. Let M be a simplicial complex on [m] and (K,L) = {(Ki, Li)}i∈[m] be
a family of pairs of simplicial complexes. Suppose that M is shellable and that for any
i ∈ [m],
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• there exists αi ∈ FKi
such that FLi

⊂ {αi \ {x} | x ∈ αi}, and

• Ki is shellable with a shelling <i such that αi is the minimum element with respect
to <i.

Then Z∗M(K,L) is shellable.

Proof. We fix a shelling on M and denote by <M . Take an arbitrary linear order <′i on
FLi

. Here we remark that we have FKi
∩ FLi

= ∅ for any i ∈ [m] since we have τ ( αi
for any τ ∈ FLi

.
Let φ, ψ be facets of Z∗M(K,L). Consider a linear order < on FZ∗M (K,L) such that

φ < ψ if and only if

• φ <M ψ, or

• φ = ψ and φ1 = ψ1, . . . , φj−1 = ψj−1, φj <j ψj for some j ∈ φ, or

• φ = ψ and φ1 = ψ1, . . . , φj−1 = ψj−1, φj <
′
j ψj for some j /∈ φ.

We show that this order is a shelling on Z∗M(K,L).
First, suppose that φ <M ψ. Then, by Lemma 3, there exists T ∈ FM and j ∈ ψ \ φ

such that T <M ψ and T ∩ ψ = ψ \ {j}. It follows from j ∈ ψ \ φ that ψj ∈ FKj
and

φj ∈ FLj
.

If ψj is not minimum with respect to <j, namely αj <j ψj in FKj
, then there exists

σ ∈ FKj
and x ∈ ψj \ αj such that σ <j ψj and σ ∩ ψj = ψj \ {x}. By the assumption

of the theorem, φj ∈ FLj
is a face of αj. So, we get x ∈ ψj \ φj ⊂ ψ \ φ. Now we define

χ ⊂
⊔
i∈[m] V (Ki) by

χi =

{
ψi (i 6= j)

σ (i = j).

Since ψj, σ ∈ FKj
, we have χ = ψ ∈ FM . Thus, by Proposition 8, χ is a facet of Z∗M(K,L).

Furthermore, we have χ < ψ since

χ1 = ψ1, . . . , χj−1 = ψj−1, χj = σ <j ψj.

Moreover, we have

χi ∩ ψi =

{
ψi (i 6= j)

σ ∩ ψj (i = j)

=

{
ψi (i 6= j)

ψj \ {x} (i = j),

namely

χ ∩ ψ = ψ \ {x}.
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By the above argument, we get χ ∈ FZ∗M (K,L) and x ∈ ψ \ φ such that χ < ψ and
χ ∩ ψ = ψ \ {x}.

If ψj = αj, then it follows from the assumption of the theorem that there exists x ∈ αj
such that φj = αj \ {x}. In this case, we define χ ⊂

⊔
i∈[m] V (Ki) by

χi =


ψi ∈ FKi

(i ∈ T ∩ ψ)

φj ∈ FLj
(i = j),

αi ∈ FKi
(i ∈ T \ ψ),

ψi ∈ FLi
(i ∈ [m] \ (T ∪ ψ)).

Then we have

χ = (T ∩ ψ) ∪ (T \ ψ) = T.

Hence, χ is a facet of Z∗M(K,L). It follows from T <M ψ that χ <M ψ. Furthermore,
since ψi is a face of αi if ψi ∈ FLi

, we have

χi ∩ ψi =


ψi (i ∈ (T ∩ ψ) ∪ ([m] \ (T ∪ φ))),

φj ∩ ψj (i = j),

αi ∩ ψi (i ∈ T \ ψ)

=

{
ψi (i 6= j)

ψj \ {x} (i = j).

The last equality follows from

φj ∩ ψj = (αj \ {x}) ∩ αj = αj \ {x} = ψj \ {x}.

By the above argument, we get χ ∈ FZ∗M (K,L) and x ∈ ψ \ φ such that χ < ψ and
χ ∩ ψ = ψ \ {x}.

Next, suppose that φ = ψ and φ1 = ψ1, . . . , φj−1 = ψj−1, φj <j ψj for some j ∈ φ.
There exists σ ∈ FKj

and x ∈ ψj \φj such that σ <j ψj and σ ∩ψj = ψj \ {x}. We define
χ ⊂

⊔
i∈[m] V (Ki) by

χi =

{
ψi (i 6= j)

σ (i = j).

We have ψj ∈ FKj
since j ∈ φ = ψ. So, it follows from σ ∈ FKj

that χ = ψ. Hence, χ is
a facet of Z∗M(K,L). By the same argument as the first case, we see that χ ∈ FZ∗M (K,L)

and x ∈ ψ \ φ satisfy χ < ψ and χ ∩ ψ = ψ \ {x}.
Finally, suppose that φ = ψ and φ1 = ψ1, . . . , φj−1 = ψj−1, φj <

′
j ψj for some j /∈ φ.

By the assumption of the theorem, there exists x, y ∈ αj (x 6= y) such that φj = αj \ {x},
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ψj = αj \ {y}. So, we have φj ∩ ψj = αj \ {x, y} = ψj \ {x} since x 6= y. Here we define
χ ⊂

⊔
i∈[m] V (Ki) by

χi =

{
ψi (i 6= j)

φj (i = j).

We have φj, ψj ∈ FLj
since j ∈ φ = ψ. So, it follows that χ = ψ. Hence, χ is a facet

of Z∗M(K,L). By the same argument as the first case, we see that χ ∈ FZ∗M (K,L) and
x ∈ ψ \ φ satisfy χ < ψ and χ ∩ ψ = ψ \ {x}.

In all four cases above, we obtain χ ∈ FZ∗M (K,L) and x ∈ ψ \ φ which satisfy χ < ψ
and χ ∩ ψ = ψ \ {x}. By Lemma 3, we conclude that Z∗M(K,L) is shellable.

Remark 14. Consider M = 〈{1}, {2}〉 and (K,L) = {(Ki, Li)}i=1,2 such that

Ki = 〈{ai, bi}, {bi, ci}〉, Li = 〈{ai}, {ci}〉.

Then we see that

Z∗M(K,L) =〈{a1, b1, a2}, {a1, b1, c2}, {b1, c1, a2}, {b1, c1, c2},
{a1, a2, b2}, {a1, b2, c2}, {c1, a2, b2}, {c1, b2, c2}〉

(see Figure 1) is shellable. However, there is no αi ∈ {{ai, bi}, {bi, ci}} such that {ai}, {ci}
⊂ αi. So, the condition that FLi

⊂ {αi \ {x} ∈ K | x ∈ αi} for some αi ∈ FKi
is not

necessary for Z∗M(K,L) being shellable.

∗

c1

b1

a1

c2

a2

∪ ∗

c1

b2

a1

c2

a2

Figure 1: Z∗M(K,L) in Remark 14.

Example 15. Let K be a simplicial complex on [m] and J = (j1, . . . , jm) be a tuple of
positive integers. Define families of pairs of simplicial complexes as follows:

(∆J−1, ∂∆J−1) = {(∆ji−1, ∂∆ji−1)}i∈[m],

(ptJ , {∅}) =
{(⊔

ji
pt, {∅}

)}
i∈[m]

.

By Theorem 13, Z∗K(∆J−1, ∂∆J−1) and Z∗K(ptJ , {∅}) are shellable if K is shellable.

Next, we state a necessary condition for Z∗M(K,L) being shellable under a certain
assumption.
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Theorem 16. Let M be a simplicial complex which is not a simplex and K ) L be a pair
of simplicial complexes such that FL ⊂ FK. If Z∗M(K,L) is shellable, then both K and L
are shellable.

Proof. We set V (M) = [m]. Let (K,L) = {(Ki, Li)}i∈[m] be a family of pairs of simplicial
complexes such that Ki = K, Li = L for any i ∈ [m]. Fix a shelling < on Z∗M(K,L).
Take S ∈ FM and k ∈ [m] such that k /∈ S. This is possible since M is not a simplex.
We prove that both Kk and Lk are shellable.

First, we prove that Kk is shellable. For a facet σ ∈ FKk
, define Φσ ∈ FZ∗M (K,L) by

Φσ = min
{
φ ∈ FZ∗M (K,L)

∣∣ φk = σ
}
.

Note that Φσ is well-defined since by Remark 9, there exists a facet φ ∈ FZ∗M (K,L) such
that

φi =

{
σ (i = k)

τ (i 6= k),

where τ is an arbitrary facet of L. For σ, σ′ ∈ FKk
, we define a relation σ <K σ′ by

Φσ < Φσ′ . It is obvious that <K defines a linear order on FKk
. We prove that <K is a

shelling on Kk.
For σ′, σ ∈ FKk

such that Φσ′ < Φσ, there exists χ ∈ FZ∗M (K,L) and x ∈ Φσ \ Φσ′ such
that χ < Φσ and χ∩Φσ = Φσ \ {x}. If x /∈ Φσ

k , then we have χk ∩Φσ
k = Φσ

k , which means
that Φσ

k ⊂ χk. By Proposition 8, Φσ
k and χk are facets of Kk since FKk

∪FLk
= FKk

. So,
we obtain χk = Φσ

k = σ. This contradicts to the minimality of Φσ. Hence, we get x ∈ Φσ
k .

Moreover, it follows from x ∈ Φσ \ Φσ′ that x ∈ Φσ
k \ Φσ′

k = σ \ σ′.
By χ ∩Φσ = Φσ \ {x} and x ∈ Φσ

k , we obtain χk ∩ σ = χk ∩Φσ
k = Φσ

k \ {x} = σ \ {x}.
Furthermore, we get Φχk < χ < Φσ. Therefore, χk ∈ FKk

and x ∈ σ \ σ′ satisfy χk <K σ
and χk ∩ σ = σ \ {x}. By Lemma 3, <K is a shelling on Kk.

Next, we prove that Lk is shellable. There exists σ0 ∈ FKk
\ FLk

since K 6= L. For a
facet τ ∈ FLk

, define Ψτ ∈ FZ∗M (K,L) by

Ψτ = min
{
ψ ∈ FZ∗M (K,L)

∣∣ ψi = σ0 for any i ∈ S, and ψk = τ
}
.

Note that Ψτ is well-defined. This is because there exists a facet ψ ∈ FZ∗M (K,L) defined by

ψi =

{
σ0 (i ∈ S)

τ (i /∈ S).

For τ, τ ′ ∈ FLk
, we define a relation τ <L τ

′ by Ψτ < Ψτ ′ . It is obvious that <L defines a
linear order on FLk

. We prove that <L is a shelling on Lk.
For τ ′, τ ∈ FLk

such that Ψτ ′ < Ψτ , there exists χ ∈ FZ∗M (K,L) and x ∈ Ψτ \ Ψτ ′ such

that χ < Ψτ and χ∩Ψτ = Ψτ \{x}. Let j ∈ [m] be a vertex of M such that x ∈ Ψτ
j \Ψτ ′

j .

Then we have j /∈ S since Ψτ
j 6= Ψτ ′

j . So, for any i ∈ S, we get χi ∩ Ψτ
i = Ψτ

i , namely
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χi ⊃ Ψτ
i = σ0. It follows from σ0 ∈ FKk

that χi = σ0 for any i ∈ S. Hence, by the
minimality of Ψτ , we get χk 6= τ . On the other hand, we get χ = S since S is a facet of
M and S ⊂ χ. So, we have k /∈ S = χ, which means that χk ∈ FLk

. Therefore, if j 6= k,
we obtain χk ) τ and χk, τ ∈ FLk

, a contradiction. Thus, we conclude that j = k. Hence,
we get x ∈ Ψτ

k \ Ψτ ′

k and χk ∩ Ψτ
k = Ψτ

k \ {x}, namely x ∈ τ \ τ ′ and χk ∩ τ = τ \ {x}.
Moreover, we have Ψχk < χ since χi = σ0 for any i ∈ S and χk ∈ FLk

. Hence, by χ < Ψτ ,
we obtain Ψχk < Ψτ , namely χk <L τ . By Lemma 3, <L is a shelling on Lk.

Remark 17. In general, the shellability of Z∗M(K,L) does not imply the shellability of
each Ki. For example, consider M = 〈{1}, {2}〉 and (K,L) = {(Ki, Li)}i=1,2 such that

K1 = 〈{a, b}, {c, d}〉, L1 = 〈{b}, {c, d}〉,
K2 = 〈{e, f}〉, L2 = 〈{f}〉.

Then we see that

Z∗M(K,L) = 〈{c, d, e, f}, {b, e, f}, {a, b, f}〉

(see Figure 2) is shellable. However, K1 is not shellable.

∗

d

c

b

a

f
∪ ∗

d

c

b

f

e

Figure 2: Z∗M(K,L) in Remark 17.

Remark 18. The shellability of Z∗M(K,L) does not imply FL ⊂ FK . For example, consider
M = 〈{1}, {2}〉 and (K,L) = {(Ki, Li)}i=1,2 such that

Ki = 〈{ai, bi}〉, Li = 〈{bi}〉.

Then we see that

Z∗M(K,L) = 〈{a1, b1, b2}, {b1, a2, b2}〉

is shellable. However, {bi} ∈ FLi
\ FKi

for i = 1, 2.

Even though (K,L) satisfies that K is shellable, L is shellable and FL ⊂ FK , Z∗M(K,L)
is not necessarily shellable. In order to show this, we prove another necessary condition.

Theorem 19. Let M be a simplicial complex which is not a simplex and K ) L be a
pair of simplicial complexes. Suppose that Z∗M(K,L) is shellable. Then there exists a pair
(σ, τ) of σ ∈ FK \ FL and τ ∈ FL such that

|σ ∩ τ | = max
ρ∈FK\FL

|ρ| − 1.
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Proof. Fix a shelling φ1 < · · · < φt on Z∗M(K,L) such that |φp| > |φq| for any 1 6 p <
q 6 t, which exists by Lemma 4.

We first show that there exists an index s such that φp + φs for any p ∈ [s− 1]. Since

M is not a simplex, there exists j ∈ [m] such that j /∈ φ1. Take a facet S 3 j of M . Here,
it follows from K 6= L that there exists a facet ρ ∈ FK \FL of K. Now, consider a subset
ψ ⊂

⊔
i∈[m] V (K) which satisfies

• if i ∈ S, then ψi = ρ,

• if i /∈ S, then ψi ∈ FL.

We have ψi ∈ FK ∪ FL for any i ∈ [m], ψ = S ∈ M and ψ ∪ {i} /∈ M for any i /∈ S
since S is a facet of M . By Proposition 8, ψ is a facet of Z∗M(K,L). Therefore, we have
ψ = φq for some q ∈ [t]. Since j ∈ S \ φ1 = φq \ φ1, we get φq * φ1. Now we set

s = min{r ∈ [t] | φr * φ1}. It follows from the minimality of s that φp ⊂ φ1 for any
p ∈ [s− 1]. Thus, we get φs * φp for any p ∈ [s− 1] as desired.

Now, take an index s as above. For an index p′ such that φp′ = φs, p′ must be larger
than s, which implies |φp′| 6 |φs|. So, φs is the largest facet among facets φ such that
φ = φs. By the definition of a shelling, there must exist p with 1 6 p < s such that
|φp ∩ φs| = |φs| − 1. This equality implies that we have

|φpi ∩ φsi | > |φsi | − 1

for any i ∈ [m]. On the other hand, it follows from φp + φs that there exists j ∈ φs \ φp,
namely j ∈ [m] such that φpj ∈ FL and φsj ∈ FK \ FL. Since φsj is a facet of K, we have
φpj ∩ φsj ( φsj . Thus, we get

|φpj ∩ φsj| = |φsj| − 1.

Assume that there exists µ ∈ FK \ FL such that |µ| > |φsj|. Then, a subset χ ⊂⊔
i∈[m] V (K) defined by

χi =

{
φsi (i 6= j)

µ (i = j)

is a facet of Z∗M(K,L). Since |χ| > |φs| and χ = φs, this contradicts to the maximality of
|φs|. Hence, we obtain |φsj| = maxρ∈FK\FL

|ρ|.
Then, σ = φsj ∈ FK \ FL and τ = φpj ∈ FL satisfy

|σ ∩ τ | = |σ| − 1 = max
ρ∈FK\FL

|ρ| − 1,

which is the desired conclusion.
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Example 20. Consider M = 〈{1}, {2}〉 and (K,L) = {(Ki, Li)}i=1,2 such that

Ki = 〈{ai, bi}, {bi, ci}, {di}〉, Li = 〈{ci}, {di}〉.

For {ai, bi} ∈ FKi
\FLi

, there exists no τ ∈ FLi
such that |{ai, bi}∩τ | = 1. For {di} ∈ FLi

,
there exists no σ ∈ FKi

\ FLi
such that |σ ∩ {di}| = 1. On the other hand, we see that

Z∗M(K,L) =〈{a1, b1, c2}, {b1, c1, c2}, {b1, c1, d2}, {a1, b1, d2},
{c1, b2, c2}, {d1, b2, c2}, {d1, a2, b2}, {c1, a2, b2}, {d1, d2}〉

(see Figure 3) is shellable. So, Theorem 19 only guarantees the existence of at least one
pair (σ, τ), in this example, σ = {bi, ci} and τ = {ci}.

∗

d1

c1

b1

a1

c2

d2

∪ ∗

d1

c1

b2

a2

c2

d2

Figure 3: Z∗M(K,L) in Example 20.

Remark 21. The converse of Theorem 16 and the converse of Theorem 19 do not hold.
Consider M = 〈{1}, {2}〉 and (K,L) = {(Ki, Li)}i=1,2 such that

Ki = 〈{ai, bi, ci}, {ai, ci, di}, {bi, di}〉, Li = 〈{ai, bi, ci}, {bi, di}〉.

Two facets {ai, ci, di} ∈ FKi
\ FLi

and {ai, bi, ci} ∈ FLi
satisfy the condition in Theorem

19. Moreover, both K = K1 = K2 and L = L1 = L2 are shellable and FL ⊂ FK . However,

Z∗M(K,L) =〈{a1, b1, c1, a2, b2, c2}, {a1, c1, d1, a2, b2, c2},
{a1, b1, c1, a2, c2, d2}, {a1, b1, c1, b2, d2}, {a1, c1, d1, b2, d2},
{b1, d1, a2, b2, c2}, {b1, d1, a2, c2, d2}, {b1, d1, b2, d2}〉

(see Figure 4) is not shellable. To see this, assume that Z∗M(K,L) is shellable and
{a1, c1, d1, b2, d2} < {b1, d1, a2, c2, d2} in a shelling. There must exists a facet φ 6= {b1, d1,
a2, c2, d2} of Z∗M(K,L) and x ∈ {b1, d1, a2, c2, d2} \ {a1, c1, d1, b2, d2} = {b1, a2, c2} such
that {b1, d1, a2, c2, d2} \ {x} ⊂ φ. However, there is no facet φ 6= {b1, d1, a2, c2, d2} such
that φ includes {d1, a2, c2, d2}, {b1, d1, c2, d2} or {b1, d1, a2, d2}. This is a contradiction. In
the same way, we also get {b1, d1, a2, c2, d2} � {a1, c1, d1, b2, d2}. So, Z∗M(K,L) has no
shelling.

Corollary 22. Let M be a simplicial complex and K ⊃ L be a pair of simplicial complexes.
If dimK − dimL > 2, then Z∗M(K,L) is not shellable.

In particular, for any simplicial complex M and K such that dimK > 1, Z∗M(K, {∅})
is not shellable.
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c1

a1

b1 d1

∗
c2

a2

b2 d2

∪
c1

a1

b1 d1

∗
c2

a2

b2 d2

Figure 4: Z∗M(K,L) in Remark 21.

Proof. It follows from dimK > dimL that there must be ρ ∈ FK such that |ρ| = dimK+1
and ρ /∈ FL. So, we get

dimK = max
ρ∈FK\FL

|ρ| − 1.

For any σ ∈ FK \ FL and τ ∈ FL, we have

|σ ∩ τ | 6 |τ | 6 dimL+ 1 6 dimK − 1 = max
ρ∈FK\FL

|ρ| − 2.

Therefore, there is no pair (σ, τ) of σ ∈ FK \ FL and τ ∈ FL such that

|σ ∩ τ | = max
ρ∈FK\FL

|ρ| − 1.

By Theorem 19, we conclude that Z∗M(K,L) is not shellable.

As the last result in this section, we prove that under a certain condition, the shella-
bility of both K and L is equivalent to the shellability of Z∗M(K,L).

Theorem 23. Let M be a simplicial complex which is not a simplex and K be a simplicial
complex. For a vertex v0 of K, suppose that FdlK(v0) ⊂ FK. Then Z∗M(K, dlK(v0)) is
shellable if and only if both K and dlK(v0) are shellable.

Proof. We set L = dlK(v0). If Z∗M(K,L) is shellable and FL ⊂ FK , then by Theorem 16,
K and L are shellable. In order to prove the converse, it is sufficient to show that there
is a shelling <K on K such that τ <K σ for any τ ∈ FL and any σ ∈ FK \ FL. Then the
proof is completed by Theorem 11.

Let < be a shelling on K and <′ be a shelling on L. Define a relation <K on FK by

• τ <K σ for any τ ∈ FL and σ ∈ FK \ FL,

• for any τ, τ ′ ∈ FL, τ <K τ ′ if and only if τ <′ τ ′, and

• for any σ, σ′ ∈ FK \ FL, σ <K σ′ if and only if σ < σ′.

It is obvious that <K is a linear order. We prove that <K is a shelling on K. The goal of
the proof is to show that for any ρ, ρ′ ∈ FK such that ρ <K ρ′, there exists ρ′′ ∈ FK and
u ∈ ρ′ \ ρ which satisfy ρ′′ <K ρ′ and ρ′′ ∩ ρ′ = ρ′ \ {u}.

For any τ, τ ′ ∈ FL such that τ <′ τ ′, there exists τ ′′ ∈ FL and x ∈ τ ′ \ τ such that
τ ′′ <′ τ ′ and τ ′′ ∩ τ ′ = τ ′ \ {x}. Since τ ′′ ∈ FL and τ ′′ <′ τ ′, we get τ ′′ <K τ ′.

the electronic journal of combinatorics 29(3) (2022), #P3.53 17



G

H

U

→

G[H;U ]

Figure 5: An example of G[H;U ].

For any σ, σ′ ∈ FK \FL such that σ < σ′, there exists ρ ∈ FK and x ∈ σ′ \σ such that
ρ < σ′ and ρ ∩ σ′ = σ′ \ {x}. If ρ ∈ FL, then we obtain ρ <K σ′ since σ′ ∈ FK \ FL. If
ρ ∈ FK \FL, then we obtain ρ <K σ′ again since ρ < σ′. In both cases, we have ρ <K σ′.

For τ ∈ FL and σ ∈ FK \ FL, we have v0 ∈ σ \ τ since σ /∈ dlK(v0) and τ ∈ dlK(v0).
A simplex σ \ {v0} ∈ L is not a facet of L since σ \ {v0} is not a facet of K and we have
FL ⊂ FK by the assumption. Therefore, there exists a facet ρ ∈ FL such that ρ ) σ\{v0}.
Since ρ ∈ dlK(v0), we obtain ρ ∩ σ = σ \ {v0}. We also get ρ <K σ because ρ ∈ FL and
σ ∈ FK \ FL.

5 Applications to the shellability of graphs

In this section, we prove Theorem 2. Here we introduce a class of graphs which are
constructed from two graphs G,H and a subset U ⊂ V (H). In the following, a set
{u, v} ⊂ V (G) of two vertices of a graph G is denoted by uv.

Definition 24. Let G,H be graphs and U ⊂ V (H) be a subset of V (H). We define a
graph G[H;U ] by

V (G[H;U ]) = V (G)× V (H),

E(G[H;U ]) =

(u1, v1)(u2, v2)

∣∣∣∣∣∣∣
u1 = u2 and v1v2 ∈ E(H),

or

u1u2 ∈ E(G) and v1, v2 ∈ U

 .

Example 25. For graphs G and H, G[H;V (H)] is the lexicographic product G[H]. The
definition of the lexicographic product of two graphs is given in, for example, [5].

Example 26. Let G,H be graphs and v0 be a vertex of H. As defined in Section 1,

G[H; {v0}] is the graph obtained from G t
(⊔

u∈V (G) Hu

)
by identifying u ∈ V (G) with

v0 ∈ Hu, where Hu is a copy of H.

The independence complex of G[H;U ] is described as a polyhedral join, stated in the
following proposition.
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Proposition 27. Let G,H be graphs and U ⊂ V (H) be a subset of V (H). Then we have

I(G[H;U ]) = Z∗I(G)(I(H), I(H \ U)),

where H \ U is a graph defined by V (H \ U) = V (H) \ U and E(H \ U) = {uv ∈
E(H) | u, v /∈ U}.

Proof. Remark that for φ ⊂ V (G) × V (H) = V (Z∗I(G)(I(H), I(H \ U))), φu (u ∈ V (G))

and φ in Proposition 7 are reformulated as follows:

φu = {v ∈ V (H) | (u, v) ∈ φ},
φ = {u ∈ V (G) | φu ∩ U 6= ∅}.

Let φ ∈ I(G[H;U ]) be an independent set of G[H;U ]. Then, we have the followings.

• For any u ∈ V (G) and v1, v2 ∈ V (H), suppose that v1, v2 ∈ φu. Then we have
(u, v1)(u, v2) /∈ E(G[H;U ]) since (u, v1), (u, v2) ∈ φ and φ is an independent set of
G[H;U ]. By the definition of E(G[H;U ]), we obtain v1v2 /∈ E(H). Therefore, φu is
an independent set of H, namely φu ∈ I(H).

• For any u1, u2 ∈ φ, there exist w1, w2 ∈ U such that (u1, w1), (u2, w2) ∈ φ. Then
(u1, w1)(u2, w2) /∈ E(G[H;U ]) since φ is an independent set of G[H;U ]. By the
definition of E(G[H;U ]), we obtain u1u2 /∈ E(G). Therefore, φ is an independent
set of G, namely φ ∈ I(G).

So, by Proposition 7, φ is a simplex of Z∗I(G)(I(H), I(H \ U)).

Conversely, let ψ be a simplex of Z∗I(G)(I(H), I(H \U)). It follows from Proposition 7

that we have ψu ∈ I(H) for any u ∈ V (G) and ψ ∈ I(G). Then, for any (u1, v1), (u2, v2) ∈
ψ, we have the followings.

• If u1 = u2, then v1v2 /∈ E(H) since v1, v2 ∈ ψu1 and ψu1 is an independent set of H.
Furthermore, u1 = u2 implies that u1u2 /∈ E(G) since G has no loops. Therefore,
we get (u1, v1)(u2, v2) /∈ E(G[H;U ]).

• If u1 6= u2 and v1, v2 ∈ U , then u1u2 /∈ E(G) since u1, u2 ∈ ψ and ψ is an independent
set of G. Therefore, we get (u1, v1)(u2, v2) /∈ E(G[H;U ]).

• If u1 6= u2 and v1 /∈ U or v2 /∈ U , then (u1, v1)(u2, v2) /∈ E(G[H;U ]).

So, we conclude that (u1, v1)(u2, v2) /∈ E(G[H;U ]). Thus, ψ is an independent set of
G[H;U ], namely ψ ∈ I(G[H;U ]).

Example 28. Let G be a graph with at least one edge and H be a graph which is not a
complete graph. Vander Meulen and Van Tuyl [9, Theorem 2.3] proved that I(G[H]) is
not shellable. We can deduce this result from Example 25, Proposition 27 and Corollary
22 since I(G) is not a simplex and I(H) is not 0-dimensional.
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Now we are ready to prove Theorem 2.

Proof of Theorem 2. First, we show that (1) implies (2). By Proposition 27, (1) is equiv-
alent to the condition that Z∗I(G)(I(H), I(H \{v0})) is pure and shellable for any graph G.

It follows from Theorem 10 that I(H) is pure, namely H is well-covered. Now consider
the cycle on 4 vertices C4, namely the graph defined by

V (C4) = {1, 2, 3, 4}, E(C4) = {12, 23, 34, 41}.

Since I(C4) = 〈{1, 3}, {2, 4}〉 and I(C4[H,H \ {v0}]) is shellable, Claim 12 indicates that
FI(H\{v0}) ⊂ FI(H). Hence, for any maximal independent set τ of H \ {v0}, we get that
τ ∪{v0} is not an independent set of H. Namely there exists v ∈ τ such that v0v ∈ E(H).
Therefore, by Theorem 16, both I(H) and I(H \ {v0}) are shellable.

Next, we deduce (1) from (2). By the conditions in (2), I(H) is pure, both I(H) and
I(H \ {v0}) are shellable, and FI(H\{v0}) ⊂ FI(H). Therefore, it follows from Theorem 10
that I(G[H;H\{v0}]) is pure for any graph G and from Theorem 23 that I(G[H;H\{v0}])
is shellable for any graph G which has at least one edge. For graph G which has no edges,
it follows from Lemma 5 that

Z∗I(G)(I(H), I(H \ {v0})) = I(H) ∗ · · · ∗ I(H)︸ ︷︷ ︸
|V (G)|

is shellable since I(H) is shellable. Therefore, we conclude that Z∗I(G)(I(H), I(H\{v0})) is

pure and shellable, namely G[H; {v0}] is well-covered and shellable, for any graph G.

Example 29. If H is a complete graph, then H satisfies the condition (2) in Theorem 2.
An example of H which is not a complete graph is C5, a cycle of length 5. Let

V (C5) = {a, b, c, d, e} and E(C5) = {ab, bc, cd, de, ea}. Then

I(C5) = 〈{a, c}, {b, d}, {c, e}, {d, a}, {e, b}〉

is pure and shellable. Furthermore,

dlC5(a) = 〈{b, d}, {e, b}, {c, e}〉

is shellable and each facet of dlC5(a) contains b or e, which are adjacent to a.
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