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Abstract

In this paper we introduce some monomial orders for the class of closed path
polyominoes and we prove that the set of the generators of the polyomino ideal
attached to a closed path forms the reduced Gröbner basis with respect to these
monomial orders. It is known that the polyomino ideal attached to a closed path
containing an L-configuration or a ladder of at least three steps, equivalently having
no zig-zag walks, is prime. As a consequence, we obtain that the coordinate ring of
a closed path having no zig-zag walks is a normal Cohen-Macaulay domain.

Mathematics Subject Classifications: 05B50, 05E40, 13C05, 13G05, 13C14

1 Introduction

Let X = (xij) be an m× n matrix of indeterminates. An interesting topic in Commuta-
tive Algebra is the ideal of the t-minors of X for any integer 1 6 t 6 min{m,n}. Many
matematicians investigated the main algebraic properties of such ideals, called determi-
nantal ideals. See for example [6], [7], [8], [13] about the ideals generated by all t-minors
of a one or two sided ladder, [14], [20], [23] about the ideals of adjacent 2-minors, [15]
about the ideals generated by an arbitrary set of 2-minors in a 2× n matrix, or also [11]
about the ideals generated by 2-minors associated to a graph. For further references see
[3].
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In 1953 S.W. Golomb coined the term polyomino to indicate a finite collection of unitary
squares joined edge by edge ([12]). These polygons have been studied in Combinatorial
Mathematics, in particular in some tiling problems of the plane. In 2012 they have been
linked to Commutative Algebra by A.A. Qureshi ([24]): if P is a polyomino, K is a field
and S is the polynomial ring over K in the variables xa with a ∈ V (P), set of the vertices
of P , then we can associate to P the ideal generated by all inner 2-minors of P . This ideal
is called the polyomino ideal of P and it is denoted by IP . Many mathematicians have
taken an interest in classifying all polyominoes, for which the quotient ring K[P ] = S/IP
is a normal Cohen-Macaulay domain.
The primality of IP is studied in several papers, see [4], [5], [17], [18], [19], [21], [22], [25],
[27], [28]. Moreover in [17] and [25] the authors prove that if P is a simple polyomino
then K[P ] is a normal Cohen-Macaulay domain. In other papers some new classes of non-
simple polyominoes are examined. In [19] and [27], the authors show that the polyominoes
obtained by removing a convex polyomino from a rectangle are prime, generalizing the
same result for the rectangular polyominoes minus an internal rectangle proved in [27].
In [21] the authors introduce a particular sequence of inner intervals of P , called a zig-zag
walk, and they prove that P does not contain zig-zag walks if IP is prime. It seems
that the non-existence of zig-zag walks in a polyomino could characterize its primality
[Conjecture 4.6, [21]]. In [4] the authors support this conjecture introducing a new class
of polyominoes, called closed paths, and showing that having no zig-zag walks is a nec-
essary and sufficient condition for their primality. An analogous result is proved in [5]
for the weakly closed path polyominoes. In [22] the authors study the reduced Gröbner
basis of polyomino ideals and introduce some conditions in order to the generators of IP
form the reduced Gröbner basis with respect to some suitable degree reverse lexicographic
monomial orders. Eventually, for further references about several algebraic properties of
polyomino ideals we report [1], [9], [10] and [26].
In this paper we study the Gröbner bases of the polyomino ideal attached to a closed
path and we show that there exist some monomial orders such that the set of generators
of the ideal forms the reduced Gröbner basis with respect to these orders. In Section 2
we introduce the notations about polyominoes and closed paths. In Section 3 we provide
a class of monomial orderings that generalizes the class introduced in [24] by Qureshi and
we give some conditions on such orderings so that the S-polynomial of two generators
of IP attached to a collection of cells reduces to 0 modulo the set of generators of IP .
In Section 4 we introduce some new configurations in a closed path, in particular the
W -pentominoes, the LD-horizontal and vertical skew tetrominoes and hexominoes and
the RW-heptominoes. For each case in which one of the previous configurations is not in
the closed path we provide a set of suitable vertices which allow us to define some partic-
ular suitable monomial orders. Moreover in Definition 4.1 we provide a pseudo-algorithm
to deal the general case. Finally, we prove that the set of generators of the polyomino
ideal attached to a closed path is the reduced Gröbner basis with respect to a suitable
choice of the monomial order, so the coordinate ring of a closed path having no zig-zag
walks is a normal Cohen-Macaulay domain. We conclude the paper giving an example of
a non-simple polyomino whose universal Gröbner basis is not square-free and providing
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some related open questions.

2 Polyominoes, closed paths and polyomino ideals

Let (i, j), (k, l) ∈ Z2. We say that (i, j) 6 (k, l) if i 6 k and j 6 l. Consider a = (i, j) and
b = (k, l) in Z2 with a 6 b. The set [a, b] = {(m,n) ∈ Z2 : i 6 m 6 k, j 6 n 6 l} is called
an interval of Z2. in addition, if i < k and j < l then [a, b] is a proper interval. In such
a case we say a, b the diagonal corners of [a, b] and c = (i, l), d = (k, j) the anti-diagonal
corners of [a, b]. If j = l (or i = k) then a and b are in horizontal (or vertical) position.
We denote by ]a, b[ the set {(m,n) ∈ Z2 : i < m < k, j < n < l}. A proper interval
C = [a, b] with b = a + (1, 1) is called a cell of Z2; moreover, the elements a, b, c and d
are called respectively the lower left, upper right, upper left and lower right corner of C.
The sets {a, c}, {c, b}, {b, d} and {a, d} are the edges of C. We put V (C) = {a, b, c, d}
and E(C) = {{a, c}, {c, b}, {b, d}, {a, d}}.
Let S be a non-empty collection of cells in Z2. The set of the vertices and the edges of S
are respectively V (S) =

⋃
C∈S V (C) and E(S) =

⋃
C∈S E(C). If C and D are two distinct

cells of S, then a walk from C to D in S is a sequence C : C = C1, . . . , Cm = D of cells
of Z2 such that Ci ∩ Ci+1 is an edge of Ci and Ci+1 for i = 1, . . . ,m − 1. In addition,
if Ci 6= Cj for all i 6= j, then C is called a path from C to D. We say that C and D
are connected in S if there exists a path of cells in S from C to D. A polyomino P is a
non-empty, finite collection of cells in Z2 where any two cells of P are connected in P .
For instance, see Figure 1.

Figure 1: A polyomino.

We say that a polyomino P is simple if for any two cells C and D not in P there exists a
path of cells not in P from C to D. A finite collection of cells H not in P is a hole of P
if any two cells of H are connected in H and H is maximal with respect to set inclusion.
For example, the polyomino in Figure 1 is not simple with an hole. Obviously, each hole
of P is a simple polyomino and P is simple if and only if it has not any hole.
Consider two cells A and B of Z2 with a = (i, j) and b = (k, l) as the lower left corners
of A and B and a 6 b. A cell interval [A,B] is the set of the cells of Z2 with lower left
corner (r, s) such that i 6 r 6 k and j 6 s 6 l. If (i, j) and (k, l) are in horizontal (or
vertical) position, we say that the cells A and B are in horizontal (or vertical) position.
Let P be a polyomino. Consider two cells A and B of P in vertical or horizontal position.
The cell interval [A,B], containing n > 1 cells, is called a block of P of rank n if all cells
of [A,B] belong to P . The cells A and B are called extremal cells of [A,B]. Moreover, a
block B of P is maximal if there does not exist any block of P which contains properly
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B. It is clear that an interval of Z2 identifies a cell interval of Z2 and vice versa, hence
we can associated to an interval I of Z2 the corresponding cell interval denoted by PI . A
proper interval [a, b] is called an inner interval of P if all cells of P[a,b] belong to P . An
interval [a, b] with a = (i, j), b = (k, j) and i < k is called a horizontal edge interval of P
if the sets {(`, j), (` + 1, j)} are edges of cells of P for all ` = i, . . . , k − 1. In addition,
if {(i − 1, j), (i, j)} and {(k, j), (k + 1, j)} do not belong to E(P), then [a, b] is called a
maximal horizontal edge interval of P . We define similarly a vertical edge interval and a
maximal vertical edge interval.
Following [21] we recall the definition of a zig-zag walk of P . A zig-zag walk of P is
a sequence Z : I1, . . . , I` of distinct inner intervals of P where, for all i = 1, . . . , `, the
interval Ii has either diagonal corners vi, zi and anti-diagonal corners ui, vi+1 or anti-
diagonal corners vi, zi and diagonal corners ui, vi+1, such that:

1. I1 ∩ I` = {v1 = v`+1} and Ii ∩ Ii+1 = {vi+1}, for all i = 1, . . . , `− 1;

2. vi and vi+1 are on the same edge interval of P , for all i = 1, . . . , `;

3. for all i, j ∈ {1, . . . , `} with i 6= j, there exists no inner interval J of P such that zi,
zj belong to V (J).

According to [4], we recall the definition of a closed path polyomino, and the configuration
of cells characterizing its primality. We say that a polyomino P is a closed path if it is a
sequence of cells A1, . . . , An, An+1, n > 5, such that:

1. A1 = An+1;

2. Ai ∩ Ai+1 is a common edge, for all i = 1, . . . , n;

3. Ai 6= Aj, for all i 6= j and i, j ∈ {1, . . . , n};

4. For all i ∈ {1, . . . , n} and for all j /∈ {i−2, i−1, i, i+1, i+2} then V (Ai)∩V (Aj) = ∅,
where A−1 = An−1, A0 = An, An+1 = A1 and An+2 = A2.

Figure 2: An example of a closed path.

A path of five cells C1, C2, C3, C4, C5 of P is called an L-configuration if the two sequences
C1, C2, C3 and C3, C4, C5 go in two orthogonal directions. A set B = {Bi}i=1,...,n of max-
imal horizontal (or vertical) blocks of rank at least two, with V (Bi) ∩ V (Bi+1) = {ai, bi}
and ai 6= bi for all i = 1, . . . , n − 1, is called a ladder of n steps if [ai, bi] is not on the
same edge interval of [ai+1, bi+1] for all i = 1, . . . , n − 2. For instance, in Figure 3 there
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Figure 3

is a closed path having an L-configuration and a ladder of three steps. We recall that a
closed path has no zig-zag walks if and only if it contains an L-configuration or a ladder
of at least three steps (see [4]).
Let P be a polyomino. We set S = K[xv|v ∈ V (P)], where K is a field. If [a, b] is an
inner interval of P , with a,b and c,d respectively diagonal and anti-diagonal corners, then
the binomial xaxb − xcxd is called an inner 2-minor of P . We define IP as the ideal in S
generated by all the inner 2-minors of P and we call it the polyomino ideal of P . We set
also K[P ] = S/IP , which is the coordinate ring of P . Eventually, we recall that if P is a
closed path then having no zig-zag walks, equivalently P contains an L-configuration or
a ladder of at least three steps, is a necessary and sufficient condition in order to K[P ] is
a domain by [4, Theorem 6.2].

3 Preliminary results

Let P be a non-empty collection of cells with V (P) = {a1, . . . , an}. We define a P-order
to be a total order on the set V (P). Observe that the monomial orderings defined in [22]
and [24] are induced by specific P-orders, in particular we recall the monomial order <1

introduced in [24], which will be useful for this paper: we say that a <1 b if and only if,
for a = (i, j) and b = (k, l), i < k, or i = k and j < l.
If <P is a P-order, we denote by <P

lex the lexicographic order induced by <P on S = K[xv |
v ∈ V (P)], that is the lexicographic order induced by the total order on the variables
defined in the following way: xai <

P
lex xaj if and only if ai <

P aj for i, j ∈ {1, . . . , n}. If
f ∈ S, we denote by in(f) the leading term of f with respect to <P

lex.
Let f, g ∈ IP , we denote by S(f, g) the S-polynomial of f, g with respect to <P

lex. Let G
be the set of all inner 2-minors of P (that is the set of generators of IP). We want to
study some conditions on <P in order to S(f, g) reduces to 0 modulo G.
First of all observe that if [a, b] and [α, β] are two inner intervals and [a, b] ∩ [α, β] does
not contain any corner of [a, b] and [α, β], then gcd(in(fa,b), in(fα,β)) = 1 so S(fa,b, fα,β)
reduces to 0. So it suffices to study the remaining cases.
In the remainder of this section the inner intervals [a, b] and [α, β] have respectively c, d
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and γ, δ as anti-diagonal corners, as in figure 4.

Figure 4

In the following results we examine all possible cases in which |{a, b, c, d} ∩ {α, β, γ, δ}| is
equal to 1 or 2.

Remark 1. Let P be a collection of cells and [a, b] and [α, β] be two inner intervals such
that |{a, b, c, d} ∩ {α, β, γ, δ}| = 2. Then S(fa,b, fα,β) reduces to 0 modulo G with respect
to <P

lex for any P-order. In fact, we may assume that α = d and γ = b. Consider the
non-trivial case when gcd(in(fa,b), in(fα,β)) 6= 1. If in(fa,b) = xaxb and in(fα,β) = −xbxδ,
then S(fa,b, fα,β) = −xδxdxc + xaxβxd = xd(xaxβ − xcxδ). The desired claim follows,
because fa,β ∈ IP and S(fa,b, fα,β) reduces to 0 with respect to fa,β. If in(fa,b) = −xdxc
and in(fα,β) = xβxd, then we obtain the desired conclusion by arguing as before. All other
cases can be discussed similarly.

Lemma 2. Let P be a collection of cells and [a, b] and [α, β] be two inner intervals with
β = b and γ ∈]c, b[ (see Figure 5(a)). Let h be the vertex such that [h, b] is the inner
interval having d, γ as anti-diagonal corner and r be the vertex such that [r, h] is the
interval having a, α as anti-diagonal corner. Let <P be a P-order on V (P) and suppose
that gcd(in(fa,b), in(fα,β)) 6= 1. Then S(fa,b, fα,β) reduces to 0 modulo G with respect to
<P

lex if and only if one of the following conditions occurs:

1. xaxγxδ <
P
lex xαxcxd and in addition h, δ <P α or h, δ <P d;

2. xaxγxδ <
P
lex xαxcxd, {r, h, a, α} is the set of vertices of an inner interval of P and

in addition r, γ <P α or r, γ <P c;

3. xαxcxd <
P
lex xaxγxδ and in addition h, c <P a or h, c <P γ;

4. xαxcxd <
P
lex xaxγxδ, {r, h, a, α} is the set of vertices of an inner interval of P and

in addition r, d <P a or r, d <P δ.

The same characterization holds for S(fc,d, fγ,δ), S(fb,a, fb,α) and S(fd,c, fδ,γ) considering
all the rotations of the described configuration (see respectively Figure 5(b), Figure 5(c)
and Figure 5(d)).

Proof. Observe that gcd(in(fa,b), in(fα,β)) 6= 1 if and only if in(fa,b) = xaxb and in(fα,β) =
xαxb. Since S(fa,b, fα,β) = −xαxcxd + xaxγxδ, we have two possibilities:
1) in(S(fa,b, fα,β)) = −xαxcxd, in particular xaxγxδ <

P
lex xαxcxd. Observe that, since xcxd
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(a) (b) (c) (d)

Figure 5

is not the leading term of fa,b, in such a case the only possibilities for the reduction of
S(fa,b, fα,β) is through a first division by fα,d if in(fα,d) = xαxd or by frγ if in(fr,γ) =
−xαxc. The first case is possible if and only if (h, δ <P α) ∨ (h, δ <P d), and in such case
indeed, after a little computation, S(fa,b, fα,β) reduces by fα,d to xδ(xaxγ − xcxh) = xδfaγ
and this one reduces to 0. For this case we obtain the condition (1) of this lemma. The
second case is possible if and only if the condition (2) is satisfied, that is if [r, h] is an
inner interval of P and (r, γ <P α)∨ (r, γ <P c). In such a case in fact S(fa,b, fα,β) reduces
through fr,γ to xγ(xaxδ − xrxd) = xγfaδ and this one reduces to 0.
2) in(S(fa,b, fα,β)) = xaxγxδ, in particular xαxcxd <

P
lex xaxγxδ. We can argue as in the first

part of this proof observing that, since xγxδ is not the leading term of fα,β, in such a case
the only possibilities for the reduction of S(fa,b, fα,β) is through fa,γ if in(fa,γ) = xaxγ or
by fr,d if in(fr,d) = −xaxδ. The first case is possible if and only if (h, c <P a)∨ (h, c <P γ),
that is the condition (3) holds, while the second is possible if and only if [r, h] is an inner
interval of P and (r, d <P a) ∨ (r, d <P δ), that is the condition (4) is satisfied. In both
cases S(fa,b, fα,β) reduces to 0.
The last statement of this lemma is verified since the only effects of the rotation of a
configuration are the different notations for the same intervals (for instance [a, b] becomes
[c, d], [b, a] or [d, c]) or the change of the sign of the binomials in the generators of IP .

The following four lemmas can be proved by the same arguments of Lemma 2, so we omit
their proofs.

Lemma 3. Let P be a collection of cells and [a, b] and [α, β] be two inner intervals with
γ = b and α ∈]d, b[ (see Figure 6(a)). Let h be the vertex such that [h, b] is the inner
interval having c, α as anti-diagonal corner and r be the vertex such that r, α are the anti-
diagonal corners of the interval [d, δ]. Let <P be a P-order on V (P) and suppose that
gcd(in(fa,b), in(fα,β)) 6= 1. Then S(fa,b, fα,β) reduces to 0 modulo G with respect to <P

lex if
and only if one of the following conditions occurs:

1. xaxαxβ <
P
lex xδxcxd and in addition h, β <P c or h, β <P δ;

2. xaxαxβ <
P
lex xδxcxd, {d, δ, α, r} is the set of vertices of an inner interval of P and

in addition r, α <P δ or r, α <P d;
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3. xδxcxd <
P
lex xaxαxβ and in addition h, d <P a or h, d <P α;

4. xδxcxd <
P
lex xaxαxβ, {d, δ, α, r} is the set of vertices of an inner interval of P and

in addition r, c <P a or r, c <P β.

The same characterization holds for S(fc,d, fγ,δ), S(fb,a, fβ,α) and S(fd,c, fδ,γ) considering
all the rotations of the described configuration (see respectively Figure 6(b), Figure 6(c)
and Figure 6(d)).

(a) (b) (c) (d)

Figure 6

Lemma 4. Let P be a collection of cells and [a, b] and [α, β] be two inner intervals
with α = c and b ∈]α, δ[ (see Figure 7(a)). Let h be the vertex such that h, δ are the
diagonal corners of the inner interval [b, β] and r be the vertex such that r, b are the anti-
diagonal corners of the interval [d, δ]. Let <P be a P-order on V (P) and suppose that
gcd(in(fa,b), in(fα,β)) 6= 1. Then S(fa,b, fα,β) reduces to 0 modulo G with respect to <P

lex if
and only if one of the following conditions occurs:

1. xdxδxγ <
P
lex xβxaxb and in addition h, δ <P b or h, δ <P β;

2. xdxδxγ <
P
lex xβxaxb, {d, δ, b, r} is the set of vertices of an inner interval of P and in

addition r, γ <P a or r, γ <P β;

3. xβxaxb <
P
lex xdxδxγ and in addition h, a <P d or h, a <P γ;

4. xβxaxb <
P
lex xdxδxγ, {d, δ, b, r} is the set of vertices of an inner interval of P and in

addition r, b <P d or r, b <P δ.

The same characterization holds for S(fc,d, fγ,δ), S(fb,a, fβ,α) and S(fd,c, fδ,γ) considering
all the rotations of the described configuration (see respectively Figure 7(b), Figure 7(c)
and Figure 7(d)).

Lemma 5. Let P be a collection of cells and [a, b] and [α, β] be two inner intervals with
γ = c and δ ∈]a, b[ (see Figure 8(a)). Let [h, r] be the inner interval having d, δ as anti-
diagonal corners. Let <P be a P-order on V (P) and suppose that gcd(in(fa,b), in(fα,β)) 6=
1. Then S(fa,b, fα,β) reduces to 0 modulo G with respect to <P

lex if and only if one of the
following conditions occurs:
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1. xdxαxβ <
P
lex xδxaxb and in addition h, α <P a or h, α <P δ;

2. xdxαxβ <
P
lex xδxaxb and in addition r, β <P δ or r, β <P b;

3. xδxaxb <
P
lex xdxαxβ and in addition r, a <P α or r, a <P d;

4. xδxaxb <
P
lex xdxαxβ and in addition h, b <P d or h, b <P β.

The same characterization holds for S(fc,d, fγ,δ), S(fb,a, fβ,α) and S(fd,c, fδ,γ) considering
all the rotations of the described configuration (see respectively Figure 8(b), Figure 8(c)
and Figure 8(d)).

(a) (b) (c) (d)

Figure 7

(a) (b) (c) (d)

Figure 8

Lemma 6. Let P be a collection of cells and [a, b] and [α, β] be two inner intervals with
α = b and β /∈ [a, b] (see Figure 9(a)). Let h, r be the anti-diagonal corners, different to
b, respectively of the intervals [d, δ] and [c, γ]. Let <P be a P-order on V (P) and suppose
that gcd(in(fa,b), in(fα,β)) 6= 1. Then S(fa,b, fα,β) reduces to 0 modulo G with respect to
<P

lex if and only if one of the following conditions occurs:

1. xaxγxδ <
P
lex xβxdxc, {d, δ, b, h} is the set of vertices of an inner interval of P and in

addition h, γ <P β or h, γ <P d;

2. xaxγxδ <
P
lex xβxdxc, {c, γ, b, r} is the set of vertices of an inner interval of P and in

addition r, δ <P β or r, δ <P c;
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3. xβxdxc <
P
lex xaxγxδ, {c, γ, b, r} is the set of vertices of an inner interval of P and in

addition r, d <P a or r, d <P γ;

4. xβxdxc <
P
lex xaxγxδ, {d, δ, b, h} is the set of vertices of an inner interval of P and in

addition c, h <P a or c, h <P δ.

The same characterization holds for S(fc,d, fγ,δ), S(fb,a, fβ,α) and S(fd,c, fδ,γ) considering
all the rotations of the described configuration (see respectively Figure 9(b), Figure 9(c)
and Figure 9(d)).

(a) (b) (c) (d)

Figure 9

4 Gröbner basis of the polyomino ideal of a closed path.

Let P be a polyomino. In this section we examine four special configurations of cells of
a polyomino, that permit us when P is a closed path to provide some particular subsets
Y ⊂ V (P) for which we can define the following P-order.

Definition 7. Let Y ⊂ V (P). We define the P-order <Y in the following way:

a <Y b⇔


a /∈ Y and b ∈ Y
a, b /∈ Y and a <1 b
a, b ∈ Y and a <1 b

for a, b ∈ V (P).

We call a W-pentomino with middle cell A a subpolyomino of P consisting of an horizontal
block B1 = [A1, B1] of rank two, a vertical block B2 = [A2, B2] of rank two and a cell A
not belonging to B1 ∪B2, such that V (B1)∩ V (B2) = {w} and where w is the lower right
corner of A. Moreover, if W is a W-pentomino with middle cell A, we denote by xW the
left upper corner of A, with yW the lower right corner of B1 and with zW the lower right
corner of A2. See Figure 10.
We call an LD-horizontal (vertical) skew tetromino a subpolyomino of P consisting of
two horizontal (vertical) blocks of rank two B1 = [A1, B1] and B2 = [A2, B2] such that
V (B1) ∩ V (A2) = {w1, w2} and w1, w2 are right and left upper (lower and upper right)
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(a) (b)

Figure 10: W-pentomino.

corners of B1. Moreover, if C is an LD-horizontal (vertical) skew tetromino, we denote
by xC, yC the left and right upper corners of A2 (the upper and lower left corners of B1),
and with aC, bC the left and right lower corners of B1 (the upper and lower right corners
of A2). See Figure 11.

(a) (b)

Figure 11: LD-horizontal skew tetromino (a) and LD-vertical skew tetromino (b).

We call an LD-horizontal (vertical) skew hexomino a subpolyomino of P consisting of
two horizontal (vertical) blocks of rank three B1 = [A1, B1] and B2 = [A2, B2] such that
V (B1)∩V (A2) = {w1, w2} and w1, w2 are respectively the right and left upper (lower and
upper right) corners of B1. Moreover, if D is an LD-horizontal (vertical) skew tetromino,
we denote by xD, yD the left and right upper corners of A2 (the upper and lower left
corners of B1), and by aD, bD the the left and right lower corners of B1 (the upper and
lower right corners of A2). See Figure 12.
We call an RW-heptomino with middle cell A a subpolyomino of P consisting of an hori-
zontal block B1 = [A1, B1] of rank three, a vertical block B2 = [A2, B2] of rank three and
a cell A not belonging to B1 ∪ B2, such that V (B1) ∩ V (B2) = {w} and where w is the
upper left corner of A. Moreover, if T is an RW-pentomino with middle cell A, we denote
by xT the right lower corner of A, with yT the left upper corner of B2 and by zT the left
upper corner of A1. See Figure 13.

Theorem 8. Let P be a closed path polyomino not containing any W-pentomino. Let R
be the set of all LD-horizontal and vertical skew tetrominoes contained in P and let Y =⋃
C∈R{xC, yC}. Then G is the reduced Gröbner basis of IP with respect to the monomial

order <Y
lex.
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(a) (b)

Figure 12: LD-horizontal skew hexomino (a) and LD-vertical skew hexomino (b).

(a) (b)

Figure 13: RW-heptomino.

Proof. Let f = xpxq−xrxs and g = xuxv−xwxz be the two binomials attached respectively
to the inner intervals [p, q] and [u, v] of P . We prove that S(f, g) reduces to 0 modulo G
with respect to <Y

lex, examining all possible cases on {p, q, r, s} ∩ {u, v, w, z}.
The case {p, q, r, s} ∩ {u, v, w, z} = ∅ is trivial. If |{p, q, r, s} ∩ {u, v, w, z}| = 2, then
the claim follows from Remark 1. Assume that |{p, q, r, s} ∩ {u, v, w, z}| = 1 and that
[p, q] is not contained in [u, v] or vice versa. Suppose that q = v. For the structure
of P we may assume that s ∈]z, v[ and w ∈]r, q[, so there exists k ∈ {1, . . . , n} such
that Ak = [p, q] ∩ [u, v]. Let Ak−1 be the cell of P[p,q] adjacent to Ak. If Ak−2 is at
North of Ak−1 then none of the vertices in [p, q] and [u, v] belongs to Y and the assertion
follows from (1) of Lemma 2, since xpxwxz <

Y
lex xrxsxu and h, z <Y s, where {h} =

[p, s] ∩ [u,w]. If Ak−2 is at West of Ak−1 then we have two possibilities. Firstly, if
Ak−2 is not a cell of an LD-horizontal skew tetromino then none of the vertices in [p, q]
and [u, v] belongs to Y , so the claim follows as before by applying (1) of Lemma 2.
Secondly, if Ak−2 is a cell of an LD-horizontal skew tetromino, then among the vertices
of [p, q] and [u, v] only r belongs to Y , so the claim follows since gcd(in(f), in(g)) =
1. The cases r = w, p = u and s = z can be proved similarly to the previous ones.
Suppose that q = w. We may assume that u ∈]s, q[, because the arguments are similar
when s ∈]u,w[. Let Ak be the cell of P having r, u as anti-diagonal corners and we
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denote by Ak−1 and Ak+1 respectively the cells of P[p,q] and P[u,v] adjacent to Ak. If
{Ak−2, Ak−1, Ak, Ak+1} is an LD-vertical skew tetromino or {Ak−2, Ak−1, Ak, Ak+1, Ak+2}
is an L-configuration then gcd(in(f), in(g)) = 1. If {Ak−1, Ak, Ak+1, Ak+2} is an LD-
horizontal skew tetromino, then gcd(in(f), in(g)) = xw and applying (1) of Lemma 3 we
have the desired conclusion. Similar arguments hold in the cases s = u, v = r and z = p.
Suppose q = u and let Ak and Ak+2 be the cells of P having respectively q as upper
right and lower left corner. If {Ak−1, Ak, Ak+1, Ak+2} or {Ak, Ak+1, Ak+2, Ak+3} is an LD-
vertical skew tetromino, then gcd(in(f), in(g)) = 1. If {Ak−1, Ak, Ak+1, Ak+2, Ak+3} is an
L-configuration, the claim follows either by gcd(in(f), in(g)) = 1 or by applying Lemma 6
if gcd(in(f), in(g)) 6= 1. If {Ak−1, Ak, Ak+1, Ak+2, Ak+3} is not an L-configuration and does
not contain an LD-vertical skew tetromino, then the only two possibilities are that either
{Ak−1, Ak, Ak+1, Ak+2} or {Ak, Ak+1, Ak+2, Ak+3} is an LD-horizontal skew tetromino. In
both cases gcd(in(f), in(g)) = 1, in particular in the first case the claim follows since P
has not any W -pentomino, so Ak+3 is at East of Ak+2. The other cases s = w, z = r or
v = p can be proved by similar arguments. Finally, it is easy to see that in such cases G
is also the reduced Gröbner basis of IP .

In Figure 14(a) is shown an example of polyomino satisfying Theorem 8.

Remark 9. In [22] the authors introduced the class of thin polyominoes, that consists of
all polyominoes not containing the configuration whose shape is a square made up of four
cells. Such class can be viewed as a generalization of closed paths. We observe that the
conclusion of the previous theorem does not hold in general for thin polyominoes, using
the same monomial order. In fact, we can consider the thin polyomino in Figure 14(b)
and it is not difficult to show that the S-polynomial associated to the marked intervals
does not reduce to 0.

(a) (b)

Figure 14: The highlighted points belong to Y .

Remark 10. By the same arguments, the statement of Theorem 8 holds also for Y =⋃
C∈R{aC, bC}.

Theorem 11. Let P be a closed path polyomino not containing any RW-heptomino. Let
R1 be the set of all LD-horizontal and vertical skew hexominoes contained in P and
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let R2 be the set of all W-pentominoes contained in P. Let Y = (
⋃
D∈R1

{aD, bD}) ∪
(
⋃
W∈R2

{xW , yW}). Then G is the reduced Gröbner basis of IP with respect to the mono-
mial order <Y

lex.

Proof. Let f = xpxq−xrxs and g = xuxv−xwxz be the two binomials attached respectively
to the inner intervals [p, q] and [u, v] of P . We discuss the case |{p, q, r, s}∩{u, v, w, z}| = 1,
where [p, q] is not contained in [u, v] or vice versa. The cases q = v, r = w, p = u and
s = z, as well as q = w, s = u, v = r and z = p, can be proved as in Theorem 8.
Suppose q = u and let Ak and Ak+2 be the cells of P having respectively q as upper
right and lower left corner. If {Ak−1, Ak, Ak+1, Ak+2, Ak+3} is an L-configuration the
claim follows either if gcd(in(f), in(g)) = 1 or by applying Lemma 6 if gcd(in(f), in(g)) 6=
1. If {Ak−2, Ak−1, Ak, Ak+1, Ak+2, Ak+3} or {Ak−1, Ak, Ak+1, Ak+2, Ak+3, Ak+4} is an LD-
horizontal or vertical skew hexomino, then gcd(in(f), in(g)) = 1. Since there does not
exist any RW-heptomino, the last possibilities consist in being Ak−1, Ak, Ak+1 or Ak+2

the middle cell of a W -pentomino. In all these cases we have the desired conclusion either
if gcd(in(f), in(g)) = 1 or by applying Lemma 6 if gcd(in(f), in(g)) 6= 1. The cases s = w,
z = r or v = p can be proved by similar arguments.

Remark 12. With the same arguments, the statement of Theorem 11 holds also considering
Y = (

⋃
D∈R1

{aD, bD}) ∪ (
⋃
W∈R2

{xW , zW}).
Given a closed path polyomino P containing both W-pentominoes and RW-heptominoes,
our aim is to find a P-order <Y , for a suitable set Y ⊂ V (P), such that G is the Gröbner
basis of IP with respect to the monomial order <Y

lex. We are going to define the set Y by
combining the previous construction and the highlighted points in Figures 10, 12, 13, and
proceeding iteratively from the structure of the polyomino and the arrangement of the
cells. In order to simplify notations and writings, we summarize in the table in Figure 15
the arrangements with highlighted points already introduced in the previous definitions
that are useful to define the new set Y . We build up the set Y using the algorithm
explained below, for which it is also important to consider the configurations described
in Figure 16 and Figure 17.

Algorithm 4.1. Let P be a closed path polyomino, whose sequence of cells isA1, A2, . . . , An,
An+1 (with A1 = An+1) and containing both W-pentominoes and RW-heptominoes. Let
i, j ∈ {1, 2, . . . , n, n + 1} with i < j. We define Yi,j ⊂ V (P) be the set provided by the
algorithmic scheme described below:

1. Start with Yi,j = ∅.

2. Define Q = {q ∈ {i, . . . , j} | Aq is the middle cell of a RW-heptomino}.

3. If Q 6= ∅ define q1 = minQ, otherwise define q1 = j.

4. FOR k ∈ {i, . . . , q1} DO:

(a) IF Ak is the middle cell of a W-pentomino THEN Yi,j = Yi,j ∪ {xW , zW} with
reference to II-A of Figure 15.
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B

Figure 15

(b) IF Ak, Ak+1, . . . , Ak+6 is a sequence of cells of an LD-horizontal skew hexomino
THEN Yi,j = Yi,j ∪ {aD, bD} with reference to III-A of Figure 15.

(c) IF Ak, Ak+1, . . . , Ak+6 is a sequence of cells of an LD-vertical skew hexomino
THEN Yi,j = Yi,j ∪ {aD, bD} with reference to IV-A of Figure 15.

5. Define R = {r ∈ {q1 + 1, . . . , j} | Ar is the middle cell of a W-pentomino}.

6. If R 6= ∅ define r1 = minR, otherwise define r1 = j.

7. Define Q = q1 and R = r1.

8. Consider the RW-heptomino with middle cell AQ and let M = max{m ∈ {i, . . . , Q} |
Am ∩ Yi,j 6= ∅}.

9. FOR k ∈ {Q, . . . , R} DO:

(a) IF Ak is the middle cell of an RW-heptomino THEN

IF AM and AQ do not occur as in the configurations of Figure 16

THEN Yi,j = Yi,j ∪ {xT , yT} with reference to I-B of Figure 15

ELSE Yi,j = Yi,j ∪ {xT , zT} with reference to II-B of Figure 15.

(b) IF Ak, Ak+1, . . . , Ak+6 is a sequence of cells of an LD-horizontal skew hexomino
THEN Yi,j = Yi,j ∪ {xD, yD} with reference to III-B of Figure 15.

(c) IF Ak, Ak+1, . . . , Ak+6 is a sequence of cells of an LD-vertical skew hexomino
THEN Yi,j = Yi,j ∪ {xD, yD} with reference to IV-B of Figure 15.

(d) IF R = j THEN RETURN Yi,j.
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Figure 16: Conflicting configurations with I-B.

10. Define Q = {q ∈ {r1 + 1, . . . , j} | Aq is the middle cell of a RW-heptomino}.

11. If Q 6= ∅ define q2 = minQ, otherwise define q2 = j.

12. Define R = r1 and Q = q2.

13. Consider the W-pentomino with middle cell AR and let M = max{m ∈ {i, . . . , R} |
Am ∩ Yi,j 6= ∅}.

14. FOR k ∈ {R, . . . , Q} DO:

(a) IF Ak is the middle cell of a W-pentomino THEN

IF AM and AR do not occur as in the configurations of Figure 17

THEN Yi,j = Yi,j ∪ {xW , yW} with reference to I-A of Figure 15

ELSE Yi,j = Yi,j ∪ {xW , zW} with reference to II-A of Figure 15.

(b) IF Ak, Ak+1, . . . , Ak+6 is a sequence of cells of an LD-horizontal skew hexomino
THEN Yi,j = Yi,j ∪ {aD, bD} with reference to III-A of Figure 15.
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(c) IF Ak, Ak+1, . . . , Ak+6 is a sequence of cells of an LD-vertical skew hexomino
THEN Yi,j = Yi,j ∪ {aD, bD} with reference to IV-A of Figure 15.

(d) IF Q = j THEN RETURN Yi,j.

Figure 17: Conflicting configurations with I-A.

15. ` = 2.

16. WHILE ` > 1 DO

(a) Define R = {r ∈ {q` + 1, . . . , j} | Ar is the middle cell of a W-pentomino}.
(b) If R 6= ∅ define r` = minR, otherwise define r` = j.

(c) Define Q = q` and R = r`.

(d) M = max{m ∈ {i, . . . , Q} | Am ∩ Yi,j 6= ∅}.
(e) Execute the instructions in (9).

(f) Define Q = {q ∈ {r` + 1, . . . , j} | Aq is the middle cell of a RW-heptomino}.
(g) If Q 6= ∅ define q`+1 = minQ, otherwise define q`+1 = j.

(h) Define R = r` and Q = q`+1.

(i) M = max{m ∈ {i, . . . , R} | Am ∩ Yi,j 6= ∅}.
(j) Execute the instructions in (14).

(k) ` = `+ 1.
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17. END

Observe that, since r` < r`+1 and q` < q`+1 for all ` ∈ N then there exists ` such that
r` = j or q` = j, so the procedure stops and the set Yi,j is returned.

Definition 13. Let P be a closed path polyomino containing both W-pentominoes and
RW-heptominoes. Consider a W -pentomino W of P and suppose that W contains the
cells A1, A2, A3, A4 and A5, labelled bottom up as in Figure 18. We put L = Y2,n+1. In
Figure 19 we make in evidence, for instance, the points belonging to L.

Figure 18

Figure 19: The set Y2,n+1 ⊂ V (P) consists of the highlighted points.

Theorem 14. Let P be a closed path. Suppose that P contains a W-pentomino and an
RW-heptomino and let L be the set given in Definition 13. Then G is the reduced Gröbner
basis of IP with respect to <L

lex.
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Proof. Let f and g be the two binomials attached respectively to the inner intervals
[p, q] and [u, v] of P . It suffices to show that S(f, g) reduces to 0 modulo G in every case.
Observe that the desired claim follows from Definitions 4.1 and 13, arguing as in Theorem
11. In fact, we always have that either gcd(in(f), in(g)) = 1 or, if gcd(in(f), in(g)) 6= 1,
it is sufficient to apply the lemmas of Section 3.

Theorem 15. Let P be a closed path polyomino having an L-configuration or a ladder
of at least three steps, or equivalently having no zig-zag walks. Then K[P ] is a normal
Cohen-Macaulay domain.

Proof. From Theorem 14 we obtain that there exists a monomial order ≺ such that G is
the Gröbner basis of IP with respect to ≺, in particular IP admits a squarefree initial ideal
with respect to some monomial order. Since P has an L-configuration or a ladder of three
steps, from [4] we have that IP is a toric ideal. By [16, Corollary 4.26] we obtain that
K[P ] is normal and by [2, Theorem 6.3.5] we obtain that K[P ] is Cohen-Macaulay.

Remark 16. In [18] the authors proved that if P is a balanced polyomino, equivalently P
is simple, then the universal Gröbner basis is squarefree. In general this fact does not hold
for a non-simple polyomino. Consider the closed path P in Figure 20. Let {V1, V2, V3, V4}

Figure 20

and {H1, H2, H3, H4} be respectively the sets of the maximal vertical and horizontal edge
intervals of P such that r = (i, j) ∈ Vi ∩Hj, and let {v1, v2, v3, v4} and {h1, h2, h3, h4} be
the associated sets of the variables. Let w be another variable different from vi and hj.
We recall from [4] that IP = JP , where JP is the kernel of φ, defined as

φ : K[xij : (i, j) ∈ V (P)] −→ K[{vi, hj, w} : i, j ∈ {1, 2, 3, 4}]
φ(xij) = vihjw

k

where k = 0 if (i, j) /∈ A, and k = 1, if (i, j) ∈ A.
Consider the binomial f = x11x23x32x34x41 − x14x22x231x43 attached to the vertices in red
and yellow. Observe that f ∈ IP because φ(x11x23x32x34x41) = φ(x14x22x

2
31x43). We show

that f is primitive, that is there does not exist any binomial g = g+ − g− in IP with
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g 6= f such that g+|x11x23x32x34x41 and g−|x14x22x231x43. Suppose by contradiction that
there exists such a binomial. Observe that 2 < deg(g) < 5, since f 6= g and all binomials
of degree two satisfying the primitive conditions are not inner 2-minors. It is sufficient to
prove that x11 (resp. x22) cannot divide g+ (resp. g−). If that happens, then w divides
φ(g+), which is equal to φ(g−), so x22 divides g−. Since g ∈ IP = JP , in particular
φ(g+) = φ(g−), we obtain that g+ = x11x23x32x34x41 and g− = x14x22x

2
31x43 from easy

calculations. Hence f = g, a contradiction. In conclusion we have that f is a primitive
binomial of IP . Since for a toric ideal the universal Gröbner basis coincides with the
Graver basis (see [29]), the primitive binomials of IP form the universal Gröbner basis G

of IP . Since f is a primitive binomial of IP , it follows that G is not squarefree. Anyway
IP is a radical ideal which admits a squarefree initial ideal with a different monomial
ordering, for instance with respect to <1

lex, since the set of generator of IP is the reduced
Gröbner basis by [24, Theorem 4.1].

We conclude providing some questions which follow immediately from the results of this
paper.

• We ask if the initial ideal of IP , attached to a (weakly) closed path, with respect to
the monomial orders <1

lex and <2
lex defined in [24] is squarefree.

• With reference to [5], we ask if also for all weakly closed path polyominoes there
exist some monomial orders such that the set of the generators of the ideal is the
reduced Gröbner basis.
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Math. Nachr., 288(7):775–783, 2015.

[19] T. Hibi and A. A. Qureshi. Nonsimple polyominoes and prime ideals. Illinois J.
Math., 59(2):391–398, 2015.

[20] S. Hosten and S. Sullivant. Ideals of adjacent minors. J. Algebra, 277(2):615–642,
2004.

[21] C. Mascia, G. Rinaldo and F. Romeo. Primality of multiply connected polyominoes.
Illinois J. Math., 64(3):291–304, 2020.

[22] C. Mascia, G. Rinaldo and F. Romeo. Primality of polyomino ideals by quadratic
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