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Abstract

For three integers n, k, d, we determine the maximum size of a graph on n ver-
tices with fractional matching number k and maximum degree at most d. As a
consequence, we obtain the maximum size of a graph with given number of vertices
and fractional matching number. This partially confirms a conjecture proposed by
Alon et al. on the maximum size of r-uniform hypergraph with a fractional matching
number for the special case when r = 2.

Mathematics Subject Classifications: 05C35, 05C70, 05C72

1 Introduction

For an integer r > 2, an r-uniform hypergraph or more simply, an r-graph, is a pair
H = (V (H), E(H)) with vertex set V (H) and edge set E(H) ⊆

(
V (H)

r

)
. We call the

number of the edges in H the size of H. A matching of H is a set of edges, no two of
which are intersecting. The matching number of H, denoted by ν(H), is the size of a
maximum matching in H. A matching M in H is perfect if every vertex of H is incident
with an edge of M . An r-graph is called a graph if r = 2, denoted by G. We denote the
maximum degree of the vertices of G by ∆(G). For a subset S of V (G), we use G[S] to
denote the subgraph of G induced by S. For the terminologies and concepts not defined
here, we refer the readers to [3, 5, 15].

Let gr(n, k) denote the maximum size of a r-graph H on n vertices with matching
number k. In particular, we replace g2(n, k) by g(n, k). In 1959, Erdős and Gallai [8]
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determined g(n, k), that is, the maximum size of a graph G on n vertices with matching
number k.

Theorem 1. [8] For n > 2k + 1,

g(n, k) = max

{(
2k + 1

2

)
,
k(2n− k − 1)

2

}
.

Later in [7], Erdős further conjectured that, for n > r(k + 1)− 1,

gr(n, k) = max

{(
r(k + 1)− 1

r

)
,

(
n

r

)
−
(
n− k
r

)}
.

This is an important conjecture in hypergraph theory and abundant literatures devote to
it. For the recent progresses on Erdős matching conjecture, we refer to [10, 11, 12] for
details.

In addition to matching number, some other restrictions were also considered in the
literature. Let g(n, k, d) denote the maximum size of the graphs on n vertices with match-
ing number k and the maximum degree at most d. In [6], Chvátal and Hanson determined
g(n, k, d), and hence, generalized Theorem 1.

Theorem 2. [6] Let n, k, d be three positive integers with n > 2k + 1. Set d0 = bd+1
2
c.

(i) If d 6 2k and n 6 2k + b k
d0
c, then

g(n, k, d) =

{
min

{
bnd

2
c, dk + d−1

2

⌊
2(n−k)
d+3

⌋}
, if d is odd;

nd
2
, if d is even.

(ii) If d 6 2k and n > 2k + b k
d0
c, then

g(n, k, d) = dk +

⌊
d

2

⌋⌊
k

d0

⌋
.

(iii) If d > 2k + 1, then

g(n, k, d) =

{
max

{(
2k+1

2

)
,
⌊
k(n+d−k)

2

⌋}
, if n 6 k + d;

dk, if n > k + d.

We refer to [2, 4, 13] for more details on this topic.
Let us focus on the fractional version of Theorem 2 in the following.
A fractional matching of an r-graph H is a function f assigning each edge with a real

number in [0, 1] so that
∑

e∈Γ(v) f(e) 6 1 for each v ∈ V (H), where Γ(v) is the set of edges

incident with v in H. The fractional matching number of H, denoted by νf (H), is the
maximum value of

∑
e∈E(H) f(e) over all fractional matchings f . A fractional matching

of H is perfect if
∑

e∈Γ(H) f(e) = 1 for each v ∈ V (H). Clearly, H has a fractional perfect

matching if and only if νf (H) = |V (G)|
r

. It was shown that the fractional matching number
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νf (G) of a graph G is either an integer or a semi-integer, that is, 2νf (G) is integer (see
[16], Theorem 2.1.5).

Let F(n, k, d) denote the class of graphs on n vertices with fractional matching number
k and the maximum degree at most d. Further, let f(n, k, d) denote the maximum size of
the graphs in F(n, k, d), i.e.,

f(n, k, d) = max{|E(G)| : |V (G)| = n, νf (G) = k, ∆(G) 6 d}.

It is clear that f(n, k, d) = f(n, k, n − 1) when d > n − 1, and hence we always assume
d 6 n− 1.

In this paper, we determine f(n, k, d) as follows.

Theorem 3. Let n, 2k, d be three positive integers with n > 2k. If 2k is even, then

f(n, k, d) =

{
max

{(
2k
2

)
,
⌊
k(n+d−k)

2

⌋}
, if d > 2k − 1, n 6 d+ k;

dk, otherwise.

If 2k is odd, then

f(n, k, d) =


max

{(
2k
2

)
, d(k − 3

2
) + 3

}
, if d > 2k − 1, n > d+ k − 3

2
;

max
{(

2k
2

)
,
⌊

(k− 3
2

)(n+d−k+ 3
2

)

2

⌋
+ 3
}
, if d > 2k − 1, n 6 d+ k − 3

2
;

bdkc, if d 6 2k − 1.

For a graph G, let f(n, k) = max{|E(G)| : |V (G)| = n, νf (G) = k}. Note that
f(n, k, n−1) = f(n, k). As a consequence of Theorem 3, we obtain the following fractional
version of Theorem 1.

Theorem 4. Let n, 2k be two positive integers with n > 2k. If 2k is even, then

f(n, k) = max

{(
2k

2

)
,
k(2n− k − 1)

2

}
.

If 2k is odd, then

f(n, k) = max

{(
2k

2

)
,

(k − 3
2
)(2n− k + 1

2
)

2
+ 3

}
.

In [1], Alon et al. formulated the fractional version of Erdős matching conjecture for
r-uniform hypergraphs as follows. Let f ∗r (n, s) = max{|E(H)| : |V (H)| = n, νf (H) < s}.

Conjecture 5. [1] For all integers r > 2 and an integer s with 0 6 s 6 n
r
,

f ∗r (n, s) = max

{(
rs− 1

r

)
,

(
n

r

)
−
(
n− s+ 1

r

)}
.
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In the same article, they also showed that Conjecture 5 asymptotically holds for r ∈
{3, 4} and 0 6 s 6 n

r+1
when n tends to infinity. For r = 2, Theorem 1 implies that

Conjecture 5 is asymptotically true when n goes to infinity. As far as we know, this
conjecture still remains open even if r = 2 in general. In fact, by Theorem 4, we obtain
the following corollary, which confirms that Conjecture 5 is true for r = 2.

Corollary 6. For any nonnegative integer s with n > 2s,

f ∗2 (n, s) = max

{(
2s− 1

2

)
,

(
n

2

)
−
(
n− s+ 1

2

)}
.

The rest of this article is organized as follows. In Section 2, we establish the necessary
upper bounds on f(n, k, d). In Section 3, we construct the corresponding extremal graphs
attaining these upper bounds and, hence, give a proof of Theorem 3.

2 Upper bounds

To obtain the upper bounds of f(n, k, d), we begin this section with the following known
result, called fractional Tutte-Berge formula, which characterizes the fractional matching
number of a graph.

Theorem 7. [16] Let G be a graph G with n vertices. Then

νf (G) =
1

2

(
n− max

S⊆V (G)
{i(G− S)− |S|}

)
,

where i(G− S) is the number of isolated vertices in G− S.

Before the proof of upper bounds of f(n, k, d), we also need a result with regard to
the maximum value of a function, which plays a vital role in our proof. Let n, 2k, d be
three positive integers with n > 2k and d 6 n− 1. We now define a function

F (x) = min

{
dx,

x(n+ d− x)

2

}
+ min

{
d(k − x),

(
2k − 2x

2

)}
on nonnegative real number x, and its maximum value in given intervals can be obtained.

Lemma 8. If 2k is even and 0 6 x 6 k, then

F (x) 6

{
max

{(
2k
2

)
, k(n+d−k)

2

}
, if d > 2k − 1, n 6 d+ k;

dk, otherwise.

If 2k is odd and 0 6 x 6 k − 3
2
, then

F (x) 6


max

{(
2k
2

)
, d(k − 3

2
) + 3

}
, if d > 2k − 1, n > d+ k − 3

2
;

max
{(

2k
2

)
,

(k− 3
2

)(n+d−k+ 3
2

)

2
+ 3
}
, if d > 2k − 1, n 6 d+ k − 3

2
;

dk, if d 6 2k − 1.
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Lemma 8 can be proved trivially by the convexity of the function, and for the coherence
and completeness we will prove it in Appendix.

Now we present the upper bounds of f(n, k, d).

Lemma 9. Let n, 2k, d be three positive integers with n > 2k. If 2k is even, then

f(n, k, d) 6

{
max

{(
2k
2

)
,
⌊
k(n+d−k)

2

⌋}
, if d > 2k − 1, n 6 d+ k;

dk, otherwise.

If 2k is odd, then

f(n, k, d) 6


max

{(
2k
2

)
, d(k − 3

2
) + 3

}
, if d > 2k − 1, n > d+ k − 3

2
;

max
{(

2k
2

)
,
⌊

(k− 3
2

)(n+d−k+ 3
2

)

2

⌋
+ 3
}
, if d > 2k − 1, n 6 d+ k − 3

2
;

bdkc, if d 6 2k − 1.

Proof. Let G be a graph with n vertices satisfying νf (G) = k and ∆(G) 6 d. By Theorem
7, there exists a subset S of V (G) such that i(G−S)−|S| = n−2k. Let C ⊆ V (G) be the
set of vertices that are neither in S nor isolated in G−S. Then |C| = n−|S|−i(G−S) 6= 1.
We set s = |S| and c = |C| for convenience. Then we have 0 6 c = 2k − 2s 6= 1, that is,
the range of s is D = {s ∈ N : s 6 k, s 6= k − 1

2
}.

Let α be the number of edges in G[S], let β be the number of edges in G having
exactly one vertex in S, and let γ be the number of edges in G[C]. Since ∆(G) 6 d, we
have 2α + β 6 ds. On the one hand, α + β 6 2α + β 6 ds. On the other hand, since
β 6 s(n− s), we obtain α + β 6 s(n+d−s)

2
. Consequently,

α + β 6 min

{
ds,

s(n+ d− s)
2

}
.

Moreover, for the subgraph G[C] of G, if d 6 c − 1 then γ 6 dc
2

; otherwise γ 6
(
c
2

)
.

Clearly, we have

γ 6 min

{
dc

2
,

(
c

2

)}
= min

{
d(k − s),

(
2k − 2s

2

)}
.

As a result,

|E(G)| = α + β + γ

6 min

{
ds,

s(n+ d− s)
2

}
+ min

{
d(k − s),

(
2k − 2s

2

)}
= F (s).

Recall that D = {s ∈ N : s 6 k, s 6= k − 1
2
}. Therefore,

f(n, k, d) 6 max
s∈D

F (s).

Since f(n, k, d) is an integer, it suffices to obtain the maximum integer which is no more
than the maximum value of F (s) for any s ∈ D. Moreover, if 2k is odd, then the fact
s ∈ D implies s 6 k − 3

2
. By Lemma 8, we complete the proof.
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3 Constructions of extremal graphs

In this section, we construct several extremal graphs satisfying conditions to attain
f(n, k, d). We begin with some useful results.

For a k-regular graph G, if we assign to each edge a number 1
k
, then we obtain a

fractional perfect matching of G. Therefore we have the following proposition.

Proposition 10. Let G be a k-regular graph. Then G has a fractional perfect matching.

We call that a sequence d1, d2, . . . , dn of nonnegative integers is graphic if it is a degree
sequence of a simple graph G, and the graph G is said to realize the sequence d1, d2, . . . , dn.
The following characterization of graphic sequence is due to Erdős and Gallai.

Theorem 11. [9] A sequence d1 > d2 > . . . > dn is graphic if and only if
∑n

i=1 di is even
and

t∑
i=1

di 6 t(t− 1) +
n∑

i=t+1

min{t, di}

for t = 1, 2, . . . , n.

A spanning subgraph of a graph G is said to k-factor if the degree of its each vertex is
equal to k. The following result gives a sufficient condition with regard to degree sequences
such that the graph contains a k-factor.

Theorem 12. [14] If the sequences d1 > d2 > · · · > dn and d1−k > d2−k > · · · > dn−k
are graphic, then the sequence d1, d2, . . . , dn can be realized by a graph G which contains
a k-factor.

Let d and n be two odd numbers with 3 6 d 6 n − 2. Theorem 11 ensures that two
sequences d, d, . . . , d, d− 1 and d− 2, d− 2, . . . , d− 2, d− 3 of length n are both graphic.
By Theorem 12, the sequence d, d, . . . , d− 1 can be realized by a graph G which contains
a 2-factor. We know that if a graph G contains a 2-factor, then it has a fractional perfect
matching. Therefore we have the following result, which is useful in our forthcoming
argument.

Corollary 13. Let d and n be two odd numbers with 3 6 d 6 n− 2. Then the sequence
d, d, . . . , d, d − 1 of length n can be realized by a graph which has a fractional perfect
matching.

Now we construct extremal graphs to attain f(n, k, d). Several notations are used in
our constructions. We use Kn and Kn to denote a complete graph and an empty graph
with n vertices, respectively. For two graphs G1 and G2, we denote the disjoint union of
G1 and G2 by G1 ∪G2. Let us first consider the case that 2k is even.

Lemma 14. Let n, 2k, d be three positive integers with n > 2k. If 2k is even, then

f(n, k, d) >

{
max

{(
2k
2

)
,
⌊
k(n+d−k)

2

⌋}
, if d > 2k − 1, n 6 d+ k;

dk, otherwise.
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Proof. Let us divide into two cases to complete the proof.

Case 1. d > 2k − 1 and n 6 d+ k.
If d 6 5k − n− 2, then

max

{(
2k

2

)
,

⌊
k(n− k + d)

2

⌋}
=

(
2k

2

)
.

We can check that K2k ∪Kn−2k ∈ F(n, k, d) and its size is
(

2k
2

)
. Thus f(n, k, d) >

(
2k
2

)
.

If d > 5k − n− 2, then

max

{(
2k

2

)
,

⌊
k(n− k + d)

2

⌋}
=

⌊
k(n− k + d)

2

⌋
.

Consider the parity of k(n − k + d). When k(n − k + d) is even, we take a (k − n + d)-
regular graph G0 with k vertices. When k(n−k+d) is odd, we take a graph G0 with k−1
vertices of degree k− n+ d and a vertex of degree k− n+ d− 1. Add n− k independent
vertices to G0 such that they are adjacent to each vertex of G0, which contains a matching
covering each vertex of G0 between G0 and these independent vertices, and denote the
resulting graph by G. Clearly, νf (G) = k and ∆(G) = d, and then G ∈ F(n, k, d). By
the construction of G, we have

|E(G)| =
⌊
k(k − n+ d)

2

⌋
+ k(n− k) =

⌊
k(n− k + d)

2

⌋
.

Thus f(n, k, d) >
⌊
k(n−k+d)

2

⌋
.

Case 2. d 6 2k − 1 or n > d+ k.
If d 6 2k−1 and n 6 d+k, we take a d-regular graph G0 with 2k vertices. Proposition

10 ensures that G0 has a fractional perfect matching, and then νf (G0) = k. Clearly,
G = G0 ∪Kn−2k ∈ F(n, k, d) and |E(G)| = dk. Thus f(n, k, d) > dk.

If n > d+ k, let X = {x1, x2, . . . , xk} and Y = {y1, y2, . . . , yh} be two sets of vertices,
where h = n − k > k. For i = 1, 2, . . . , k, joining the vertex xi with every vertex yj by
an edge, where j = i + t (mod h) for t = 0, 1, . . . , d − 1, we call the resulting graph G.
Clearly, νf (G) = k, ∆(G) = d and |E(G)| = dk. Thus f(n, k, d) > dk.

Next we give the lower bounds of f(n, k, d) when 2k is odd.

Lemma 15. Let n, 2k, d be three positive integers with n > 2k. If 2k is odd, then

f(n, k, d) >


max

{(
2k
2

)
, d(k − 3

2
) + 3

}
, if d > 2k − 1, n > d+ k − 3

2
;

max
{(

2k
2

)
,
⌊

(k− 3
2

)(n+d−k+ 3
2

)

2

⌋
+ 3
}
, if d > 2k − 1, n 6 d+ k − 3

2
;

bdkc, if d 6 2k − 1.

Proof. The fact that 2k is odd implies d > 2; otherwise d = 1, which implies fractional
matching number k must be an integer, a contradiction. If k = 3

2
, then we have G =
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K3∪Kn−3, and hence f(n, 3
2
, d) = 3. So we may assume k > 5

2
in the following discussion.

Now let us discuss three cases.

Case 1. d > 2k − 1 and n > d+ k − 3
2
.

If d 6 k(2k−1)−3

k− 3
2

, then

max

{(
2k

2

)
, d(k − 3

2
) + 3

}
=

(
2k

2

)
.

Clearly, K2k ∪Kn−2k ∈ F(n, k, d). Thus f(n, k, d) >
(

2k
2

)
.

If d > k(2k−1)−3

k− 3
2

, then

max

{(
2k

2

)
, d(k − 3

2
) + 3

}
= d(k − 3

2
) + 3.

Let X = {x1, x2, . . . , xl} and Y = {y1, y2, . . . , yh} be two sets of vertices, where l = k − 3
2

and h = n− k + 3
2
. Note that h− l > 3 as n > 2k. For i = 1, 2, . . . , l, joining the vertex

xi with every vertex yj by an edge, where j = i+ t (mod h) for t = 0, 1, . . . , d− 1, we call
the resulting graph G0. Clearly, M = {xiyi ∈ E(G0) : i = 1, 2, . . . , l} forms a matching
covering X, and there exist at least three independent vertices yl+1, yl+2 and yl+3 in Y
which are not covered by M as h− l > 3. Add three edges in {yl+1, yl+2, yl+3} such that
they form a K3 to G0, and call the resulting graph G. Clearly, νf (G) = l + 3

2
= k and

∆(G) = d, and hence G ∈ F(n, k, d). Thus f(n, k, d) > d(k − 3
2
) + 3.

Case 2. d > 2k − 1 and n 6 d+ k − 3
2
.

If n > 4k2−2k−6
k− 3

2

+ k − d− 3
2
, then

max

{(
2k

2

)
,

⌊
(k − 3

2
)(n− k + d+ 3

2
)

2

⌋
+ 3

}
=

(
2k

2

)
.

Clearly, K2k ∪Kn−2k ∈ F(n, k, d). Thus f(n, k, d) >
(

2k
2

)
.

If n 6 4k2−2k−6
k− 3

2

+ k − d− 3
2
, then

max

{(
2k

2

)
,

⌊
(k − 3

2
)(n− k + d+ 3

2
)

2

⌋
+ 3

}
=

⌊
(k − 3

2
)(n− k + d+ 3

2
)

2

⌋
+ 3.

Consider the parity of (k− 3
2
)(n−k+d+ 3

2
). When (k− 3

2
)(n−k+d+ 3

2
) is even, we take

a graph G0 with k − 3
2

vertices of degree k − n + d− 3
2
. When (k − 3

2
)(n− k + d + 3

2
) is

odd, we take a graph G0 with k− 5
2

vertices of degree k−n+d− 3
2

and a vertex of degree
k−n+d− 5

2
. Add n−k− 3

2
independent vertices to G0 such that they are adjacent to each

vertex of G0, which contains a matching covering each vertex of G0 between G0 and these
independent vertices, and denote the resulting graph by G1. Therefore νf (G1) = k − 3

2
.

Furthermore, add a K3 formed by remainder three vertices to G1 such that each vertex
of K3 are adjacent to each vertex of G0, and denote the resulting graph by G. Then we
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have νf (G) = νf (G1) + 3
2

= k and ∆(G) = d. Then G ∈ F(n, k, d). By the construction
of G, we have

|E(G)| =
⌊

(k − 3
2
)(k − n+ d− 3

2
)

2

⌋
+ (k − 3

2
)(n− k +

3

2
) + 3

=

⌊
(k − 3

2
)(n− k + d+ 3

2
)

2

⌋
+ 3.

Thus f(n, k, d) >
⌊

(k− 3
2

)(n−k+d+ 3
2

)

2

⌋
+ 3.

Case 3. d 6 2k − 1.
When d is even, we can take a d-regular graph G0 with 2k vertices. By Proposition

10, G0 has a fractional perfect matching. When d is odd, Corollary 13 ensures that we
can find a graph G0 with 2k − 1 vertices of degree d and one vertex of degree d − 1
such that G0 contains a fractional perfect matching. Therefore, νf (G0) = k. Clearly,
G = G0 ∪Kn−2k ∈ F(n, k, d) and |E(G)| = bdkc. Thus f(n, k, d) > bdkc.
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Ser. A 119 (2012), 1200–1215.

[2] N. Balachandran, N. Khare, Graphs with restricted valency and matching number,
Discrete Math. 309 (2009), 4176–4180.

[3] C. Berge, Hypergraphs, North-Holland Mathematical Library 45, North-Holland,
Amsterdam, 1989.

[4] B. Bollobás, Extremal Graph Theory, Academic Press, 1978.

[5] J. Bondy, U.S.R. Murty, Graph Theory, Graduate Texts in Mathematics 244,
Springer, 2008.
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Appendix. Proof of Lemma 8

Let us recall that n > 2k, d 6 n− 1 and the function

F (x) = min

{
dx,

x(n+ d− x)

2

}
+ min

{
d(k − x),

(
2k − 2x

2

)}
,

where x > 0.
It is easy to see that dx = x(n+d−x)

2
iff x = n−d, and d(k−x) =

(
2k−2x

2

)
iff x = k− d+1

2
.

If k − d+1
2

> 0, then k − d+1
2
< k − d

2
6 2k − d 6 n− d; otherwise k − d+1

2
6 0 < n− d.

So k − d+1
2
< n− d always holds. We can rewrite the function

F (x) =


dk, if x 6 k − d+1

2
;

dx+
(

2k−2x
2

)
, if k − d+1

2
6 x 6 n− d;

x(n+d−x)
2

+
(

2k−2x
2

)
, if x > n− d.

Let F1(x) = dk, F2(x) = dx +
(

2k−2x
2

)
and F3(x) = x(n+d−x)

2
+
(

2k−2x
2

)
. Note that Fi(x)

is convex for i = 1, 2, 3. To obtain the maximum value of F (x), it suffices to discuss
maximum values of Fi(x)’s in corresponding intervals.

Case 1. 2k is even and 0 6 x 6 k.
(i) If d > 2k− 1 and n > d+ k, then k− d+1

2
6 0 < k 6 n− d. Clearly, F (x) = F2(x)

for any x with 0 6 x 6 k. By the convexity of F2(x), we have

F (x) 6 max{F2(0), F2(k)}

= max

{(
2k

2

)
, dk

}
= dk.

(ii) If d > 2k− 1 and n 6 d+ k, then k− d+1
2

6 0 < n− d 6 k. Clearly, F (x) = F2(x)
when 0 6 x 6 n− d, and F (x) = F3(x) when n− d 6 x 6 k. By the convexity of F3(x),
we have F3(n− d) 6 max{F3(0), F3(k)}. Since F2(0) = F3(0), it follows that

F (x) 6 max{F2(0), F3(n− d), F3(k)}

= max

{(
2k

2

)
,
k(n+ d− k)

2

}
.

(iii) If d 6 2k−1 and n > d+k, then 0 6 k− d+1
2
< k 6 n−d. Clearly, F (x) = F1(x)

when 0 6 x 6 k − d+1
2

, and F (x) = F2(x) when k − d+1
2

6 x 6 k. Then we obtain

F (s) 6 max

{
F1(0), F1(k − d+ 1

2
), F2(k)

}
= dk.

(iv) If d 6 2k − 1 and n 6 d + k, then 0 6 k − d+1
2

< n − d 6 k. Clearly,
F (x) = F1(x) when 0 6 x 6 k − d+1

2
, and F (x) = F2(x) when k − d+1

2
6 x 6 n − d,
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and F (x) = F3(x) when n− d 6 x 6 k. By the convexity of F2(x), we have F2(n− d) 6
max{F2(k − d+1

2
), F2(k)} = dk. This implies that

F (x) 6 max

{
F1(0), F2(k − d+ 1

2
), F2(n− d), F3(k)

}
= max

{
dk,

k(n+ d− k)

2

}
= dk.

Consequently, if 2k is even and 0 6 x 6 k, then

F (x) 6

{
max

{(
2k
2

)
, k(n+d−k)

2

}
, if d > 2k − 1, n 6 d+ k;

dk, otherwise .

Case 2. 2k is odd and 0 6 x 6 k − 3
2
.

Note that d > 2. Otherwise d = 1 implies that k is an integer, which contradicts that
2k is odd.

(i) If d > 2k − 1 and n > d + k − 3
2
, then k − d+1

2
6 0 6 k − 3

2
6 n − d. Clearly,

F (x) = F2(x) for any x with 0 6 x 6 k − 3
2
. By the convexity of F2(x), we have

F (x) 6 max

{
F2(0), F2(k − 3

2
)

}
= max

{(
2k

2

)
, d(k − 3

2
) + 3

}
.

(ii) If d > 2k − 1 and n 6 d + k − 3
2
, then k − d+1

2
6 0 < n − d 6 k − 3

2
. Clearly,

F (x) = F2(x) when 0 6 x 6 n − d, and F (x) = F3(x) when n − d 6 x 6 k − 3
2
. By the

convexity of F3(x), we have F3(n − d) 6 max{F3(0), F3(k − 3
2
)}. Since F2(0) = F3(0), it

follows that

F (x) 6 max

{
F2(0), F3(n− d), F3(k − 3

2
)

}
= max

{(
2k

2

)
,

(k − 3
2
)(n+ d− k + 3

2
)

2
+ 3

}
.

(iii) If d 6 2k − 1 and n > d + k − 3
2
, then 0 6 k − d+1

2
6 k − 3

2
6 n − d. Clearly,

F (x) = F1(x) when 0 6 x 6 k− d+1
2

, and F (x) = F2(x) when k− d+1
2

6 x 6 k− 3
2
. Then

we obtain

F (x) 6 max

{
F1(0), F1(k − d+ 1

2
), F2(k − 3

2
)

}
= dk.
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(iv) If d 6 2k − 1 and n 6 d + k − 3
2
, then 0 6 k − d+1

2
< n − d 6 k − 3

2
. Clearly,

F (x) = F1(x) when 0 6 x 6 k − d+1
2

, and F (x) = F2(x) when k − d+1
2

6 x 6 n − d,
and F (x) = F3(x) when n − d 6 x 6 k − 3

2
. By the convexity of F2(x), we have

F2(n− d) 6 max{F2(k − d+1
2

), F2(k − 3
2
)} = dk. This implies that

F (x) 6 max

{
F1(0), F2(k − d+ 1

2
), F2(n− d), F3(k − 3

2
)

}
= max

{
dk,

(k − 3
2
)(n+ d− k + 3

2
)

2

}
= dk.

Consequently, if 2k is odd and 0 6 x 6 k − 3
2
, then

F (x) 6


max

{(
2k
2

)
, d(k − 3

2
) + 3

}
, if d > 2k − 1, n > d+ k − 3

2
;

max
{(

2k
2

)
,

(k− 3
2

)(n+d−k+ 3
2

)

2
+ 3
}
, if d > 2k − 1, n 6 d+ k − 3

2
;

dk, if d 6 2k − 1.

We complete the proof of Lemma 8.
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