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Abstract

A permutation is layered if it contains neither 231 nor 312 as a pattern. It is
known that, if σ is a layered permutation, then the density of σ in a permutation of
order n is maximized by a layered permutation. Albert, Atkinson, Handley, Holton
and Stromquist [Electron. J. Combin. 9 (2002), #R5] claimed that the density of
a layered permutation with layers of sizes (a, 1, b) where a, b > 2 is asymptotically
maximized by layered permutations with a bounded number of layers, and conjec-
tured that the same holds if a layered permutation has no consecutive layers of size
one and its first and last layers are of size at least two.

We show that, if σ is a layered permutation whose first layer is sufficiently large
and second layer is of size one, then the number of layers tends to infinity in every
sequence of layered permutations asymptotically maximizing the density of σ. This
disproves the conjecture and the claim of Albert et al. We complement this result
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by giving sufficient conditions on a layered permutation to have asymptotic or exact
maximizers with a bounded number of layers.

Mathematics Subject Classifications: 05A05

1 Introduction

We study permutations maximizing the density of a given pattern. A permutation is a
bijective function π from [n] to [n] (we use [n] to denote the set of the first n positive
integers); the order of a permutation π, denoted by |π|, is the size n of its domain. If
π is a permutation of order n, then the permutation induced by m points i1 < · · · < im
of [n] is the unique permutation σ : [m] → [m] such that σ(j) < σ(j′) if and only if
π(ij) < π(ij′) for all j, j′ ∈ [m]. The density of a permutation σ in a permutation π of
order n > |σ|, denoted by d(σ, π), is the probability that |σ| randomly chosen distinct
points of [n] induce σ; in this context, the permutation σ is often referred to as a pattern
and one may speak about permutations containing or avoiding a specific pattern.

The problem of maximizing the density of a permutation σ can be traced back to the
work of Galvin, Kleitman, Stromquist and Wilf in the early 1990s (cf. [22]). The packing
density of a permutation σ is the limit of the maximum density of σ in a permutation
π of order n for n → ∞; an averaging argument implies that the limit exists as the
quantity is non-increasing with n (see, e.g., [1, Proposition 1.1]). It is easy to see that the
packing density of the permutation 12, and more generally 12 · · · k for every k > 2, is 1
(we write σ(1) · · · σ(m) to represent the permutation σ of order m). For the permutation
132, Galvin, Kleitman and Stromquist (independently and unpublished) showed that the
packing density is 2

√
3− 3; a sketch of a proof can be found in [20, Example 2.4.2]. See

e.g. [14, 17] for additional results.
In this paper, we are interested in the structure of permutations maximizing the density

of a layered permutation: a permutation σ of order m is layered if [m] can be partitioned to
intervals I1, . . . , Ik such that σ restricted to each Ij, j ∈ [k], is decreasing, and σ(x) < σ(x′)
for any x ∈ Ij and x′ ∈ Ij′ such that 1 6 j < j′ 6 k (we assume that the intervals are
indexed in the order that they follow in [m]). The intervals I1, . . . , Ik are referred to
as layers of σ and layers of size one as singletons. We also refer to σ as the layered
permutation with layers of sizes (|I1|, . . . , |Ik|). It is not hard to show that a permutation
is layered if and only if it avoids the patterns 231 and 312; we refer to [4, 8, 15, 19, 21] for
additional results on layered permutations. If σ is a layered permutation, then for every
n > |σ|, there exists a layered permutation of order n that maximizes the density of σ
among all permutations of order n [1,3,18], and if no layer of σ is a singleton, then every
permutation of order n that maximizes the density of σ is layered [1]; we also refer to [16]
for a comprehensive treatment of maximizing the density of layered permutations.

To state our results, we need to fix some notation. Given a permutation σ, a permuta-
tion π of order at least |σ| is σ-optimal if π is a permutation of order |π| with the largest
density of σ among all permutations of order |π|. In particular, the results of the previous
paragraph say that if σ is a layered permutation, then there exists a layered σ-optimal
permutation of every order n > |σ|, and if each layer of σ has size at least two, then every
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σ-optimal permutation is layered. Following the terminology of Warren [20], we say that
a sequence (πn)n∈N of permutations is near-σ-optimal if the orders of πn tend to infinity
and the density of σ in πn converges to the packing density of σ. Observe that for every
layered permutation σ, there exists a near-σ-optimal sequence of layered permutations.

Our central focus is on the question of whether the number of layers in a near-σ-optimal
sequence of layered permutations must grow to infinity for a given layered permutation
σ. For example, if σ is a layered permutation in which the first or last layer is a singleton,
then the number of layers in any near-σ-optimal sequence of layered permutations grows
to infinity [1, Proposition 2.10]. On the other hand, if σ has layers of sizes (a, b) for
a, b > 2, then there exists a near-σ-optimal sequence of layered permutations where the
number of layers is bounded [16]; more generally, Albert et al. [1] showed the following.

Theorem 1 (Albert et al. [1, Theorem 2.7]). If σ is a layered permutation such that each
layer of σ has size at least two, then there exist a near-σ-optimal sequence (πn)n∈N and
an integer K ∈ N such that each πn has at most K layers.

Albert et al. [1] also stated a conjecture generalizing Theorem 1. We remark that the
conjecture is stated in [1] in terms of layered permutations of “bounded-type.” In [1, p. 13],
it is said that “the bounded case corresponds precisely to when ps = δ(σ) for some index
s” (in the notation of [1]). This is equivalent to the existence of a near-σ-optimal sequence
with a bounded number of layers, and so their conjecture is equivalent to the following.

Conjecture 1 (Albert et al. [1, Conjecture 2.9]). If σ is a layered permutation with layers
of sizes (`1, . . . , `k) such that `1 > 1, `k > 1 and no two consecutive layers of σ have size
one, then there exist a near-σ-optimal sequence (πn)n∈N of layered permutations and an
integer K ∈ N such that each πn has at most K layers.

As evidence for Conjecture 1, Albert et al. [1] stated the following proposition without
proof and claimed that it follows by an argument similar to the proof of [1, Theorem 2.7].

Proposition 2 (Albert et al. [1, Proposition 2.8]). If σ is a layered permutation with
layers of sizes (a, 1, b) where a > 1 and b > 1, then there exists a near-σ-optimal sequence
(πn)n∈N of layered permutations and K ∈ N such that each πn has at most K layers.

Our first result is a counterexample to Conjecture 1, which also provides a counterex-
ample to Proposition 2.

Theorem 3. For every k ∈ N and `1, . . . , `k, there exists n0 such that if n > n0 and σ
is the layered permutation with layers of sizes (n, 1, `1, . . . , `k), then the number of layers
in the permutations of every near-σ-optimal sequence of layered permutations tends to
infinity.

In particular, we show (see the discussion at the end of Section 3), that the layered
permutation with three layers of sizes (13, 1, 2) satisfies the conclusion of Theorem 3, and
hence it fails to satisfy the conclusion of Proposition 2 despite satisfying its hypothesis.
We remark that Proposition 2 was used in the paper of Hästö [7] for layered permutations
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with layers of sizes (k, 1, k) for k > 2. Fortunately, while Proposition 2 is false in general,
its conclusion holds for this family of permutations. This is a special case of our positive
results (Theorems 4 and 5) stated below.

We state and prove some of our results using the language from the theory of permuta-
tion limits which was introduced by Hoppen et al. [9,10] and applied in various problems
concerning permutations e.g. [2,5,6,11,12]. At the center of this theory is the notion of a
permuton, which is an analytic representation of a large permutation. The link between
the finite and limit settings is presented in Section 2. In particular, we show that the
existence of a near-σ-optimal sequence of layered permutations with bounded number of
layers is equivalent to the existence of a σ-optimal layered permuton with a bounded
number of layers.

To complement the negative result of Theorem 3, we offer two sufficient conditions on
a layered permutation σ for the existence of a near-σ-optimal sequences whose elements
are layered permutations with a bounded number of layers. In fact, in some cases, we
can obtain a seemingly stronger conclusion that the number of layers in any σ-optimal
permutation is bounded by a universal constant depending on σ only. In Section 5, we
ask whether these properties are, in fact, equivalent. We remark that the importance of
the presence of layers of size one in relation to the existence of large σ-optimal permu-
tations with a bounded number of layers is consistent with additional results on layered
permutations, cf. [1, 7, 16,19,21].

Theorem 4. Let σ be a layered permutation with layers of sizes (`1, . . . , `k) and k > 2. If
`1 > 2, `k > 2 and `i + `i+1 > max{`1, `k}+ 1 for every i ∈ [k − 1], then every σ-optimal
layered permuton has finitely many layers.

Theorem 5. Let σ be a layered permutation with layers of sizes (`1, . . . , `k) and k > 2.
If `1 = `k > 2 and every two consecutive layers of σ contain a layer of size `1 = `k, then
there exists an integer K ∈ N such that the number of layers of any σ-optimal layered
permutation is at most K.

2 Permutation limits

In this section, we introduce notions from the theory of permutation limits used through-
out the paper, and establish a link between the number of layers of a pattern maximizer
in the limit and finite settings. Recall that the density of a permutation σ in a permuta-
tion π of order n > |σ| is the probability that |σ| randomly chosen distinct elements of π
induce σ. A sequence (πn)n∈N of permutations is convergent if their orders |πn| tend to
infinity and d(σ, πn) converges for every permutation σ. By compactness, every sequence
of permutations with orders tending to infinity has a convergent subsequence.

Limits of convergent sequences of permutations can be represented by an analytic
object, which we now introduce; a more thorough introduction can be found in [9, 10],
also see [11] where the limit object was viewed as the measure for the first time. A
permuton is a probability measure Π on the σ-algebra of Borel subsets from [0, 1]2 that
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has uniform marginals, i.e.,

Π([a, b]× [0, 1]) = Π([0, 1]× [a, b]) = b− a

for all 0 6 a 6 b 6 1. If Π is a permuton, then a Π-random permutation σ of order
m is obtained by sampling m points according to Π, sorting them according to their x-
coordinates, say (x1, y1), . . . , (xm, ym) for x1 < · · · < xm (note that the x-coordinates are
pairwise distinct with probability one), and defining σ so that σ(i) < σ(j) if and only
if yi < yj for i, j ∈ [m]. The density of a permutation σ in a permuton Π, denoted by
d(σ,Π), is the probability that a Π-random permutation of order |σ| is σ.

We say that a permuton Π is a limit of a convergent sequence (πn)n∈N of permutations
if

d(σ,Π) = lim
n→∞

d(σ, πn)

for every permutation σ. Every convergent sequence of permutations has a limit and this
limit is unique. On the other hand, a sequence of Π-random permutations with increasing
orders is convergent and has Π as its limit with probability one.

Recall that the support of a measure on a set X is the set of all points x ∈ X such
that every open set containing x has a positive measure. A permuton Π is layered if there
exists a (not necessarily finite) collection J of internally disjoint closed subintervals of
[0, 1] such that (x, y) lies in the support of Π if x belongs to an interval [a, b] ∈ J and
y = b− (x− a), i.e., the support of Π is a union of intervals with slope −1 centered along
the main diagonal of the square [0, 1]2 such that their projections on the horizontal axis
are internally disjoint. Observe that the collection J (if it exists) is uniquely determined
by the permuton Π. We will also refer to intervals in J as the layers of the permuton
Π, those with positive length as non-trivial layers, and those with length zero as trivial
layers. The number of layers of a layered permuton Π is the cardinality of J ; note that
the number of layers of a layered permuton may be (countably or uncountably) infinite.
For example, the permuton supported on the line y = x is layered with uncountably
many trivial layers. On the other hand, the permuton supported on the line y = 1 − x
has only one layer. An example of a layered permuton with countably many layers is the
permuton with layers [1 − 2−k+1, 1 − 2−k], k ∈ N, and [1, 1] (note that the point (1, 1)
indeed belongs to the support). See Figure 1 for the visualization of the three examples
of layered permutons that we have just given and some additional examples of layered
permutons. Observe that if the number of layers is finite, then each layer is non-trivial.
Analogously to the finite case, a permuton Π is layered if and only if d(231,Π) = 0 and
d(312,Π) = 0; in particular, this can be derived from Lemma 6 proven below.

The lemma that we now state provides a key link between layered permutations and
layered permutons. We remark that it is not hard to construct a convergent sequence of
layered permutations such that the number of their layers tends to infinity but the limit
permuton has a finite number of layers; for example, consider the sequence π1, π2, . . . such
that πn consists of one layer of length n2 and n singleton layers.

Lemma 6. Let (πn)n∈N be a convergent sequence of permutations and let Π be its limit
permuton. If the permutation πn is layered for every n ∈ N, then Π is layered. Moreover,
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Figure 1: Examples of layered permutons. The support of each of the permutons is drawn
in the square [0, 1]2. The origin of the coordinate system is in the bottom left corner.

if there exists k ∈ N such that the number of layers of each πn is at most k, then the
number of layers of Π is at most k.

Figure 2: The support of the layered permuton associated with the permutation 43215687
as in the proof of Lemma 6. The origin of the coordinate system is in the bottom left
corner.

Proof. We first associate each permutation πn with a permuton Πn as follows (see Figure 2
for an example): the permuton Πn is the unique (layered) permuton such that its support
is the union ⋃

i∈[|πn|]

{(
i− 1 + t

|πn|
,
πn(i)− t
|πn|

)
, t ∈ [0, 1]

}
.

Informally speaking, the permuton Πn is the unique layered permuton with the layers of
the same relative size and order as in the permutation πn. Observe that the number of
layers of each Πn is finite.

For n ∈ N and i ∈ N, let Jn,i be the i-th longest layer of the permuton Πn if i is at most
the number of layers of Πn (order layers of the same length arbitrarily); we set Jn,i to be
[1, 1] if i exceeds the number of layers of the permuton Πn. Consider an increasing sequence
(nk)k∈N such that for every i ∈ N, the sequences (min Jnk,i)k∈N and (max Jnk,i)k∈N, i.e.,
the sequences of the left and right end points of intervals Jnk,i, converge; the sequence
(nk)k∈N exists by compactness. For i ∈ N, let ai and bi be the limits of the sequences
(min Jnk,i)k∈N and (max Jnk,i)k∈N, and we define Π to be the unique layered permuton
whose support is the closure of the set containing all points (x, y) such that

• either x is contained in a non-trivial interval [ai, bi] for some i ∈ N and y = bi −
(x− ai), or

• x is not contained in any interval [ai, bi] and y = x.
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We will show that the permuton Π is the limit permuton of the sequence (πn)n∈N.
As the first step to show that Π is the limit of (πn)n∈N, we observe that

|d(σ,Πn)− d(σ, πn)| 6 |σ|
2

|πn|
(1)

for every permutation σ. Indeed, if |σ| 6 |πn|, then the probability that |σ| randomly
chosen points of πn induce σ is equal to the probability that the Πn-random permutation of
order |σ| is σ conditioned on no two of the |σ| points defining the Πn-random permutation
being chosen from the same interval [(i − 1)/|πn|, i/|πn|] for any i ∈ [|πn|]. Since the
probability that two of the |σ| points defining the Πn-random permutation are chosen
from the same interval [(i − 1)/|πn|, i/|πn|] for some i ∈ [|πn|] is at most

(|σ|
2

)
|πn|−1, the

estimate (1) follows.
We next establish that

lim
k→∞

d(σ,Πnk) = d(σ,Π) (2)

for every permutation σ. By [13, Theorem 21], (2) is equivalent to

lim
k→∞

Πnk(R) = Π(R) (3)

for every rectangle R = [x1, x2] × [y1, y2] ⊆ [0, 1]2. Observe that it is sufficient to estab-
lish (3) for rectangles R = [0, x]× [0, y] ⊆ [0, 1]2 only. Fix x and y and assume that x 6 y.
We distinguish two cases. If x is an internal point of an interval [ai, bi] (see Figure 3),
then

Π(R) = max{ai, x−max{bi − y, 0}}. (4)

Figure 3: Illustration of the formula (4) for [ai, bi] = [0.2, 0.8]. For x ∈ {0.3, 0.4, 0.5, 0.6}
and y = 0.65, the rectangle R is drawn by the dotted lines.

Note that x is an internal point of the interval Jnk,i for all sufficiently large nk and for
all such nk, it holds that

Πnk(R) = max{min Jnk,i, x−max{max Jnk,i − y, 0}}.

Hence, the identity (3) follows. On the other hand, if x is not an internal point of an
interval [ai, bi] for any i ∈ N, then Π(R) and Πnk(R) differ by at most the length of the
interval Jnk,i that contains x as an internal point if such an interval exists, and Π(R)
and Πnk(R) are equal if there is no such interval. Since the lengths of the intervals Jnk,i
containing x as an internal point must tend to zero (otherwise, x would be an internal
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point of an interval [ai, bi] for some i), the identity (3) also follows in this case. Since the
case x > y is analogous, (3) holds for every rectangle R = [0, x] × [0, y] ⊆ [0, 1]2. The
identity (2) now follows.

The estimate (1) and the identity (2) imply that the permuton Π is the limit permuton
of the sequence (πnk)k∈N. Since the sequence (πn)n∈N is convergent, Π is also its limit
permuton. The uniqueness of the limit permuton now yields the first part of the lemma.
For the second part, suppose that the number of layers of each permutation πn is at most
k. This implies that Jnk,i = [1, 1] for all i > k and so Π has at most k layers.

A permuton Π is σ-optimal if the density of σ in Π is equal to the packing density of σ.
Recall that, for every layered permutation σ and every n > |σ|, there exists a σ-optimal
layered permutation πn of order n. By compactness, the sequence (πn)n∈N has a convergent
subsequence. By Lemma 6, the limit Π of this subsequence is a layered permuton and,
by the definition of limit permutons, the density of σ in Π is equal to the packing density.
Therefore, every layered permutation σ has a σ-optimal layered permuton Π. Moreover,
the density of σ in Π is the maximum possible density of σ in any permuton: if there was
a permuton Π′ with a higher density of σ, then a sequence of Π′-random permutations of
increasing orders would give a sequence of permutation with the density of σ converging
to a higher density than the packing density of σ. Also note that if Π is a σ-optimal
permuton with k layers, then a sequence of Π-random permutations of increasing orders
is near-σ-optimal (with probability one) and each of its elements has at most k layers
(since every Π-random permutation has at most k layers).

3 Maximizers with infinitely many layers

This section is devoted to proving Theorem 3. By Lemma 6, Theorem 3 is implied by the
next theorem, which is the limit version of Theorem 3.

Theorem 7. For every k ∈ N and `1, . . . , `k, there exists n0 such that if σ is the layered
permutation with layers of sizes (n, 1, `1, . . . , `k) where n > n0, then every σ-optimal
layered permuton has an infinite number of layers.

Proof. Fix k and `1, . . . , `k for the proof and set L = 1+`1 + · · ·+`k. We choose the exact
value of n0 at the end of the proof; until then, we will only need that n0 > L. Fix n > n0,
i.e., the order of σ is n+L, and consider any σ-optimal layered permuton Π. Suppose, for
the sake of contradiction, that Π has finitely many layers. Let K be the number of layers
of Π and xi the length of the i-th layer, i ∈ [K]. Note that all layers of Π are non-trivial
and that Π must have at least as many layers as σ; so, K > k + 2. Observe that

d(σ,Π) = A

( ∑
16a<b<i1<···<ik6K

xnaxb

k∏
j=1

x
`j
ij

)
(5)

where

A =
(n+ L)!

n!
∏k

j=1 (`j!)
.
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Π−

x2 x1

Π′

Π−

x1 + y x2 − y

Πy

Π−

x1 + x2

Πx2

Λ

n
n+L

Π+

Π−

Λ

x1 x2

Π∗

Figure 4: The permutons Π′,Πy,Πx2 ,Π
+ and Π∗ from the proof of Theorem 7. The

symbol Π− in the figure represents the part of the permuton Π not including the first and
second layer, and Λ represents a scaled down copy of the permuton Λ.

As we will consider several modifications of the permuton Π, the following shorthands
for various quantities will be useful when calculating the density of σ in the modified
permutons:

Σ0 =
∑

36a<b<i1<···<ik6K

xnaxb

k∏
j=1

x
`j
ij
,

Σ1 =
∑

36b<i1<···<ik6K

xb

k∏
j=1

x
`j
ij
, and

Σ2 =
∑

36i1<···<ik6K

k∏
j=1

x
`j
ij
.

Observe that Σ0 6 Σ1 6 Σ2 6 1 and Σ2 > 0 because K > k + 2. Also note that

d(σ,Π) = A (xn1x2Σ2 + xn1 Σ1 + xn2 Σ1 + Σ0) . (6)

We will next consider five permutons obtained by modifying Π, relate the density of σ
in them to the density in Π and use this to derive some properties of Π; the five permutons
that we consider are visualized in Figure 4.

We start by showing that x1 > nx2; the argument is split into two claims.

Claim 7.1. x1 > x2.

Proof of Claim 7.1. We consider the layered permuton Π′ obtained from Π by swapping
the first two layers, i.e., the first layer of Π′ has length x2, the second has length x1, and
the i-th has length xi for i = 3, . . . , K. Observe that

d(σ,Π′)− d(σ,Π) = A (xn2x1 − xn1x2) Σ2.

Since Π is σ-optimal, A > 0 and Σ2 > 0, we conclude that x1 > x2. �

Claim 7.2. x1 > nx2.
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Proof of Claim 7.2. For y ∈ [0, x2), we consider the layered permuton Πy whose first layer
has length x1 + y, the second layer x2 − y, and the i-th xi for i = 3, . . . , K; in particular,
Π0 is just the permuton Π.

Let h(y) be the density of σ in the permuton Πy (the density is viewed as a function
of y), i.e.,

h(y) = d(σ,Πy) = A ((x1 + y)n(x2 − y)Σ2 + (x1 + y)nΣ1 + (x2 − y)nΣ1 + Σ0) .

Observe that

∂h

∂y
= A

(
n(x1 + y)n−1(x2 − y)Σ2 − (x1 + y)nΣ2

+ n(x1 + y)n−1Σ1 − n(x2 − y)n−1Σ1

)
,

and that the value of the derivative of h for y = 0 is

A
(
nxn−1

1 x2 − xn1
)

Σ2 + A
(
nxn−1

1 − nxn−1
2

)
Σ1.

By Claim 7.1, the second term in the above expression is non-negative. Therefore, the
derivative of h at y = 0 is bounded below by

A
(
nxn−1

1 x2 − xn1
)

Σ2.

Since Π is σ-optimal, the derivative of h at y = 0 must be non-positive. Therefore,
x1 > nx2. �

We next bound Σ1 from above as follows.

Claim 7.3. Σ1 6
x1
n

.

Proof of Claim 7.3. We consider the layered permuton Πx2 obtained from Π by merging
its first and second layer; formally, the permuton Πx2 is the layered permuton such that
its first layer has length x1 + x2 and the (i− 1)-th layer xi for i = 3, . . . , K. The notation
comes from Claim 7.2 as Πx2 is the limit permuton of Πy for y → x2. Observe that the
difference

d(σ,Πx2)− d(σ,Π) = A (((x1 + x2)n − xn1 − xn2 )Σ1 − xn1x2Σ2)

> A
(
nxn−1

1 x2Σ1 − xn1x2Σ2

)
must be non-positive since the permuton Π is σ-optimal. We use A > 0 and Σ2 6 1
to obtain that nxn−1

1 x2Σ1 6 xn1x2, which yields the bound in the inequality from the
claim. �

Let σ′ be the layered permutation obtained from σ by removing its first layer, i.e., σ′

is the layered permutation with layers of sizes (1, `1, . . . , `k). The next two claims bound
d(σ,Π) and x1 using the assumption that there exists a layered permuton Λ with a certain
density of σ′.
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Claim 7.4. For any layered permuton Λ, we have

d(σ,Π) >

(
n+ L

n

)(
n

n+ L

)n(
L

n+ L

)L
d(σ′,Λ).

Proof of Claim 7.4. We consider the layered permuton Π+ obtained from Λ by adding a
long first layer and rescaling. Specifically, the first layer of the permuton Π+ is [0, n/(n+
L)] and if [a, b] is a layer of Λ, then [(n+ aL)/(n+L), (n+ bL)/(n+L)] is a layer of Π+.
Since the density of σ in Π+ is at least(

n+ L

n

)(
n

n+ L

)n(
L

n+ L

)L
d(σ′,Λ)

and the permuton Π is σ-optimal, the claim follows. �

Our final claim is the following.

Claim 7.5. For any layered permuton Λ with d(σ′,Λ) > 0, we have

x1 6

(
A(

n+L
n

)
nn−Ld(σ′,Λ)

)1/L

.

Proof of Claim 7.5. We consider the layered permuton Π∗ obtained from Π by replacing
the second layer with a scaled copy of Λ, i.e., the i-th layer of Π for i = 1, 3, . . . , K is also
a layer of Π∗ and if [a, b] is a layer of Λ, then [x1 + ax2, x1 + bx2] is a layer of Π∗. We use
that the second layer of σ has size one and derive that

d(σ,Π∗)− d(σ,Π) >

(
n+ L

n

)
xn1x

L
2 d(σ′,Λ)− Axn2 Σ1

where the first term of right side accounts for the probability that a Π∗-random permu-
tation is σ, its first layer is contained in the first layer of Π∗ and its remaining layers in
the layers of the scaled down copy of Λ, and the second term accounts for the probability
that a Π-random permutation is σ and its first layer is contained in the second layer of
Π∗.

Since Π is σ-optimal, it holds that(
n+ L

n

)
xn1x

L
2 d(σ′,Λ) 6 Axn2 Σ1,

and since Σ1 6 1, we get (
n+ L

n

)
xn1d(σ′,Λ) 6 Axn−L2 .

Using the assumption that n > L and Claim 7.2, we derive that xn−L1 > (nx2)n−L and
eventually obtain (

n+ L

n

)
xL1n

n−Ld(σ′,Λ) 6 A,

which yields the desired inequality. �
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We next use (6) and Σ0 6 Σ1 6 Σ2 6 1 to get that

d(σ,Π) 6 A (xn1x2 + xn1 + xn2 + Σ1) .

Combining this with Claims 7.1 and 7.3 and the fact that x2 6 1 yields

d(σ,Π) 6 A
(

3xn1 +
x1

n

)
. (7)

We next show that there exists d0 > 0 such that d(σ,Π) > d0 for all n. Observe that

lim
n→∞

(
n+ L

n

)(
n

n+ L

)n(
L

n+ L

)L
= lim

n→∞

LL

L!

(
1− L

n+ L

)n
=

LL

eLL!
.

We fix any layered permuton Λ such that d(σ′,Λ) > 0 and obtain using Claim 7.4 that

the packing density of σ for any sufficiently large n is at least LL

2eLL!
d(σ′,Λ); the existence

of d0 now follows.
We next estimate the right side of (7). Observe that A = (n+L)!

n!
∏k
j=1(`j !)

= Θ(nL) while

x1 = O(n−
n
L ) by Claim 7.5. We conclude that the right side of (7) tends to 0, and choose

n0 in such a way that n0 > L and the inequality (7) does not hold for any n > n0. This
finishes the proof of the theorem.

The argument presented in Theorem 7 can actually be used to obtain reasonably small
bounds on n0. For example, consider the case when k = 1 and `1 = 2, which means that σ
is the layered permutation with layers with sizes (n, 1, 2) and σ′ is the layered permutation
with layers of sizes (1, 2), i.e., σ′ = 132. Since the packing density of σ′ is 2

√
3 − 3, we

can fix a permuton Λ such that d(σ′,Λ) = 2
√

3− 3. As

A =
(n+ 3)!

n! · 2
= 3

(
n+ 3

n

)
,

we get using Claims 7.4 and 7.5 that

d(σ,Π) >

(
n+ 3

n

)(
n

n+ 3

)n(
3

n+ 3

)3 (
2
√

3− 3
)

and

x1 6 3

√
3

nn−3(2
√

3− 3)

for any σ-optimal permuton Π where x1 is the length of the first layer of Π. We show that
it is possible to set n0 = 13. Observe that (n+ 3) 6 16n/13 since n > 13. It follows that

d(σ,Π) >

(
n+ 3

n

)(
1

e3

)(
3 · 13

16n

)3 (
2
√

3− 3
)
> 0.33

(
n+ 3

n

)
1

n3
.
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On the other hand, we obtain using n > 13 and x1 6 1 that

A
(

3xn1 +
x1

n

)
6 3

(
n+ 3

n

)(
3

137(2
√

3− 3)n3
+

1

n
3

√
3

134(2
√

3− 3)n6

)

< 0.19

(
n+ 3

n

)
1

n3
.

It follows that the inequality (7) in the proof of Theorem 7 does not hold for any n > 13
and so every σ-optimal layered permuton has infinitely many layers for every n > 13.

4 Maximizers with finitely many layers

This section is devoted to the proofs of Theorems 4 and 5. We start with proving three
lemmas needed to prove Theorem 4. Given a layered permuton Π, we say that a non-
trivial interval [a, b] is a segment of Π if it can be written as a union of (possibly infinitely
many) layers of Π.

Lemma 8. Let σ be a layered permutation of order at least two with k layers and without
consecutive singleton layers. If Π is a σ-optimal layered permuton, then every segment
[a, b] of Π contains a layer of Π of length at least b−a

|σ|2k|σ| .

Proof. Suppose, for contradiction, that there exists a σ-optimal layered permuton Π with
a segment [a, b] such that the length of every layer of Π contained in [a, b] is strictly less
than b−a

|σ|2k|σ| . Let Π′ be the layered permuton obtained by replacing the layers of Π in the

segment [a, b] with k layers, each of length (b−a)/k. Using that σ has no two consecutive
singleton layers, we argue that d(σ,Π′) > d(σ,Π).

Given |σ| points sampled according to Π, let En be the event that exactly n of the
sampled points have their x-coordinate in [a, b]; analogously, E ′n is the event that exactly
n of the sampled points according to Π′ have their x-coordinate in [a, b]. Note that, since
Π and Π′ have uniform marginals, it holds that P(En) = P(E ′n) for all n = 0, . . . , |σ|.

Observe that the probability that a Π-random permutation of order |σ| is σ conditioned
on E0 ∪ E1 is equal to the probability that a Π′-random permutation of order |σ| is σ
conditioned on E ′0 ∪E ′1. We next analyze the probabilities that a Π-random permutation
of order |σ| is σ and a Π′-random permutation of order |σ| is σ conditioned on a particular
choice of |σ| − n points outside the segment [a, b] for n > 2. Since the permutons Π and
Π′ agree outside the segment [a, b], the probabitity distributions of the events that we
condition on are the same. For a fixed choice of |σ|−n points outside the segment [a, b], if
the probability that a Π′-random permutation of order |σ| is σ conditioned on the choice
of the |σ|−n points is zero, then the probability that a Π-random permutation of order |σ|
is σ conditioned on the same choice of the points is also zero. Otherwise, the probability
that a Π′-random permutation of order |σ| is σ conditioned on the choice of the |σ| − n
points is at least k−n and the probability that a Π-random permutation of order |σ| is σ
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conditioned on the same choice of the points is at most(
|σ|
2

)(
1

|σ|2k|σ|

)
<
k−|σ|

2
. (8)

The estimate (8) follows from the fact that σ does not have two consecutive singleton
layers and so if the Π-random permutation is σ and n > 2 points are sampled from the
segment [a, b], then at least two points of σ must come from the same layer contained
in the segment [a, b]. The probability of this event happening is upper bounded by the
left side of (8). Hence, the probability that a Π-random permutation of order |σ| is σ
conditioned on E2 ∪ · · · ∪E|σ|−1 is at most the probability that a Π′-random permutation
of order |σ| is σ conditioned on E ′2∪· · ·∪E ′|σ|−1 (note that the inequality is strict whenever

the former probability is non-zero), and the probability that a Π-random permutation of
order |σ| is σ conditioned on E|σ| is strictly smaller than the probability that a Π′-random
permutation of order |σ| is σ conditioned on E ′|σ| (as these two probabilities are non-zero).
This contradicts the assumption that the permuton Π is σ-optimal.

A simple consequence of Lemma 8 is the following.

Lemma 9. Let σ be a layered permutation of order at least two without consecutive
singleton layers. For every σ-optimal permuton Π, the set of all x ∈ [0, 1] such that [x, x]
is a layer of Π has measure zero.

Proof. Let X be the set of all x ∈ [0, 1] such that [x, x] is a layer of Π. Observe that X is
closed, and so it is measurable. Let k be the number of layers of σ and define r = |σ|2k|σ|.

By applying Lemma 8 to the segment [0, 1], we see that Π has a layer I1 of length at
least 1/r. Let I0 = [0,min I1] and I2 = [max I1, 1]. If I0 is non-trivial, then it is a segment
of Π and we can apply Lemma 8 to it; similarly, if I2 is non-trivial, we can apply Lemma 8
to it. In general, for a finite sequence i1, i2, . . . , it ∈ {0, 2}, we recursively define Ii1,...,it,0,
Ii1,...,it,1 and Ii1,...,it,2 to be internally disjoint intervals whose union is Ii1,...,it such that if
Ii1,...,it is a segment, then Ii1,...,it,1 is a layer of Π of length at least |Ii1,...,it|/r. If Ii1,...,it is
trivial, we set Ii1,...,it,0 = Ii1,...,it,1 = Ii1,...,it,2 = Ii1,...,it . For t > 1, let

St =
⋃

i1,...,it∈{0,2}

Ii1,...,it ,

and observe that X ⊆
⋂∞
t=1 St. However, for each t > 1, the measure of St+1 is at most

r−1
r

times the measure of St. We conclude that the set X has measure zero.

Our next lemma deals specifically with the classes of permutations considered in The-
orem 4.

Lemma 10. Let ε > 0 and let σ be a layered permutation with k > 2 layers of sizes
(`1, . . . , `k) such that `1 > 2, `k > 2 and `i + `i+1 > max{`1, `k}+ 1 for every i ∈ [k − 1].
If Π is a σ-optimal layered permuton with at least 2k − 3 layers of length at least ε,
then every segment [a, b] of Π that has at least two layers has a layer of length at least
(ε/4)|σ|/k.
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Proof. Suppose, for the sake of contradiction, that Π is a σ-optimal permuton that has
2k − 3 layers of length at least ε and a segment [a, b] with at least two layers such that
every layer contained in [a, b] has length less than (ε/4)|σ|/k.

Let I be the set of all non-trivial layers of Π contained in [a, b]. Since the set I is
countable, we can index the elements of I by Ij for j ∈ S, where S is either equal N or [n]
for some n ∈ N. For j ∈ S, let zj be the length of Ij. Since `i + `i+1 > max{`1, `k}+ 1 >
3, the permutation σ has no consecutive singleton layers and so Lemma 9 yields that∑

j∈S zj = b− a.
Consider a permuton Π′ obtained from Π by replacing the segment [a, b] with a single

layer. We will show that d(σ,Π′) > d(σ,Π), contradicting that the permuton Π is σ-
optimal. Since the permuton Π has 2k − 3 layers each of length at least ε and none of
these layers is contained in the segment [a, b] (since each layer of the segment is shorter
than (ε/4)|σ|/k), there are k − 1 layers of length at least ε contained in [0, a] or there are
k − 1 layers of length at least ε contained in [b, 1]. Since the two cases are completely
symmetric, we analyze in detail the former case only.

Let σ′ be the permutation obtained from σ by removing its last layer, i.e., σ′ is the
layered permutation with layers of sizes (`1, . . . , `k−1). Let p be the probability that a
Π-random permutation of order |σ′| is σ′ and the x-coordinates of all of its points belong
to [0, a]. Observe that p > ε|σ

′| > ε|σ|. Note that p is also equal to the probability that a
Π′-random permutation of order |σ′| is σ′ and the x-coordinates of all of its points belong
to [0, a]. The probability that a Π′-random permutation of order |σ| is σ and its last layer
is sampled from [a, b] is

(
|σ|
`k

)
p(b− a)`k =

(
|σ|
`k

)
p

(∑
j∈S

zj

)`k

.

Similarly, for j ∈ S, the probability that a Π-random permutation of order |σ| is σ, its
last layer is sampled from Ij, and all of its other layers are sampled from [0, a] is equal to(

|σ|
`k

)
pz`kj .

For i ∈ [k − 1], the probability that a Π-random permutation is σ and its i-th layer is
sampled from the segment [a, b] and no other layer is sampled from the segment [a, b] is
at most the probability that a Π′-random permutation is σ and its i-th layer is sampled
from the segment [a, b] and no other layer is sampled from the segment [a, b]. Finally, for
i ∈ [k − 1], the probability that a Π-random permutation is σ and its i-th and (i+ 1)-th
layers are both sampled from the segment [a, b] (note that these events are not disjoint
for different i’s as more than two layers can be sampled from [a, b]) is at most∑

j1,j2∈S
j1<j2

(
|σ|
`i

)(
|σ| − `i
`i+1

)
z`ij1z

`i+1

j2
6 22|σ|

∑
j1,j2∈S
j1<j2

z`ij1z
`i+1

j2
.
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Using the fact that zj < (ε/4)|σ|/k for all j ∈ S, it follows that

d(σ,Π′)− d(σ,Π) >

(
|σ|
`k

)
p

(∑
j∈S

zj

)`k

−
∑
j∈S

z`kj

− 22|σ|
∑

i∈[k−1]

∑
j1,j2∈S
j1<j2

z`ij1z
`i+1

j2

> ε|σ|

(∑
j∈S

zj

)`k

−
∑
j∈S

z`kj

− 4|σ|
∑

i∈[k−1]

∑
j1,j2∈S
j1<j2

z`ij1z
`i+1

j2

> ε|σ|
∑

j1,j2∈S
j1<j2

(
z`k−1
j1

zj2 + zj1z
`k−1
j2

)
− 4|σ|

∑
i∈[k−1]

∑
j1,j2∈S
j1<j2

z`ij1z
`i+1

j2

> 4|σ|

k ∑
j1,j2∈S
j1<j2

(
z`kj1 zj2 + zj1z

`k
j2

)
−
∑

i∈[k−1]

∑
j1,j2∈S
j1<j2

z`ij1z
`i+1

j2


> 4|σ|

∑
i∈[k−1]

∑
j1,j2∈S
j1<j2

(
z`kj1 zj2 + zj1z

`k
j2
− z`ij1z

`i+1

j2

)
.

Since it holds `i + `i+1 > `k + 1 for every i ∈ [k − 1] by the hypothesis, we get that the
following holds for all i ∈ [k − 1] and j1, j2 ∈ S:

z`kj1 zj2 > z`ij1z
`i+1

j2
if zj1 > zj2 , and

zj1z
`k
j2
> z`ij1z

`i+1

j2
if zj2 > zj1 .

This yields that
z`kj1 zj2 + zj1z

`k
j2
> z`ij1z

`i+1

j2
> 0.

It follows that d(σ,Π′)−d(σ,Π) > 0, which contradicts the assumption that the permuton
Π is σ-optimal.

We are now ready to prove Theorem 4.

Proof of Theorem 4. Assume, for the sake of contradiction, that there exists a σ-optimal
layered permuton Π with infinitely many layers, and let ε be the length of its (2k− 3)-th
longest layer; note that ε > 0 by Lemma 9. By Lemma 10, every segment [a, b] of Π is
either a layer of Π or it contains a layer of length at least (ε/4)|σ|/k. This implies that the
number of layers of Π is finite, in particular, the permuton Π has no trivial layers, and
that the number of layers of Π is at most 2bk(4/ε)|σ|c+1; this contradicts the assumption
that Π has infinitely many layers.

We next turn our attention to proving Theorem 5, which will follow from the next two
lemmas.
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Lemma 11. Let σ be a layered permutation with k layers and without consecutive sin-
gleton layers. Then every σ-optimal permuton has at least k layers of length at least

1
|σ|3k2|σ|+1 .

Proof. Let Π be a σ-optimal layered permuton. Clearly, Π has at least k layers as otherwise
d(σ,Π) = 0. Since the packing density of σ is at least k−|σ|, it holds that d(σ,Π) > k−|σ|.

Let r be the sum of the lengths of the k−1 largest layers of Π. Observe that d(σ,Π) 6
|σ|(1− r) (because every Π-random permutation that is σ contains a point outside of the
k − 1 largest layers of Π), which implies that 1

|σ|k|σ| 6 1 − r. Let [a, b] be the longest

segment of Π which does not contain any of the k − 1 longest layers, and note that its
length is at least (1− r)/k. By Lemma 8, this segment contains a layer of length at least(

1− r
k

)(
1

|σ|2k|σ|

)
>

1

|σ|3k2|σ|+1
.

The statement of the lemma now follows.

The second lemma needed to prove Theorem 5 is the following.

Lemma 12. Let σ be a layered permutation with layers of sizes (`1, . . . , `k) and k > 2
such that `1 = `k > 2 and every two consecutive layers of σ contain a layer of size `1 = `k.
For every C ∈ (0, 1), there exists c ∈ (0, C) such that the following holds for every layered
permutation π of order at least |σ|C−1 that has at least k layers of size at least C|π|. If
π contains two consecutive layers of size at most c|π| and π′ is a permutation obtained
from π by merging any two such layers, then d(σ, π′) > d(σ, π). In addition, if the merged
layer has size at least `1, then d(σ, π′) > d(σ, π).

Proof. Fix a permutation σ with the properties given in the statement of the lemma
and C ∈ (0, 1). We prove that the statement of the lemma holds for c ∈ (0, C), which
is determined at the very end of the proof and which depends on σ and C only. Let
π be a permutation with the properties given in the statement of the lemma, let πa
and πa+1 be the layers of π that are merged to obtain π′, and let α, β ∈ (0, 1) be such
that |πa| = α|π| and |πa+1| = β|π|. In addition, for i ∈ [1, k], let pi be the number of
occurrences of the layered permutation with layers (`1, . . . , `i) in π before πa, and let qi be
the number of occurrences of the layered permutation with layers (`i, . . . , `k) after πa+1;
and let p0 = qk+1 = 1.

We next count the occurrences of σ in π and π′ similarly to the proofs of Claim 7.3
and Lemma 10. Considering which layers of σ are sampled from πa and πa+1, we rewrite(|π|
|σ|

)
(d(σ, π′)− d(σ, π)) as

∑k
i=1 pi−1qi+1

((|πa|+|πa+1|
`i

)
−
(|πa|
`i

)
−
(|πa+1|

`i

))
−∑k−1

i=1 pi−1qi+2

(|πa|
`i

)(|πa+1|
`i+1

)
. (9)

First note that if |πa|+ |πa+1| 6 `1, then the second sum is zero as `i = `1 or `i+1 = `1

for every i ∈ [1, k − 1]. So, if |πa|+ |πa+1| 6 `1, then the conclusion of the lemma follows
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since it holds that (
|πa|+ |πa+1|

`i

)
>

(
|πa|
`i

)
+

(
|πa+1|
`i

)
for every i ∈ [k]. Hence, we will assume that |πa|+ |πa+1| > `1 + 1 in the rest of the proof.

We next give a lower bound on the first sum in (9). We say that a layer of π is big if
its size is at least C|π|; note that C|π| > |σ|. Let j be such that there are at least j − 1
big layers before the layer πa, at least k− j big layers after the layer πa+1, and `j = `1. It
follows that

pj−1qj+1 >
∏
i 6=j

(
dC|π|e
`i

)
>
∏
i 6=j

(
C|π|
`i

)`i
= (C|π|)|σ|−`1

∏
i 6=j

`−`ii .

Since the first sum in (9) is at least its j-th term, we obtain that the first sum in (9) is at
least

(C|π|)|σ|−`1
∏
i 6=j

`−`ii

((
|πa|+ |πa+1|

`1

)
−
(
|πa|
`1

)
−
(
|πa+1|
`1

))
> (C|π|)|σ|−`1

∏
i 6=j

`−`ii × 2|πa||πa+1|
`1(`1 − 1)

(
|πa|+ |πa+1| − 2

`1 − 2

)

> (C|π|)|σ|−`1
∏
i 6=j

`−`ii × 2|πa||πa+1|
`2

1

(
|πa|+ |πa+1| − 2

`1

)`1−2

> (C|π|)|σ|−`1
∏
i 6=j

`−`ii × 2|πa||πa+1|
`2

1

(
|πa|+ |πa+1|

3`1

)`1−2

> A|π||σ|αβ (α + β)`1−2 > A|π||σ|
(
α`1−1β + αβ`1−1

)
where A = 2C|σ|−`1

(3`1)`1
∏
i∈[k] `

`i
i

(note that A depends on σ and C only).

We next find an upper bound on the second sum in (9). Let i ∈ [1, k− 1], and observe
that pi−1qi+2 is at most the number of ways of choosing |σ| − `i − `i+1 points from a
permutation of order |π|− |πa|− |πa+1|, i.e., pi−1qi+2 6

(|π|−|πa|−|πa+1|
|σ|−`i−`i+1

)
. Therefore, the i-th

summand of the second sum in (9) is at most(
|π| − |πa| − |πa+1|
|σ| − `i − `i+1

)(
|πa|
`i

)(
|πa+1|
`i+1

)
6

(
e(|π| − |πa| − |πa+1|)
|σ| − `i − `i+1

)|σ|−`i−`i+1
(
e|πa|
`i

)`i (e|πa+1|
`i+1

)`i+1

6 B|π||σ|(1− α− β)|σ|−`i−`i+1α`iβ`i+1

6 B|π||σ|α`iβ`i+1 6 B|π||σ|(α`1β + αβ`1)

where B = maxi∈[k]
e|σ|

`
`i
i `

`i+1
i+1 (|σ|−`i−`i+1)|σ|−`i−`i+1

(again B depends on σ only).
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We combine the bounds on the first and the second sum in (9) to obtain that

d(σ, π′)− d(σ, π) >

(
|π|
|σ|

)−1

|π||σ|
(
A(α`1−1β + αβ`1−1)− kB(α`1β + αβ`1)

)
>

(
|σ|!
|π||σ|

)
|π||σ|

(
A(α`1−1β + αβ`1−1)− kB(α`1β + αβ`1)

)
> A(α`1−1β + αβ`1−1)− kB(α`1β + αβ`1).

Hence, the lemma holds with c = min{A/kB,C}/2.

We are now ready to prove Theorem 5.

Proof of Theorem 5. Fix a layered permutation σ of order m and with layers of sizes
(`1, . . . , `k), k > 2, such that `1 = `k > 2 and every two consecutive layers of σ contain a
layer of size `1 = `k. In particular, σ does not have consecutive singleton layers. Apply
Lemma 12 with C = 1

2m3k2m+1 to get a constant c ∈ (0, C).
For the sake of contradiction, suppose that for every n ∈ N there exists a σ-optimal

permutation πn with at least n layers. Without loss of generality, we can assume also
assume that |πn| > |σ|/C for every n and that the sequence (πn)n∈N is convergent (as any
sequence of permutations with increasing orders has a convergent subsequence), and let Π
be the limit permuton of (πn)n∈N. Note that the permuton Π is layered (by Lemma 6) and
the density of σ in Π is the packing density of σ. Lemma 11 implies that the permuton Π
has k layers of length at least 2C. Hence, there exists n0 ∈ N such that every permutation
πn, n > n0, has k layers of size at least C|πn| (cf. the proof of Lemma 6).

For n > n0, define π′n to be a layered permutation obtained from the permutation πn
by successively merging pairs of consecutive layers of size at most c|πn| as long as two
consecutive layers of size at most c|πn| exist. Observe that the number of layers of π′n
is at most b2/cc + 1. By Lemma 12, it holds that d(σ, π′n) > d(σ, πn), and since πn is a
σ-optimal permutation, it actually holds that d(σ, π′n) = d(σ, πn). So, Lemma 12 yields
that no layer of π′n obtained by merging two or more layers of πn has size at least `1. It
follows that the number of layers of πn is at most (b2/cc+ 1) (`1− 1), which is impossible
if n > (b2/cc+ 1) (`1 − 1). The statement of the theorem follows.

5 Conclusion

We conclude with five open problems focusing on the nature of the layered maximizers
for a layered permutation σ. The first question asks whether the existence of near-σ-
optimal sequence of layered permutations with a bounded number of layers implies that
all σ-optimal layered permutations have a bounded number of layers.

Problem 1. Is there a layered permutation σ such that there exists a near-σ-optimal
sequence of layered permutations with a bounded number of layers but for every k ∈ N
there exists a σ-optimal layered permutation (of some order) with at least k layers?
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In principle, the existence of a σ-optimal layered permutation with a bounded number
of layers might depend on the order of a host permutation for some layered permutations
σ.

Problem 2. Is there a layered permutation σ and an integer m such that for infinitely
many n ∈ N, there exists a σ-optimal layered permutation of order n with at most m
layers, and still for every k ∈ N, there exists n ∈ N such that every σ-optimal layered
permutation of order n has at least k layers?

A σ-optimal permutation for a layered permutation σ need not be layered in general.
For example, Albert et al. [1, Remark 2.3] observed that, for σ = 43215, the permutation

16, 15, . . . , 2, 1, 17, 19, 20, 18

is σ-optimal, but not layered. However, we do not know whether there exists such an
example in the limit setting.

Problem 3. Is there a layered permutation σ such that there exists a σ-optimal permuton
that is not layered?

The final two problems are limit analogues of Problem 1.

Problem 4. Is there a layered permutation σ such that there exist both a σ-optimal
permuton with finitely many layers and a σ-optimal permuton with infinitely many layers?

Problem 5. Is there a layered permutation σ such that every σ-optimal permuton has
finitely many layers but there exist σ-optimal permutons with an arbitrarily large number
of layers?
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