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Abstract

Linear extensions of posets are important objects in enumerative and algebraic
combinatorics that are difficult to count in general. Families of posets like Young
diagrams of straight shapes and d-complete posets have hook-length product formu-
las to count linear extensions, whereas families like Young diagrams of skew shapes
have determinant or positive sum formulas like the Naruse hook-length formula from
2014. In 2020, Garver et. al. gave determinant formulas to count linear extensions
of a family of posets called mobile posets that refine d-complete posets and bor-
der strip skew shapes. We give a Naruse type hook-length formula to count linear
extensions of such posets by proving a major index q-analogue. We also give an
inversion index q-analogue of the Naruse formula for mobile tree posets.

Mathematics Subject Classifications: 05A05, 05A15

1 Introduction

1.1 Hook-length formulas for linear extensions

Linear extensions of posets are fundamental objects in combinatorics. In general, com-
puting the number e(P ) linear extensions of any poset is a difficult problem, it is #P -
complete [2]. For certain posets like Young diagrams, rooted trees, and more generally
d-complete posets, there are product formulas that compute the number of linear ex-
tensions efficiently, such as the classical hook-length formula (HLF) for the number of
standard Young tableaux (SYT) of shape λ, that we denote by |SYT(λ)|.
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Theorem 1 (Frame-Robinson-Thrall [4]). Let λ be a partition of n. We have

|SYT(λ)| = n!
!

u∈[λ]

1

h(u)
(HLF)

where h(u) = λi + λ′
j − i− j + 1 is the hook-length of the square u = (i, j).

For skew shapes λ/µ, there is no known product formula, however, Naruse introduced
a generalization of the hook-length formula for the number of standard Young tableaux
of skew shape as a positive sum over excited diagrams of products of hook-lengths. We
call this the Naruse hook-length formula (NHLF).

Theorem 2 (Naruse [11]). For a skew shape λ/µ of size n, we have

|SYT(λ/µ)| = n!
"

D∈E(λ/µ)

!

u∈[λ]\D

1

h(u)
, (NHLF)

where E(λ/µ) is the set of excited diagrams of λ/µ.

The number of SYT of shape λ/µ can also be interpreted as the number of linear
extension of a poset induced by the Young diagram of λ/µ. In [13], Proctor defined the
family of d-complete posets, that includes Young diagrams of shape λ and rooted trees
and have a hook-length formula to count the number of linear extensions.

Theorem 3 (Peterson-Proctor [13]). The number of linear extensions of a d-complete
poset P with n elements is

e(P ) =
n!#

x∈P hP (x)
,

where hP (x) is the hook-length of x ∈ P .

1.2 q-analogue of hook-length formulas

There are the following q-analogues of both the HLF and the NHLF for semistandard
Young tableaux. We state these results in terms of emaj

q (P,ω) :=
$

σ q
maj(σ) where (P,ω)

is a labeled poset and the sum is over all linear extensions σ. This polynomial also encodes
the generating functions of P -partitions [16].

Theorem 4 (Stanley [15]). For a shape λ with associated poset Qλ of size n with a Schur
labeling ω, we have:

emaj
q (Qλ,ω)#n
i=1(1− qi)

= qb(λ)
!

u∈[λ]

1

1− qh(u)
, (1)

where b(λ) =
$

i(i− 1)λi.
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Theorem 5 (Morales-Pak-Panova [10]). For a skew shape λ/µ with associated poset Qλ/µ

of size n with a Schur labeling ω, we have:

emaj
q (Qλ/µ,ω)#n
i=1(1− qi)

=
"

D∈E(λ/µ)

qw(D)
!

u∈[λ]\D

1

1− qh(u)
, (2)

where w(D) =
$

u∈Br(D) h(u) is the sum of hook-lengths of the support of broken diagonals.

For d-complete posets, there is also the following q-analogue in terms of major index
(see Section 2.5).

Theorem 6 (Peterson and Proctor [13]). For a labeled d-complete poset (P,ω) of size n
with ω any labeling, we have:

emaj
q (P,ω) = qmaj(P,ω) [n]q!#

x∈P [hP (x)]q
,

where hP (x) is the hook-length of x ∈ P and maj(P,ω) =
$

x∈Des(P,ω) hP (x).

1.3 Hook formulas for mobile posets

A border strips is a connected skew-shaped diagram with no 2 × 2 box. A mobile poset
is a recent common refinement of border strips and d-complete posets introduced in [5]
(see Figure 1). The authors found a determinantal formula for the number of linear
extensions of these posets, similar to Jacobi–Trudi formula and asked whether there was
a Naruse-type formula [5, Sec. 6.1] for this number. The first main result of this paper is a
q-analogue Naruse hook-length formula for mobile posets for the major index, generalizing
Theorem 5.

Theorem 7. Let Pλ/µ(p) be a mobile poset of size n with with underlying border strip
λ/µ and p = (p(r1,s1), . . . , p(rk,sk)) the d-complete posets hanging on (r, s). For a labeled
mobile poset (Pλ/µ(p),ω) with ω reversed Schur labeling on [λ/µ] and natural labeling on
the d-complete posets, we have:

emaj
q (Pλ/µ,ω)#n
i=1(1− qi)

=
!

v∈p

1

1− qh(v)

"

D∈E(λ/µ)

qw
′(D)

!

u∈[λ]\D

1

1− qh′(u)
,

where h(v) is the hook-length of the element v in the d-complete posets in p, h′(i, j) =
λi− i+λ′

j − j+1+
$

r!i,s!j |p(r,s)| and w′(D) =
$

u∈Br(D) h
′(u) is the sum of hook-lengths

of the supports of broken diagonals.

This result is a common refinement of Theorem 5 and Theorem 6. Note that Naruse-
Okada [12] have a different q-analogue of emaj

q (P,ω) for a family called skew d-complete
posets with natural labelings. See Section 7.4.

The proof of Theorem 7 is based on the method used in [8] to prove (NHLF) for border
strips. This involves the Pieri–Chevalley formula (6) and a recurrence of linear extensions
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for mobile posets. The proof of the latter is combinatorial and uses a specialization of
Stanley’s theory of (P,ω)-partitions [16] (see Theore 25).

By taking q = 1, we obtain a Naruse hook-length formula for mobile posets as a
corollary.

Corollary 8 (NHLF for mobiles). For a free-standing mobile poset Pλ/µ(p) of size n, we
have:

e(Pλ/µ(p)) =
n!

H(p)

"

D∈E(λ/µ)

!

(i,j)∈γ

1

h′(i, j)
, (3)

where H(p) is the product of hook-lengths of all elements in the d-complete posets hanging
from λ/µ.

As an application of this corollary, we give bounds to generalizations of Euler number
defined in [5]. See Corollary 37 and Corollary 38.

Our second result is a q-analogue of NHLF for mobile tree posets (the d-complete
posets are restricted to rooted trees) in terms of the inversion statistic, einvq (P,ω) :=$

σ q
inv(σ), where the sum is over all linear extensions σ ∈ (P,ω).

Theorem 9. For a labeled mobile tree poset (Pλ/µ,ω) with ω reversed Schur labeling on
[λ/µ] and natural labeling on d-complete posets,

einvq (Pλ/µ,ω)#n
i=1(1− qi)

=
!

v∈p

1

1− qh(v)

"

D∈E(λ/µ)

qw(D)+pD
!

u∈[λ]\D

1

1− qh′(u)
, (4)

where w(D) =
$

u∈Br(D) h(u) is the sum of original hook-lengths of the supports of broken

diagonals and pD =
$

(i,j)∈[µ]\D
$

s=j pr,s, the sum of d-complete posets hanging on the

same column as (i, j) ∈ [µ] \D.

1.4 Paper outline

In Section 2, we give definitions and background results required for the proof. In Sec-
tion 3, we give results for P -partition with a fixed point. In Section 4, we give an example
and the proof of Theorem 7. In Section 5, we show an application to the Corollary 8. In
Section 6, we give examples and the proof of the inversion index of the case of q-analogue.
Lastly, we end with final remarks in Section 7.

2 Background and Preliminaries

2.1 Posets and linear extensions

A partially-ordered set (poset) is a pair (P,!P ) where P is a finite set and !P is a binary
relation that is reflexive, anti-symmetric, and transitive. A linear extension of an n-
element poset P is a bijection f : P → [n] that is order-preserving. We denote the set
of linear extensions of P as L(P ), and e(P ) = |L(P )|. A poset of shape λ/µ is a poset
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obtained from a Young diagram of shape λ/µ, where the inner corners of the diagram are
the maximal elements of the poset. the number of linear extensions of such poset is equal
to |SY T (λ/µ)|

2.2 Border strips and Mobile Posets

A border strip is a connected skew shape λ/µ containing no 2× 2 box. d-complete posets
are a large class of posets containing rooted tree posets and posets arising from Young
diagrams. Given a border strip, we can convert it into a poset by letting the inner corners
of the diagram be the maximal points of the corresponding poset. Now we can construct
a mobile poset (See Figure 1 for an example).

Definition 10 (Garver-Grosser-Matherne-Morales [5]). A mobile1 (tree) poset is a poset
obtained from a border strip Q, by allowing every element x ∈ Q to cover the maximal
element of a nonnegative number of disjoint d-complete (rooted tree) posets. We use
Pλ/µ(pa1,b1 , pa1,b2 , . . . ) = Pλ/µ(p) to denote a mobile poset with a border strip of shape
λ/µ and a set of d-complete posets p, where each d-complete poset pai,bi is covered by
(ai, bi) ∈ [λ/µ].

a

b

c

d
e

a
b c

d
e

Figure 1: The conversion of a mobile poset to a young diagram with d-complete posets
attached.

2.3 Excited diagrams and broken diagonals

Denote [λ/µ] the skew shape Young diagram of a shape λ/µ. An excited diagram of λ/µ,
denoted by D, is a subset of [λ] obtained from µ by applying a sequence of excited moves
that we define next. Let D ∈ E(λ/µ), then (i, j) ∈ D is an active cell if (i+1, j), (i, j+1),
and (i+ 1, j + 1) are not in D. We obtain a new excited diagram by replacing an active
cell by (i+ 1, i+ j) (see Figure 2, (b)). Note that for border strips, the excited diagrams
can also be interpreted as the complement of its lattice paths γ from (λ′

1, 1) → (1,λ1)
that stay inside [λ]. (see[8, Sec. 3]). Let E(λ/µ) be the set of all excited diagrams of λ/µ.

For each excited diagram D ∈ E(λ/µ) we associate a set of broken diagonals Br(D) ⊂
[λ] \ D as follows. Start with D = [µ], then Br(D) = {(i, j) ∈ λ/µ | j − i = µt − t},
where 1 < t < ℓ(λ) and µt = 0 if ℓ(µ) < t < ℓ(λ). For each active cell u = (i, j) and its
excited move αu : D → D′, we have a corresponding move for the broken diagonal where
Br(D′) = Br(D) \ {(i+ 1, j + 1)} ∪ {(i+ 1, j)}}. See Figure 2, (a) and (b).

1What we call a mobile poset is called a free-standing mobile poset in [5].
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(a)
(b)

Figure 2: (a) Excited move (b) Excited diagrams and the corresponding broken diagonals
of λ/µ = (2, 2, 2, 1)/(1, 1)

2.4 Multivariate function

For border strip λ/µ, let

Fλ/µ(x,y) = Fλ/µ(x1, . . . , xλ′
1
, y1, . . . , yλ1) :=

"

D∈E(λ/µ)

!

(i,j)∈[λ]\D

1

xi − yj
. (5)

Let λ/ν be the shape obtained by removing an inner corner of λ/µ. We denote this
subtraction by µ → ν. Note that [λ/ν] is a disconnected skew shape.

We need the following identity of Fλ/µ(x,y) from [8].

Lemma 11 (Pieri–Chevalley formula [8, Eq. (6.3)]).

Fλ/µ(x,y) =
1

x1 − y1

"

µ→ν

Fλ/ν1(x,y)Fλ/ν2(x,y), (6)

where λ/ν1 and λ/ν2 are the two connected border strips that form λ/ν.

2.5 q-analogues of linear extensions

A labeled poset (P,ω) is a poset P with a labeling ω : P → [n]. We call ω a natural
labeling if for any x, y ∈ P with x <P y, we have ω(x) < ω(y) [16]. We call ω a reversed
Schur labeling if the labeling increases as it follows the path of the outer borderstrip of
λ/µ from bottom right to top left. Such labeling is derived from the Schur labeling of
λ/µ, which increases from bottom left to top right [16]. For Theorem 9 and Theorem 7,
we use reversed Schur labeling on [λ/µ] and natural labeling on the d-complete posets. In
the case of the inversion statistic, for each µ → ν, we need ω(x1) > ω(x2) for all xi ∈ λ/νi
to satisfy the condition for Proposition 21

Given a linear extension f : P → [n], the permutation ω ◦ f−1 ∈ Sn is a linear
extension of the labeled poset, L(P,ω). For the major index, we label the poset using the
natural labeling on the d-complete posets and the reversed Schur labeling on the border-
strip (see Figure 3 (b)). Such labeling is derived from the Schur labeling of λ/µ. We use
the reversed Schur labeling instead of the Schur labeling because of the orientation of the
conversion from a Young diagram to a poset we have chosen (see Figure 1).

The two common statistics for q-analogues of the number of linear extensions for a
labeled poset (P,ω) are the major index and inversions. Let σ = σ1σ2 . . . σn ∈ Sn be
a permutation. The descent set of σ is given by Des(σ) := {i ∈ [n − 1] | σi > σi+1}.
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The major index of σ is maj(σ) =
$

i∈Des(σ) i, and the inversion index of σ is inv(σ) =

#{(i, j) | i < j and σi > σj}.
There is a version of the major index for labeled d-complete posets and the inversion

index for labeled posets. The descent set of labeled poset (P,ω) is given by Des(P,ω) :=
{x ∈ P | x <P y and ω(x) > ω(y)}.

Definition 12. The major index of a labeled poset (P,ω) is

maj(P,ω) =
"

x∈Des(P,ω)

hP (x),

where hP (x) is the hook-length of x ∈ P .

Definition 13. The inversion index of a labeled poset (P,ω) is

inv(P,ω) = #{(x, y) |ω(y) < ω(x) and x <P y}.

Let stat ∈ {maj, inv}, the major index (inversion) q-analogue of the number of linear
extensions of a labeled poset (P,ω) is

estatq (P,ω) :=
"

σ∈L(P,ω)

qstat(σ).

Now we state the q-analogue of the hook-length formulas. We define the q-integer
[n]q := 1+ q+ · · ·+ qn−1 and the q-factorial [n]q! := [n]q · · · [2]q[1]q. Peterson and Proctor
[13] gave a maj q-analogue formula for d-complete posets.

Theorem 14 (Peterson and Proctor [13]). Let (P,ω) be a labeled d-complete poset of size
n with any labeling. Then,

emaj
q (P,ω) = qmaj(P,ω) [n]q!#

x∈P [hP (x)]q
.

Björner and Wachs [1] gave the inversion q-analogue formula for rooted tree posets.

Theorem 15 (Björner and Wachs [1]). Let (P,ω) be a rooted tree poset with a natural
labeling. Then

einvq (P,ω) = qinv(P,ω)
[n]q!#

x∈P [hP (x)]q
.

2.6 Identities for emaj
q from the theory of P -partitions

In this section, we state the definition of (P,ω)-partition and its connection to emaj
q (P,ω).

Definition 16. [16] A (P,ω)-partition is a map f : P → N satisfying the conditions:

1. If s ! t in P, then f(s) " f(t).
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2. If s ! t and ω(s) > ω(t), then f(s) > f(t).

If
$

t∈P f(t) = m, then we say f is a (P,ω)-partition of m. We denote the set of all
(P,ω)-partitions as A(P,ω). First, we have the following definition.

Definition 17. Let w = w1w2 . . . wn ∈ Sn. We say that the function f ′ : [n] → N is
w-compatible if the following two conditions hold.

1. f ′(w1) " f ′(w2) " · · · " f ′(wn).

2. f ′(wi) > f ′(wi+1) if wi > wi+1.

Define f ′ : [n] → N by f ′(i) = f(ω−1(i)), and let Sw be the set of all functions f such
that f ′ is w-compatible. We have the following result called the fundamental lemma on
(P,ω)-partitions.

Lemma 18 ([16], Lemma 3.15.3). A function f : P → N is a (P,ω)-partition if and only
if f ′ is w-compatible with some w ∈ L(P,ω). In other words,

A(P,ω) =
%̇

w∈L(P,ω)
Sw,

where ∪̇ denotes disjoint union.

Let aP (n) denote the number of (P,ω)-partitions of n and let GP,ω(x) =
$

aP (n)x
n

be generating function of these partitions. Stanley gave the following specialization of the
generating function associated with (P,ω)-partition:

Theorem 19 (Stanley [16]). Let (P,ω) be a labeled poset of size p. Then we have,

GP,ω(q) =
emaj
q (P,ω)

#p
i=1(1− qi)

.

For any disjoint union of labeled posets (P,ω1) + (Q,ω2), by definition, we have

GP+Q,ω1+ω2(q) = GP,ω1(q) ·GQ,ω2(q).

By applying Theorem 19 to the above equation, we have the following corollary.

Corollary 20. [16, Exercise 3.162(a)] Let (P +Q,ω) be a labeled disjoint sum of posets
with |P +Q| = n and |P | = p. For any labeling ω, we have

emaj
q (P +Q,ω) =

&
n
p

'

q

emaj
q (P,ω1) · emaj

q (Q,ω2),

where ω1 and ω2 are the labelings obtained by restricting ω to P and Q respectively.

the electronic journal of combinatorics 29(3) (2022), #P3.57 8



2.7 Identities for einv
q for disjoint union of posets

We also have the following identity for the disjoint union of posets in the case of the
inversion index.

Proposition 21 (Björner-Wachs,[1]). Let (P + Q,ω) be a labeled disjoint sum of posets
with |P + Q| = n and |P | = p. Suppose that ω has the property that the label of every
element of P is smaller than the label of every element of Q. We have

einvq (P +Q,ω) =

&
n
p

'

q

einvq (P,ω1) · einvq (Q,ω2),

where ω1 and ω2 are the labeling obtained by restricting ω to P and Q respectively.

Remark 22. Note that the disjoint poset identity for the inversion statistic has a more
specific condition on the poset labeling than the major index does. When applying the
Theorem 9, we need to label the mobile posets so that it satisfies the condition of Propo-
sition 21. More detail about the labeling of the poset for the case of inversion index is
stated in Section 6.

3 P -partition with a fixed point

In this section, we discuss a variation of Theorem 19, where we fix the position of an
element in P . As a result, we have Corollary 27, which is used to prove the recurrence of
emaj
q .

Denote L(P,ω; {s}) the set of linear extensions of (P,ω) that end with ω(s) for a fixed
s ∈ P and emaj

q (P,ω; {s}) =
$

σ∈L(P,ω;{s}) q
maj(σ). We omit ω and assume that the poset

is labeled (P,ω) unless specified. There is analogue of Corollary 20 for emaj
q (P ; {s}).

We can restrict the conditions on A(P,ω) so that it only considers the linear extensions
that ends with a fixed element s ∈ P . We define the following restricted (P,ω)-partition:

Definition 23. A (P,ω; {s})-partition is a map f : P → N satisfying the following
conditions:

1. f is a (P,ω)-partition

2. f(s) ! f(t) for all t ∈ P

3. f(s) = f(t) then ω(s) > ω(t)

Let A(P,ω; {s}) denote the set of such partitions.

Lemma 24. A function f : P → N is a (P,ω; {s})-partition if and only if f ′ is w-
compatible with some w ∈ L(P,ω). In other words,

A(P,ω; {s}) =
%̇

w∈L(P ;{s})
Sw.
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Proof. By the definition of a (P,ω; {s})-partition, the set A(P,ω; {s}) consists of the
(P,ω)-partitions such that f ′ is w-compatible with some w ∈ L(P ; {s}). Then we can
restrict the Lemma 18 to L(P ; {s}).

Let asP (n) be the number of (P,ω; {s})-partition of size n, and letGP ;{s}(x) =
$

asP (n)x
n

be the generating function. Then we can restrict Theorem 19 to L(P,ω; {s}). Denote
emaj
q (P ; {s}) :=

$
σ∈L(Pλ/µ;{s}) q

maj(σ).

Theorem 25. Let (P,ω) be a labeled poset of size p and s ∈ P . Then we have,

GP ;{s}(q) =
emaj
q (P ; {s})

#p
i=1(1− qi)

.

Proof. This is a consequence of Lemma 24.

We have the following lemma for the disjoint union of posets with the fixed point.

Lemma 26. Let (P +Q,ω) be a labeled disjoint union of posets and fix s ∈ P such that
ω(s) > ω(t) for all t ∈ Q. Let p = |P | and n = |P +Q|. Then we have

(1− qn) ·GP+Q;{s}(q) = (1− qp) ·GP ;{s}(q) ·GQ(q).

Proof. To prove the lemma, we first give a combinatorial interpretation of HP ;{s}(q) :=
(1− qp) ·GP ;{s}(q). Consider the difference GP ;{s} − qpGP ;{s}. We build an injection from
the (P ; {s})-partition of size m− p to the (P ; {s})-partition of size m. The coefficients of
qm from the generating function qp ·GP ;{s}(q) counts the number of (P ; {s})-partitions of
sizem−p. Note that for any (P ; {s})-partition f of sizem−p, we can obtain a P -partition
of size m by adding an element for each part of f . Likewise, given any (P ; {s})-partition
g of size m such that g(i) > 0 for all i, we can obtain a (P ; {s})-partition of size m− p by
subtracting one from each part of g. Then the coefficients of qm of HP ;{s}(q) counts the
number of (P ; {s})-partitions g of size m with g(s) is a minimum value, ω(s) > ω(t) for
all t ∈ P where g(s) = g(t), and with at least one zero value. Thus it is necessary and
sufficient for g(s) = 0. Similarly, HP+Q;{s}(q) is a generating function for (P + Q; {s})-
partition f of size n such that (i) f(s) = 0 and (ii) f(s) > f(t) for all t ∈ P + Q such
that f(t) = 0.

Then consider the right hand side of the equation. The coefficients of qm counts size of
a disjoint union of (P ; {s})-partition f1 of size k counted in HP ;{s}(q) and Q-partition f2
of size n− k for some k = 0, . . . , n. Such disjoint union is equivalent to the (P +Q; {s})-
partitions counted in H+Q;{s}(q). To see this note that such (P + Q; {s})-partition f
satisfies condition (i), namely f(s) = f1(s) = 0. Next, we verify that f satisfies the
condition (ii). If t ∈ P with f(t) = f1(t) = 0 then ω(s) > ω(t) since σ1 satisfies condition
(ii). If t ∈ Q with f2(t) = 0, then by assumption ω(s) > ω(t). Thus, we have that
HP+Q;{s}(q) = HP ;{s}(q) ·GQ(q) as desired.

Then by applying Theorem 25 to Lemma 26, we have the following corollary which
we will use to prove our main result in the next section.
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Corollary 27. Let (P +Q,ω) be a labeled disjoint sum of posets and fix s ∈ P such that
ω(s) > ω(t) for all t ∈ Q. Let |P +Q| = n and |P | = p. Then we have,

emaj
q (P +Q; {s}) =

&
n− 1
p− 1

'

q

emaj
q (P ; {s}) · emaj

q (Q).

4 A Major index q-analogue

In this section we give the proof of Theorem 7. The proof follows the proof of the NHLF
for border strips in [8]. We need to first define the hook-lengths of mobile posets. Given
a mobile poset Pλ/µ(p), define the hook-length of (i, j) ∈ [λ] as follows:

h′(i, j) = λi − i+ λ′
j − j + 1 +

"

a!i,b!j

pa,b. (7)

In other words, it is the usual hook-length of the cell in λ plus the size of the d-
complete posets that are attached on the segment of the border strip inside of the hook
of (i, j) (see Figure 3 (a)). We provide an example of the of the theorem below.

u

(a)

13 11

12 10
9

1
2 3

4

5
6 7

8

(b)

5 1
7 6

712
13

(c)

Figure 3: (a): h′(u) is the usual hook-length plus the size of d-complete posets in the
shaded area. (b): mobile poset with reversed Schur labeling. (c): mobile poset with
hook-lengths.

Example 28. Consider the poset (P2221/11,ω) from Figure 3 (b). By Theorem 7, one can
check that

emaj
q (P ) =

[13]!

[1]2[2]4[3]2

(
q12

[5][7][1][6][7]
+

q18

[5][7][12][6][7]
+

q24

[5][7][12][13][7]

)

= q61 + 2q60 + 6q59 + 11q58 + · · ·+ 6q14 + 2q13 + q12.

We first introduce two lemmas required for the proof. We provide the proof of each
lemma in Section 4.1 and Section 4.2.

We have the following recurrence lemma for the the q-analogue of linear extensions
for the major index.

Lemma 29. For a labeled mobile poset (Pλ/µ(p),ω), where ω is a reversed Schur labeling,

emaj
q (Pλ/µ,ω) =

"

µ→ν

q|Pλ/ν1
|emaj

q (Pλ/ν ,ων) (8)
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where Pλ/ν1 is the left disconnected poset of Pλ/ν, and ων is the restricted labeling of ω
onto Pλ/ν.

Next, we have the following Pieri–Chevalley formula. Denote the RHS of (7) as
Hλ/µ(q).

Hλ/µ(q) :=
!

v∈p

1

1− qh(v)

"

D∈E(λ/µ)

qw
′(D)

!

u∈[λ]\D

1

1− qh′(u)

Lemma 30.

(1− qn) ·Hλ/µ(q) =
"

µ→ν

q|Pλ/ν1 |
#

v∈Tν
(1− qh(v))

·Hλ/ν1(q) ·Hλ/ν2(q), (9)

where Tν is the union of the d-complete posets that were hanging on the removed inner
corner u.

We are now ready to give the proof of Theorem 7.

Proof of Theorem 7. We first evaluate the multivariate formula Fλ/µ at x = qλi−i+1−
!

a<i pa,b

and yj = qj−λ′
j−

!
b!j pa,b . We denote emaj

q (P,ω) as eq(P ) unless specified. We show that
emaj
q (Pλ/µ(p)) =

#n
i=1(1 − qi)Hλ/µ(q) by induction on |λ/µ| using Lemma 29. Note that

λ/ν is disconnected and
Pλ/ν = Pλ/ν1 + Pλ/ν2 + Tν , (10)

where Tν is the union of the d-complete posets that were hanging on the removed inner
corner u. Denote |Pλ/νj | as pj. By induction, we have for j = 1, 2

eq(Pλ/νj)

[pj]q!
=

pj!

i=1

(1− qi) ·Hλ/νj ·
(1− q)pj#pj
i=1(1− qi)

= (1− q)pj ·Hλ/νj ,

and by Theorem 14, for each Ti ⊂ Tν we have,

eq(Ti)

[ti]q!
=

qmaj(Ti)

#
v∈Ti

[h(v)]q
=

(1− q)ti#
v∈Ti

(1− qh(v))
.

Note that Ti are natural labeling, so maj(Ti) = 0.
Using Corollary 20 and the equations above, we have

eq(Pλ/ν) =

#n−1
i=1 (1− qi)#

v∈Tν
(1− qh(v))

Hλ/ν1(q) ·Hλ/ν2(q).

We now apply the equation to (8):

eq(Pλ/µ) =
n−1!

i=1

(1− qi) ·
"

µ→ν

q|λ/ν1|#
v∈Tν

(1− qh(v))
·Hλ/ν1(q) ·Hλ/ν2(q) (11)

When ω is a reversed Schur labeling, we have λ′
1 − 1 + c(u) + p1 = |λ/ν1|, where

c(u) = j − i is the content of u = (i, j). By (9), we can show the sum on the RHS of (11)
equals (1− qn) ·Hλ/µ(q), completing the proof.
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Remark 31. We can generalize the labeling of the mobile poset by allowing non-natural
labeling on the d-complete posets. In such case, we would have non-trivial values for
qmaj(Ti) in our final formula.

4.1 Proof of Lemma 29

To prove Lemma 29, we need the following lemmas.
Let (Pλ/µ,ω;U) := {σ ∈ L(Pλ/µ,ω) | σ ends with u ∈ U} and

emaj
q (Pλ/µ,ω;U) :=

"

σ∈(Pλ/µ,ω;U)

qmaj(σ).

Unless specified otherwise, we denote this as emaj
q (Pλ/µ;U).

Lemma 32. For a labeled mobile poset (Pλ/µ(p),ω), where ω is a reversed Schur labeling,
let µ → ν be the removal of an inner corner u, and Pλ/ν1 and Pλ/ν2 be the two disconnected
parts of λ/ν. Then we have

emaj
q (Pλ/µ; {u}) = qn−1emaj

q (Pλ/ν ; [λ/ν1]) + emaj
q (Pλ/ν ; [λ/ν2]). (12)

Proof. The linear extension on the left is σ ∈ L(Pλ/µ), such that σ = σ1 . . . σn−1σn,
where σ1 . . . σn−1 ∈ L(Pλ/ν) and σn = ω(u). Then σn−1 is either an element in Qλ/ν1

or Qλ/ν2 . If σn−1 ∈ Qλ/ν1 , since ω is a reversed Schur labeling, ω(σn−1) > ω(σn), so
maj(σ) = maj(σ1 . . . σn−1) + n − 1. If σn−1 ∈ Qλ/ν2 , then ω(σn−1) < ω(σn), so maj(σ) =
maj(σ1 . . . σn−1).

Now we are ready to prove Lemma 29.

Proof of Lemma 29. By Corollary 20 and a standard recurrence for q-binomial coefficients
we have

emaj
q (Pλ/ν) =

*&
n− 2
|λ/ν1|

'

q

+ q|λ/ν1|
&

n− 2
|λ/ν2|− 1

'

q

+
emaj
q (Pλ/ν1)e

maj
q (Pλ/ν2)

=

&
n− 2
|λ/ν2|

'

q

emaj
q (Pλ/ν1)e

maj
q (Pλ/ν2) + q|λ/ν1|

&
n− 2

|λ/ν2|− 1

'

q

emaj
q (Pλ/ν1)e

maj
q (Pλ/ν2).

(13)

Then the two parts of the sum can be interpreted in the following ways:

Proposition 33.

emaj
q (Pλ/ν ; [λ/ν1]) =

&
n− 2

|λ/ν1|− 1, |λ/ν2|

'

q

emaj
q (Pλ/ν1)e

maj
q (Pλ/ν2), (14)

and

emaj
q (Pλ/ν ; [λ/ν2]) = q|λ/ν1|

&
n− 2

|λ/ν2|− 1

'

q

emaj
q (Pλ/ν1)e

maj
q (Pλ/ν2). (15)
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Proof. Let {x1, . . . xk} be the maximal elements of Pλ/ν1 . Note that

emaj
q (Pλ/ν ; [λ/ν1]) =

k"

i=1

emaj
q (Pλ/ν ; xi), (16)

and

emaj
q (Pλ/ν1) =

k"

i=1

emaj
q (Pλ/ν1 ; xi). (17)

We know that Pλ/ν1 and Pλ/ν2 satisfy the condition in Lemma 26. Then by Corol-
lary 27, we have

emaj
q (Pλ/ν ; xi) =

&
n− 2

|λ/ν1|− 1, |λ/ν2|

'

q

emaj
q (Pλ/ν1 ; xi) · emaj

q (Pλ/ν2). (18)

Applying (18) and (17) to (16), we have the desired result.
For the second equation, we know that emaj

q (Pλ/ν) = emaj
q (Pλ/ν ; [λ/ν1])+emaj

q (Pλ/ν ; [λ/ν2]),
so subtracting (14) from emaj

q (Pλ/ν), we have the desired result as well.

We now apply (14) and (15) to (12) to get the following equation. Let p1 = |Pλ/ν1 |
and p2 = |Pλ/ν2 |.

emaj
q (Pλ/µ; {u})

= qn−1

&
n− 2
p2

'

q

emaj
q (Pλ/ν1) · emaj

q (Pλ/ν2) + qp1
&
n− 2
p2 − 1

'

q

emaj
q (Pλ/ν1) · emaj

q (Pλ/ν2)

After simplifying everything, we get

emaj
q (Pλ/µ; {u}) = qp1 · emaj

q (Pλ/ν).

Such equation is true for all inner corners u of µ → ν, which completes the proof of
Lemma 29.

4.2 Proof of Lemma 30

We first evaluate the Pieri–Chevalley formula (6) for xi = qλi−i+1−
!

a<i pa,b and yj =

qj−λ′
j−

!
b!j pa,b . The LHS of this formula becomes

Fλ/µ(x,y)
,,
xi=q

λi−i+1−
!

a<i pa,b ,

yj=q
j−λ′j−

!
b!j pa,b

= (−1)n ·
"

D∈E(λ/µ)

!

(i,j)∈[λ]\D

qλ
′
j−j+

!
b!j pa,b

1− qh′(i,j)
(19)

By [10, Proposition 4.7] we have

"

(i,j)∈[λ]\D

-
(λ′

j − j) +
"

b!j

pa,b

.
=

"

(i,j)∈[λ]\D

-
(λ′

j − i) +
"

b!j

pa,b

.
−

"

(i,j)∈[λ]\[µ]

c(i, j),
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where in the last equality, we use [10, Proposition 7.16] to obtain,

"

(i,j)∈[λ]\D

-
(λ′

j − j) +
"

b!j

pa,b

.
= w′(Br(D)) +

*
"

(i,j)∈[λ]\D

"

b!j

pa,b −
"

a!i,b!j
(i,j)∈Br(D)

pa,b

+

−
"

(i,j)∈[λ]\[µ]

c(i, j)

(20)

where w′(Br(D)) =
$

(i,j)∈Br(D) h
′(i, j), and the subtraction in the second sum is the d-

complete posets that are included in the new hook-lengths of the broken diagonals. We
denote the quantity in parenthesis on the RHS as /pD.

/pD :=
"

(i,j)∈[λ]\D

"

b!j

pa,b −
"

a!i,b!j
(i,j)∈Br(D)

pa,b

We claim that /pD is invariant under the changes of D’s.

Lemma 34. The quantity /pD is invariant among all D ∈ E(λ/µ).

Proof. We prove by induction on excited moves β : D → D′. Denote ai = (si, ti) as the
active cell and b = (s+ 1, t+ 1), b′ = (s+ 1, t) be the old and new broken diagonal of an
excited move β : D → D′, Then for each excited move β, [λ] \D′ = ([λ] \D) \ {b} ∪ {a}.
Also, Br(D′) = Br(D) \ {b} ∪ {b′}. Thus

/pD′ =

0

1
"

(i,j)∈[λ]\D

"

b!j

pa,b −
"

b!ti+1

pa,b +
"

b!ti

pa,b

2

3−

0

441
"

a!i,b!j
(i,j)∈Br(D)

pa,b −
"

a!si+1,
b!ti+1

pa,b +
"

a!si+1,
b!ti

pa,b

2

553

=

0

1
"

(i,j)∈[λ]\D

"

b!j

pa,b +
"

b=ti

pa,b

2

3−
*

"

a!i,b!j
(i,j)∈Br(D)

pa,b +
"

a!si+1,
b=ti

pa,b

+

= /pD +
"

b=ti

pa,b −
"

a!si+1,
b=ti

pa,b

For λ/µ border strip, there cannot be any d-complete posets hanging above an active
cell in the same column, so the difference on the RHS of the equation above is zero and
so /PD′ = /PD.

We then let /pD = /p for all D ∈ E(λ/µ). Putting /p and c(i, j) outside of the sum, we
can rewrite (19) as:

Fλ/µ(x|y)
,,
xi=q

λi−i+1−
!

a<i pa,b ,

yj=q
j−λ′j−

!
b!j pa,b

= (−1)n · q"pµ−con(λ/µ)
!

v∈p
(1− qh(v)) ·Hλ/µ, (21)
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where con(λ/µ) :=
$

(i,j)∈[λ/µ] c(i, j). Next we see what happens to the RHS of Pieri–

Chevalley formula (6) when we evaluate at xi = qλi−i+1−
!

a<i pa,b and yj = qj−λ′
j−

!
b!j pa,b ,

where the pa,b appearing in the sums are the sizes of the d-complete posets in Pλ/µ(p).
The linear factor on the RHS of Pieri–Chevalley formula becomes

1

x1 − y1

,,,,xi=q
λi−i+1−

!
a<i pa,b ,

yj=q
j−λ′j−

!
b!j pa,b

=
(−1)n−1

qλ1−
!

a<1 pa,b − q1−λ′
1−

!
b!1 pa,b

=
(−1)nqλ

′
1−1+

!
(a,b)∈[λ/µ] pa,b

(1− qn)
.

(22)
Given an inner corner removed µ → ν, denote p1 and p2 be the set of d-complete

poset hanging on Pλ/ν1 and Pλ/ν2 respectively. Then for the shapes λ/νk where k = 1, 2
we have

Fλ/νk(x|y)
,,
xi=q

λi−i+1−
!

a<i pa,b ,

yj=q
j−λ′j−

!
b!j pa,b

= (−1)|λ/ν
k| · q"pνk−con(λ/νk)

!

v∈pk

(1− qh(v)) ·Hλ/νk , (23)

#
v∈p1

(1− qh(v)) ·
#

v∈p2
(1− qh(v))

#
v∈p(1− qh(v))

=
1#

v∈Tν
(1− qh(v))

Thus, by (21), (22), and (23) the Pieri–Chevalley formula (6) evaluated at such xi and
yj becomes,

q"pµ−con(λ/µ)Hλ/µ =
qλ

′
1−1+

!
(a,b)∈[λ/µ] pa,b

(1− qn)

"

µ→ν

q"pν1+"pν2−con(λ/ν1)−con(λ/ν2)

#
v∈Tν

(1− qh(v))
Hλ/ν1Hλ/ν2 . (24)

Note that for each inner corner u : µ → ν, we have con(λ/µ)− con(λ/ν1)− con(λ/ν2) =
c(u). Thus the previous equation becomes

(1− qn)Hλ/µ =
"

µ→ν

qλ
′
1−1+c(u)+

!
(a,b)∈[λ/µ] pa,b+"pν1+"pν2−"pµ

#
v∈Tν

(1− qh(v))
Hλ/ν1Hλ/ν2 .

Lemma 35. For the equation defined above,

"

(a,b)∈[λ/µ]

pa,b + /pν1 + /pν2 − /pµ = |p1|.

Proof. Consider
$

b!1 pa,b+ /pν1 + /pν2 − /pµ. We know that /p is invariant among the excited
diagrams, so without loss of generality, assume D = [µ].

We have Br([ν1]) ∪ Br([ν2]) ∪ {u0} = Br([λ/µ]), where u0 = (u1 + 1, u2) is a broken
diagonal of [µ] below u = (u1, u2). Denote pi as the size of the d-complete posets hanging
on λ/νi. Then,
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u

�/µ �/⌫1 �/⌫2

Figure 4: [λ/µ] = [λ/ν1]+ [λ/ν2]+u. Note that in λ/ν1, we are missing a broken diagonal
underneath u.

"

b!1

pa,b+/pν1+/pν2−/pµ =
"

b!1

pa,b+

*
"

(i,j)∈[λ/ν1]

"

b!j

pa,b+
"

(i,j)∈[λ/ν2]

"

b!j

pa,b−
"

(i,j)∈[λ/µ]

"

b!j

pa,b

+

−
*

"

a!i,b!j
(i,j)∈Br([ν1])

pa,b +
"

a!i,b!j
(i,j)∈Br([ν2])

pa,b −
"

a!i,b!j
(i,j)∈Br([µ])

pa,b

+
(25)

Let S1 and S2 be the sums in parenthesis on the RHS above. Since λ/ν1 and λ/ν2 do not
contain the inner corner u (see Figure 4), S1 and S2 simplify to

S1 =
"

b!u2

pa,b, S2 =
"

a!u1+1,b!u2

pa,b. (26)

Thus Equation (25) becomes

"

b!1

pa,b + /pν1 + /pν2 − /pµ =
"

b!1

pa,b −
*

"

b!u2

pa,b −
"

a!u1+1,b!u2

pa,b

+
.

Note that the equation in the parenthesis counts the number of d-complete posets hanging
on and to the the right of u. These are exactly the d-complete posets on Pλ/ν1 .

Finally, note that λ′
1 − 1 + c(u) + |p1| = |Pλ/ν1 |. Then we can simplify (4.2) to obtain

the desired formula.

5 Application: bounds for the number of linear extensions

In this section, we provide a short proof of Corollary 8 along with an example. We also
discuss an application of the formula to the bounds of generalized Euler numbers.

5.1 The case of q = 1

proof of Corollary 8. Evaluating q = 1 in Theorem 7 gives the desired identity (3).
One can also prove Corollary 8 directly by evaluating the multivariate formula Fλ/µ

from (6) at xi = λi − i+ 1−
$

a<i pa,b and yj = j − λ′
j −

$
b!j pa,b

the electronic journal of combinatorics 29(3) (2022), #P3.57 17



11 6

10 5

4

2 1
3

78
9

(a)

... ... ... ...

p p p p

p p p p

1 2 k � 1

1 2 k � 1

(b)

Figure 5: (a) the ωinv labeled mobile tree poset, (b) illustration of the posets Cp(k) (top)
and Ap(k) (bottom).

We give an example of the theorem below.

Example 36. Consider the mobile poset P2221/11 from Figure 3 (b). Then by Corollary 8
we have

e(P ) =
13!

24 · 32

(
1

5 · 6 · 72 +
1

5 · 6 · 72 · 12 +
1

5 · 72 · 12 · 13

)
= 33000. (27)

5.2 Bounds to generalizations of Euler numbers

As an application to Corollary 8 gives bounds to e(Pλ/µ(p)) just as in [9].

Corollary 37. For any mobile poset e(Pλ/µ(p)) of size n,

n!

H(p)
#

u∈[λ/µ] h
′(u)

! e(Pλ/µ(p)) ! |E(λ/µ)| · n!

H(p)
#

u∈[λ/µ] h
′(u)

where [λ/µ] is the border strip of the mobile poset.

Proof. For any skew shape λ/µ, we have [µ] ∈ E(λ/µ), so the lower bound is given
by Corollary 8. For the upper bound, note that under the excited move, the product#

v∈[λ/µ] h
′(u) increases. Then this product is minimal when the excited diagram is [µ]

and the upper bound follows from Corollary 8.

For more detail about asymptotic of linear extensions of skew shaped tableaux, see
[9].

One application of the formula is that it provides bounds to generalizations of Euler
numbers defined in [5]. The authors give two generalizations of Euler number using two
different families of posets, up-down posets with k − 1 downs and chains (or anti-chains)
of size p hanging on every minimal element,denoted as Cp(k) and Ap(k) (see Figure 3 (b)).
See [14, A332471] and [14, A332568] for examples of these sequences.

Corollary 38. For a mobile poset Pλ/µ(p) that is either Cp(k) or Ap(k) for k and p
non-negative integers, we have
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(2k + kp)!

(p+ 1)!k(2p+ 3)k−1(p+ 2)
! e(Cp(k)) ! Cat(k) · (2k + kp)!

(p+ 1)!k(2p+ 3)k−1(p+ 2)

(2k + kp)!

(p+ 1)k(2p+ 3)k−1(p+ 2)
! e(Ap(k)) ! Cat(k) · (2k + kp)!

(p+ 1)k(2p+ 3)k−1(p+ 2)

where Z is the up-down border strip with k − 1 many down steps and Cat(k) = 1
k+1

6
2k
k

7

is the kth Catalan number.

Proof. The result follows from Corollary 37, a routine calculations of hooks, and the
fact that the excited diagrams of up-down posets are given by the Catalan numbers [8,
Corollary 8.1]

6 An Inversion index q-analogue

In this section we give an example and the proof of Theorem 9. Unless specified otherwise,
(Pλ/µ(p),ω) is a labeled mobile tree poset.

6.1 Labeling of the poset for the case of inversion index

The mobile tree poset must satisfy a very specific labeling for the case of the inversion
statistic. One of the reasons why is because of the condition stated in Proposition 21.
Another reason is that the labeling needs to satisfy Lemma 41. To satisfy both conditions,
we must label the poset in the following way: let {u1, . . . , uk} be the list of inner corners
of Pλ/µ from (1,λ1) to (λ′

1, 1), and u0 = (1,λ1) and uk+1 = (λ′
1, 1). Partition the mobile

posets into P1, . . . , Pk+1 such that for each Pi, it contains all elements (s, t) ∈ Pλ/µ for
ui < t ! ui−1 and all the elements of rooted trees hanging on such (s, t). If uk+1 = (λ′

1, 1),
then Pk+1 = uk+1. Starting from P1, we label each Pi so that all the hanging rooted trees
are naturally labeled and the elements in the border strip have reversed Schur labeling.
See Figure 6 for an example. We denote such labeling as ωinv.

Example 39. Consider the labeled mobile poset (P2221/11,ωinv) from Figure 5 (a). Then
by Theorem 9 we have

einvq (P ) =
[11]!

[1]4[3]2

(
q4

[4][6][1][5][6]
+

q9

[4][6][10][5][6]
+

q14

[4][6][10][11][6]

)

= q38 + 4q37 + 9q36 + 17q35 + · · ·+ 9q6 + 4q5 + q4.

Remark 40. Note that Theorem 9 is only for mobile trees, where the d-complete posets
are restricted to rooted trees. This is because there is no known hook-length formula for
einvq (P ) when P is a general d-complete poset.
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Figure 6: A mobile tree poset with labeling ωinv. On the left we show the partitions of
the poset into P1, . . . , P4. We label each Pi so that the d-complete posets are naturally
labeled and the elements in the border-strip have reversed Schur labeling.

We need the following recursion for the inversion index q-analogue.

Lemma 41.
einvq (Pλ/µ,ω) =

"

µ→ν

qn−ω(u)einvq (Pλ/ν ,ων), (28)

where ω is a reversed Schur labeling and ω(u) is the label of the inner corner u from
µ → ν.

We also need the following Pieri–Chevalley formula for the inversion index. Denote
the RHS of (4) as 8Hλ/µ(q):

8Hλ/µ(q) :=
!

v∈p

1

1− qh(v)

"

D∈E(λ/µ)

qw(D)+pD
!

u∈[λ]\D

1

1− qh′(u)
,

where pD =
$

(i,j)∈[µ]\D
$

s=j pr,s.

Lemma 42.

(1− qn) · 8Hλ/µ =
"

µ→ν

qq
n−ωinv(u)

#
v∈Tν

(1− qh(v))
· 8Hλ/ν1 · 8Hλ/ν2 , (29)

where ωinv(u) is the label of u, the inner corner from µ → ν

We provide the proof of the lemmas in Section 6.2.
We are now ready to give the proof of Theorem 9.

Proof of Theorem 9. Similarly as in the case of major index, we show that einvq (Pλ/µ(p)) =#n
i=1(1− qi)· 8Hλ/µ(q) by induction on |λ/µ| using Lemma 41. Recall Pλ/ν can be expressed

as (10). By induction and Theorem 14, we have

eq(Pλ/νj)

[pj]q!
=

pj!

i=1

(1− qi) · 8Hλ/νj ·
(1− q)pj#pj
i=1(1− qi)

= (1− q)pj · 8Hλ/νj ,

where pj = |Pλ/νj |. Also, for each Ti ⊂ Tν ,

einvq (Ti)

[ti]q!
=

qinv(Ti)

#
v∈Ti

[h(v)]q
=

(1− q)ti#
v∈Ti

(1− qh(v))
. (30)
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Note that Ti are naturally labeled, so inv(Ti) = 0. Using Proposition 21 and (30), we
have

eq(Pλ/ν) =

#n−1
i=1 (1− qi)#

v∈Tν
(1− qh(v))

8Hλ/ν1 · 8Hλ/ν2 .

By this equation and Lemma 41.

eq(Pλ/µ) =
n−1!

i=1

(1− qi)
"

µ→ν

qn−ωinv(u)

#
v∈Tν

(1− qh(v))
· 8Hλ/ν1 · 8Hλ/ν2 . (31)

By (29), we can show the sum on the RHS of (31) equals (1− qn) · 8Hλ/µ, completing
the proof.

6.2 Proof of Lemma 41 and Lemma 42

Proof of Lemma 41. Recall that for a fixed tree mobile Pλ/µ, a linear extension of σ ∈
L(Pλ/µ) consists of an inner corner of λ/µ followed by a linear extension of the remaining
poset of shape λ/ν, where µ → ν. Conversely, given a linear extension σ′ ∈ L(Pλ/ν), by
inserting the new element in the beginning we obtain a linear extension of Pλ/µ. Note
that inv(σ) = inv(σ′)+n−ω, where n−ω is the number of inversion caused by the inner
corner. The result follows from this correspondence

To prove Lemma 42, we first evaluate Fλ/µ(x,y) at xi = qλi−i+1−
!

a<i pa,b and yj =

qj−λ′
j−

!
b!j pa,b .

Fλ/µ(x,y) |
xi=q

λi−i+1−
!

a<i pa,b ,

yj=q
j−λ′j−

!
b!j pa,b

= (−1)n
"

γ:A→B,
γ⊂λ

!

(i,j)∈γ

qλ
′
j−j+

!
b!j pa,b

1− qh′(i,j)
(32)

By [10, Prop 4.7] and [10, Lemma 7.17], we have

"

(i,j)∈λ\D

-
(λ′

j − j) +
"

b!j

pa,b

.
=

"

(i,j)∈[λ]\D

-
(λ′

j − i) +
"

b!j

pa,b

.
−

"

(i,j)∈[λ]\[µ]

c(i, j)

= w(Br(D)) +
"

(i,j)∈[λ]\D

"

b!j

pa,b −
"

(i,j)∈[λ]\[µ]

c(i, j), (33)

where w(Br(D)) =
$

(i,j)∈Br(D) h(i, j). Note that unlike the case of major index, we

do not include the size of the rooted trees in w(Br(D)) (see (20)).
Denote p̃λ/µ :=

$
(i,j)∈[λ]/[µ]

$
b!j pa,b. For each D ∈ E(λ/µ), we have

"

(i,j)∈[λ]\D

"

b!j

pa,b − p̃λ/µ =
"

(i,j)∈[µ]/D

"

b=j

pa,b = pD.
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Then p̃λ/µ and c(i, j) from (33) do not depend on D, so we can take them outside of
the sum to rewrite (32) as:

Fλ/µ(x|y) |
xi=q

λ′1−i+1−
!

a<i pa,b ,

yj=q
j−λ′j−

!
b!j pa,b

= (−1)n · qp̃λ/µ−con(λ/µ)
!

v∈p
(1− qh(v)) · 8Hλ/µ (34)

Now as done for the case of major index in Section 4, we evaluate the Pieri–Chevalley
formula at such xi and yj. Then applying (34) to (6), and simplifying everything as we
did in the case of major index, we have

(1− qn) 8Hλ/µ =
"

µ→ν

qλ1−1+c(u)+
!

b!1 pa,b+p̃λ/ν1+p̃λ/ν2−p̃λ/µ

#
v∈Tν

(1− qh(v))
8Hλ/ν1

8Hλ/ν2 . (35)

Note that from (26), the exponent of q is equivalent to

"

b!1

pa,b + p̃λ/ν1 + p̃λ/ν2 − p̃λ/µ =
"

b!1

pa,b −
"

b!u2

pa,b,

where u2 is the column of the inner corner u = (u1, u2). It is left to show the following
lemma to complete the proof.

Lemma 43. Let (Pλ/µ(p),ωinv) be a mobile tree poset of size n with a labeling ωinv and u
be the inner corner for µ → ν. Then we have,

n− ωinv(u) = λ′
1 − 1 + c(u) +

"

b!1

pa,b −
"

b!u2

pa,b.

Proof. First, we show that for a border strip (Pλ/µ,ω) of size n0 with a reversed Schur
labeling we have n0 − ω(x) = λ′

1 − 1 + c(x) for all x ∈ Pλ/µ. Note that in a border strip,
there is only one element per content. Also, for Schur labeling of a border strip, we have
ω(λ′

1, 1) = 1 and ω(1,λ1) = n0. The element (λ′
1, 1) satisfies the equation. Then as you

follow the border strip, the content decreases by one while the label increases by one, so
the rest of the elements satisfy the equation n0 − ω(x) = λ′

1 − 1 + c(x).
Now for a labeled mobile tree poset (Pλ/µ(p),ωinv) of size n, for any x ∈ Pλ/µ(p),

ωinv(x) gets shifted by
$

b!x2
pa,b. Then ωinv(x) = ω(x) +

$
b!x2

pa,b. Also, we have that
n = n0 +

$
b!1 pa,b. Then applying such shifts to the equation obtained from a border

strip, we have the desired equation.

Then we can simplify (35), completing the proof of Lemma 42.

7 Final remarks

7.1 Theorem 8 for border-strips

In [10] Morales, Pak, and Panova gave a proof of Theorem 5 using factorial Schur functions.
In [8] the same authors gave another proof of Theorem 5 reducing it to the case of border

the electronic journal of combinatorics 29(3) (2022), #P3.57 22



strips. The latter proof included an analogue of Lemma 30 for border strips, but there
was no explicit analogue of Lemma 29. Instead they relied on an identity [8, Lemma
7.2] proved using factorial Schur functions. Our Lemma 29 can be reduced to the case of
border strips as follows.

Corollary 44. For a labeled border-strip poset (Qλ/µ,ω), where ω is a reversed Schur
labeling,

emaj
q (Qλ/µ,ω) =

"

µ→ν

q|Qλ/ν1
|emaj

q (Qλ/ν ,ων),

where Qλ/ν1 is the left disconnected poset of Qλ/ν, and ων is the restricted labeling of ω
onto Qλ/ν.

Then using the Pieri–Chevalley formula ((6) proved in [8]) and Corollary 44, we obtain
a proof of Theorem 5 for border strips without using factorial Schur functions.

7.2 Bijective proof between maj and inv index for border strips

Lemma 41 is the inversion statistic analogue of Lemma 29. In the case of border strips
Qλ/µ, since n− ω(u) = |Qλ/ν1 |, we obtain the same recurrence as emaj

q (Qλ/µ) as in Corol-
lary 44. Thus, we obtain the following equation of the q-analogues for border strips.

Corollary 45. For a border strip Qλ/µ,

einvq (Qλ/µ,ω) = emaj
q (Qλ/µ,ω),

where ω is a reversed Schur labeling

This identity can also be proved bijectively using Foata’s classical bijection on permu-
tations, denoted by ϕ, defined as follows (see [16, Sec. 1.4]). Let w = w1 · · ·wn ∈ Sn,
and we define γ1, . . . γn, where γk is a permutation of {w1, . . . , wk}. Let γ1 = w1. For
each k " 1, if the last letter of γk is greater (respectively smaller) than wk+1, then split γk
after each letter greater (respectively smaller) than wk+1. To obtain γk+1, cyclically shift
each compartment of γk to the right, then place wk+1 at the end. We set ϕ(w) = γn. We
have the following theorem.

Theorem 46 (Foata [3]). Let ϕ be the Foata bijection. For all w ∈ Sn,

Des(w−1) = Des(ϕ(w)−1).

Because Foata’s bijection preserves descent sets, we have the following bijection be-
tween the major and inversion index.

Lemma 47. Given a σ ∈ L(P,ω), where ω is a (reversed) Schur labeling, ϕ(σ) is also in
L(P,ω), and maj(σ) = inv(ϕ(σ))

More detailed information about the equidistribution of major and inversion index
in trees can be found in [1]. The situation for mobile posets is more subtle since the
q-analogues do not agree (see Example 28 and Example 39).
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7.3 Mobiles of general skew shapes

The formula (NHLF) holds true for all posets coming from skew shapes, but the combina-
torial proof of the formula is restricted to the case of border strips. Recall that a mobile
is obtained by attaching d-complete posets from a border-strip. It would be interesting
to see if Theorem 7 holds for posets where the border strip is replaced by general skew
shape. Calculations suggest that the Naruse formula (7) would need some adjustments.

On the other hand, we use a version of Pieri–Chevalley formula and the recurrence
for our proof. There is a version of the Pieri–Chevalley formula for general skew shapes,
shown algebraically by Ikeda and Naruse [6], and combinatorically by Konvalinka [7].

7.4 Relation with Naruse-Okada hook-length formula

Naruse-Okada [12] have a different q-analogue of emaj
q (P,ω) for a family called skew d-

complete posets, which intersects with the family of mobile posets [5, Section 6.1].

Definition 48. [12] A skew d-complete poset is a d-complete poset P with an order filter
I removed. We denote such a poset by P \ I.

The Naruse-Okada formula for counting linear extensions of skew d-complete posets
uses the hook-length of excited peaks (see [10, Section 6] and [12]) instead of broken
diagonals.

Theorem 49 (Naruse-Okada [12]). Let P \ I be a skew d-complete poset with n elements.
Then

emaj
q (P \ I) =

n!

i=1

(1− qi)
"

D∈E(P\I)

#
v∈B(D) q

h(v)

#
v∈P\D(1− qh(v))

,

where h(v) is the hook length of element v in P \ I and B(D) is a set of excited peaks of
D.

For posets that are both mobiles and skew d-complete, the notion of hook-lengths are
the same (see Figure 7). Then for such posets Theorem 49 at q = 1 and Corollary 8 agree.

However, the q-analogues in Theorem 8 and Theorem 49 are different (see Example 50).
This is because the NHLF formula for skew d-complete posets uses the natural labeling
of the poset as opposed to the reversed Schur labeling. For the case of skew shapes, their
q-analogue agrees with the reverse plane partition q-analogue of the Naruse formula in
(see [10] Corollary 6.17) instead of SSYT q-analogue, Theorem 5, which uses the Schur
labeling (see Figure 7).

Example 50. Consider the poset Q = P \ I in Figure 7 that is both a mobile poset and
a skew d-complete poset [5, Ex. 6.3]. If we label it using the reversed Schur labeling on
the border strip and natural labeling on the d-complete posets, then by Theorem 7, we
have

emaj
q (Q,ω′) = q11 + 2q10 + 3q9 + 3q8 + 3q7 + 2q6 + 1q5 + q4

= [6]!

(
q4

[1][1][2][2][3][5]
+

q7

[1][1][2][3][5][6]

)
.
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Figure 7: A skew d-complete poset P \ I that is also a mobile labeled using (a) the Schur
labeling ω′ and (b) the natural labeling ω. (c) The hook lengths of the elements in the
poset and the excited peak colored in blue.

Now, label the same skew d-complete poset Q = P \ I using the natural labeling.
Then, by the Naruse–Okada formula (Theorem 49), we have

emaj
q (Q,ω) = q9 + q8 + 2q7 + 2q6 + 2q5 + 2q4 + 2q3 + 2q3 + 2q2 + q + 1

= [6]!

(
q0

[1][1][2][2][3][5]
+

q6

[1][1][2][3][5][6]

)
.

It would be interesting to see if one can give a proof of Theorem 49 using the technique
from [8]. This would involve proving a variation of Lemma 29 where ω is a natural labeling
instead of reversed Schur labeling.
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