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Abstract

The distinguishing number of a structure is the smallest size of a partition of
its elements so that only the trivial automorphism of the structure preserves each
cell of the partition. We show that for any countable subset of the positive real
numbers, the corresponding countable homogeneous Urysohn metric space, when it
exists, has distinguishing number 2 or is infinite.

While it is known that a sufficiently large finite primitive structure has distin-
guishing number 2, unless its automorphism group is the full symmetric group or
alternating group, the infinite case is open and these countable Urysohn metric
spaces provide further confirmation toward the conjecture that all primitive ho-
mogeneous countably infinite structures have distinguishing number 2 or else the
distinguishing number is infinite.

Mathematics Subject Classifications: 0305E18, 05C15, O3E02, 03E05

Introduction

The asymmetric colouring number of a graph was introduced by Babai long ago in [2],
and it resurfaced more recently as the distinguishing number in the work of Albertson
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and Collins in [1]. First call a group of permutations G on a set A k-distinguishable if
there exists a partition of A into k cells such that only the identity permutation in G fixes
setwise all of the cells of the partition. It is evident that G is always | A|-distinguishable.
The least cardinal number k such that G is k-distinguishable is its distinguishing number
D(G). We call a graph or any structure S k-distinguishable if its automorphism group
Aut(S) satisfies D(Aut(S)) < k.

The distinguishing number is the amount of symmetry found within a structure, lead-
ing to interesting structural information that comes from the investigation of what is
needed to break that symmetry. Of particular interest to us are countable homogeneous
structures, carrying any two finite substructures of the same size and type into each
other by an automorphism of the entire structure. Their automorphism group is thus
highly symmetric and in particular transitive as a permutation group. The set of rational
numbers with its linear order relation is such a countable homogeneous structure, and is
easily seen to have infinite distinguishing number. On the other hand, the Rado graph (or
infinite random graph) is also homogeneous, but Imrich, Klavzar and Trofimov showed
in [10] that its distinguishing number is 2, which is the smallest it can be because the
Rado graph is not rigid. The distinguishing number of various other finite and countable
homogeneous structures was determined in [4, 5, 12], including all simple and directed
homogeneous graphs and posets. In particular in all cases of infinite homogeneous simple
and directed graphs, it was shown in [12] that their distinguishing number is either 2
or infinite, with only obvious exceptions having imprimitive automorphism groups. The
following was thus conjectured.

Conjecture ([12]). The distinguishing number of all primitive homogeneous countably
infinite structures is 2 or infinite.

The conjecture is very much in the spirit of the finite case, where Cameron, Neumann
and Saxl proved (see [3]) that a sufficiently large, finite primitive permutation group has
distinguishing number 2, unless it is the full symmetric group or alternating group. The
43 exceptions were determined by Seress, and one of these exceptions is the dihedral group
Dy, which is primitive and the automorphism group of the homogeneous graph Cs; it
has distinguishing number 3 and hence the necessity for the conjecture to address only
infinite structures. A tool developed in [12] appears in the right direction to confirm the
conjecture, namely, that of a fixing type for the action of a group G on a set A. If the
action does have such a fixing type, then the distinguishing number of G' acting on A is 2.
It may be possible that a more general result for all primitive groups exists (homogeneous
or not), but we have no insight in that direction.

A graph having distinguishing number 2 has an interesting translation to permutation
group theoretic properties of its automorphism group, see Section 2.2 of [3]. Hence it
is reasonable to hope that the 2-distinguishability of the rational Urysohn space, and
the distinguishing numbers of other Urysohn spaces addressed below, have interesting
translations into properties of their automorphism groups.

In this paper, we consider the case of homogeneous countable Urysohn metric spaces
Us for a given countable spectrum S C Ry, constructed as the Fraissé limits of all
finite metric spaces whose spectrum is a subset of S. Note that not every subset S
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can be the spectrum of such a Urysohn metric space, and a necessary and sufficient
condition is known as the “4-values” condition, which is precisely when metric triangles
amalgamate; when this is the case we call S a universal spectrum. Depending on S, we
will see that the automorphism group of Ugs may or may not be primitive; we do not
have a characterization for a spectrum to yield a primitive automorphism group of its
corresponding Urysohn space.

These countable metric spaces are very much related to the well known (uncountable)
Urysohn space, the complete separable metric space which is both homogeneous and
universal; it is the completion of the countable homogeneous Urysohn spaces using the
rationals as spectrum. See, for example, [6, 13].

The main result of the paper is as follows.

Theorem (Main Theorem). Let & C Ry, be a countable universal spectrum and Ug the
countable homogeneous structure with spectrum S. We then have that D(Us) = 2 or w,
and the following items hold.

1. If S has a positive limit (not necessarily in S), then D(Us) = 2.

2. If S has no positive limits but has 0 as a limit, then D(Ug) = 2 if and only if S
contains arbitrarily large elements of arbitrarily small distance.

3. If § does not have a limit, then D(Us) = 2 if and only if S contains two distinct
and positive elements of distance smaller than or equal to the minimum positive
element of S.

The proof is the result of analyzing the existence of various limit structures for the
set S along the following lines, and the necessary lemmas will be proved in the remaining
sections of the paper.

Proof. Let S be a universal spectrum. If S has a positive limit (not necessarily in S),
then D(Us) = 2 by Lemma 23. If S has no positive limit but has 0 as a limit, then
D(Us) = 2 or w by Lemma 27. Moreover D(Us) = 2 if and only if gap(S=5) = 0 for some
positive number s € S; as S is assumed to have no positive limit, this latter condition is
equivalent to S containing arbitrarily large elements of arbitrarily small distance.
Finally, if S does not have a limit, then by Lemma 25 D(Us) = 2 if and only if there
exist numbers a < b € § with b —a < min(Ssy), that is contains two elements of distance
smaller than the minimum positive element of S. O

It follows that the well known rational Urysohn space, that is Ug for S consisting of
the non-negative rational numbers, has distinguishing number 2. Moreover we shall see
following Theorem 9 that various examples exist showing that all those cases of the Main
Theorem do occur.

It is worth noting that the rigid subspaces which are used in the proofs of those nec-

essary lemmas are almost always rigid forests determined by the s-distance graph of a
metric space for some s in the spectrum: there is an edge between z,y € Ug if and only
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if the distance between x and y is s.

We conclude the introduction by drawing a parallel with other work. Imrich et al.
in [11] have shown that a countable permutation group acting on a countable set has
distinguishing number 2, under the additional assumption that the group has infinite
motion, meaning that every non-identity group element moves infinitely many elements.
The automorphism groups of Urysohn spaces in this paper have infinite motion, but are
uncountable. Moreover recall that, up to (topological group) isomorphism, the closed
subgroups of the infinite symmetric S, are exactly the automorphism groups of count-
able structures, and thus our work can be viewed in that setting. The work of Imrich et
al. in [11] is also focused on closed subgroups of S, where in particular they conjecture
that any closed subgroup of S, having infinite motion and where all orbits of its point
stabilizers are finite has distinguishing number 2; this is the so-called Infinite Motion Con-
jecture for Permutation Groups. However the point stabilizers of automorphism groups
of homogeneous Urysohn spaces all are infinite.

2 General Notions and Preliminaries

A relational structure R is rigid if its group of automorphisms Aut(R) consists only of
the identity. The idea behind the distinguishing number is to find the smallest number
of predicates (P; : i < d) such that the expanded structure (R; P; : i < d) becomes rigid.

For a metric space M = (M, dpr), let spec(M), the spectrum of M, be the set of the
distances between points of M. A metric space M is universal if it embeds every finite
metric space IN with spectrum spec(IN') C spec(M).

For § a set of reals and r € R, let S5, = {s € § : s > r}, and similarly for Ss,. If
S C Ry is countable, then let 2(S) denote the set of finite metric spaces whose spectrum
is a subset of S. Note that 2(S) is an age (meaning that it is closed under isomorphism
and substructures, and up to isomorphism has only countably many members), and we
will need conditions on S for which the age 2(S) has the amalgamation property.

Definition 1. We call a pair of metric spaces A and B an amalgamation instance if
da(z,y) = dp(z,y) for all z,y € AN B. If so, then we define:

II(A,B)={C =(AUB;dc): C| A=A and C | B= B}.
For S C Ry and {A, B} C A(S) let:
IIs(A,B) ={C € 1I(A, B) : spec(C) C S}.

Finally, we say that the set S C R-q has the amalgamation property if Ig(A, B) # () for
all amalgamation instances { A, B} C 2(S).

We now define the “4-values” condition, which is the description that triangles amal-
gamate.
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Definition 2. A set S C Ry satisfies the 4-values condition if II5(A, B) # () for any
two amalgamation instances of the form A = ({z,y,2};da) and B = ({z,y,w};dg) in

A(S).

There are several equivalent definitions of the 4-values condition. The first version has
been given in [7] together with Theorem 4 below. In [15] there is an equivalent version of
the 4-values condition given and Definition 2 is stated as Lemma 3.3. Definition 2 here is
the one most suitable for our purposes.

It is evident that the spectrum of any metric space satisfies the 4-values condition,
and it provides the leading condition for a set S to yield a non-trivial Urysohn metric
space.

Definition 3. A countable set S C Ry is a universal spectrum if the following items
hold.

1. The element 0 is in S and S contains at least one positive number;
2. The set S satisfies the 4-values condition.

It follows from Theorem 3.8 of [15] that if S is a universal spectrum, then 2(S) is an
age with amalgamation. Hence, the next theorem follows from the general Fraissé theory.

Theorem 4. [9] If S C Ry is a universal spectrum, then 20(S) is an age with amal-
gamation and there exists a countable homogeneous, universal, metric space Us whose
spectrum is S.

In particular, is M € 2(S) and such that M N Us is a subspace of Us, then then
there exists an embedding of M into Us which is the identity on M NUsg.

Even though by definition an amalgamation instance can be amalgamated, we will in
many cases want to do so controlling the new distances. We therefore have the following.

Lemma 5. Let S C Ry be a universal spectrum, and A and B an amalgamation instance
in A(S). If there exists a number s € S so that

s < da(a,x) +dp(z,b)

foralla € A\B, x € ANB, and b € B\ A, then there exists a metric space C € lls(A, B)
so that dc(a,b) > s for alla € A\ B and b e B\ A.

Proof. Because & C R satisfies the 4-values condition, there is a metric space D €
IIs(A, B). Let C be the binary relational structure obtained from D by replacing the
new distances as follows:

dc(a,b) = max{dp(a,b), s}

for every a € A\ B and every b € B\ A.
We claim that C' is indeed a metric space in 2A(S), and hence, all triangles of C' not
in A and not in B must be verified to be metric.

THE ELECTRONIC JOURNAL OF COMBINATORICS 29(3) (2022), #P3.58 5



One type of such triangles is of the form {a,z,b} with a € A\ B and b € B\ A and
xr € AN B. As a triangle of D it is metric, and together with the assumption on s we
derive that

dc(a,b) = max{dp(a,b),s} < da(a,z) + dg(x,b).

The other type of triangles we need to verify is of the form either {a,d’,b} with
{a,a’} € A\ B and b € B\ A, or the other way around of the form {a,b,0'} with
a€ A\ Band {b,b'} C B\ 4; it suffices to consider the first case.

If both dp(a,b) < s and dp(a,’ b) < s, then de(a,b) = de(a’,b) = s, and de(a,a’) =
dp(a,a’) < dp(a,b) + dp(da’,b) < de(a,b) + dp(a’,b) shows that {a,a’,b} is metric. If
both dp(a,b) > s and also dp(a’,b) > s, then the side lengths have not changed from D
to C' and hence, again metric.

For the remaining case, say dp(a,b) < s but dp(a’,b) > s. Then dc(a,b) = s <
dp(d’,b) = dc(d',b) < de(a,a’) + de(a’,b). The verification of the other two sides is
immediate. O

The following general notions will useful to analyze various universal spectra.
Definition 6. Let S be a universal spectrum. An element s € S is called:

1. an inatial number of S if [3s,5) NS =0,

2. a jump number of S if (s,2s]NS =0,

3. an insular number of § if it both an initial and a jump number of S.

A subset B C S is a block of S if:

1. B is an interval of S,

2. min B is a positive initial number of S,

3. either B is unbounded, or max B is a jump number of §, and

4. max B (if it exists) is the only jump number (of either B of S).

Hence, if s € S is insular, then B = {s} is a block consisting of only one element.
Note also for future reference that if s > 0 is a jump number of S, then the relation ~
given by x % y if d(z,y) < s is an equivalence relation on Usg, this will soon play an
important role.

3 Universal spectra without positive limits

In this section, we develop tools to handle the case where the spectrum does not have a
positive limit. In particular, no positive element r of R is a limit of S, whether r € § or
not.

To handle this case, we first call a set S C Ry inversely well ordered if every non-
empty bounded above subset of S has a maximum. We recall the @ operation from [16],
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defined there for a closed set of reals, but which for our purpose can also be defined for
inversely well ordered sets.

Definition 7. Let S be an inversely well ordered, and for r,t € § define
rét=max{se€S:s<r+t}

Observe that if {r,s,t} C S, then r &t > s if and only if r + ¢ > s; and hence, we note
the following obvious observation which will be used without warning.

Lemma 8. A triangle is metric if and only if the & sum of any two of the three side
lengths is larger than or equal to the third side length.

The 6 operation on S can easily be verified to be commutative and monotone. Further it
was shown [16] that the associativity of the @ operation is equivalent to the 4-value con-
dition for a closed set. That assumption, however, was only used to justify the operation
and the same argument can be used for the following.

Theorem 9. If S is an inversely well ordered set, then it satisfies the 4-value condition
if and only if the @& operation on S is associative.

This result can be used to easily verify that the following inversely well ordered sets
all satisfy the 4-values condition:

S = 0U{l1+1/n:n¢€w},

Sy = 0U{1/2%":n € w},

Sy, = 0U{1/2":newtu{2"2"+1/n:n € w},
Sz, = {071}7

Sy = {0,1,2}.

The set 7 has 1 as a limit. Both sets S», and Sy, have no positive limits but do have 0 as
a limit; Sy, has arbitrarily large elements if arbitrarily small distance, while Sy, does not.
Both sets 83, and Sz, do not have any limit; Sz, has two distinct and positive elements of
distance smaller than or equal to the minimum positive element, while Sz, does not have
such elements. Hence this shows that all types universal spectrum of the Main Theorem
do occur.

We note that the homogenous Urysohn space U's,, is nothing else but the Rado graph,
hence providing another (albeit lengthy) proof that its distinguishing number is 2.

Our arguments below rely on an analysis of inversely well ordered set, and moreover
we use the @ operation to construct a specific and controlled amalgamation.

Lemma 10. Let S be an inversely well ordered universal spectrum, and A and B in
A(S) an amalgamation instance. Then there exists a unique metric space C € 1Is(A, B),
which we denote by IS (A, B), such that:

de(a,b) = min{da(a,x) ® dg(z,b) : v € AN B}
foralla € A\ B and b€ B\ A.
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Proof. Let C be defined as above, we must show that every triangle of C' is metric.

Let D € TI(A, B). Note first that dp(a,b) < dc(a,b) foralla € A\ B and b € B\ A;
this is because dp(a,b) < da(a,x)+dg(z,b) for any © € AN B, and therefore, dp(a,b) <
da(a,x) ® dg(x,b) by definition of .

The first kind of triangles to consider are of the form {a, z,b} fora € A\ B, x € ANB
and b € B\ A. Since D is metric and dp(a,b) < dc(a,b), all we need to verify is the
inequality dc(a,b) < da(a,z) + dg(x,b). Let ' = p(a,b). By definition, we have that
do(a,b) =da(a, ") ®dg(b,x') < dala,z") + dp(b,2’) < dala,z) + dp(b, ).

Now, by symmetry, the only other case is a triangle {a,a’,b} for {a,d’} C A\ B and
be B\ A. Because dp(a,b) < de(a,b) and dp(a’,b) < de(d’,b), we then have that

dc(a,d’) =dpl(a,a)
< dD<a7 b) + dD(b7 CL/)
< dD<a7 b) + dC(b7 CL/).

For the other sides, it remains to show without loss of generality that
de(d',b) < de(d,a) + de(a,b), or equivalently that de(d’,b) < de(d',a) ® de(a,b).
For this let z = p(a,b) € AN B be such that

dc(a,b) =dala,z) ®dp(z,b)

and such that da(a, z) + dg(z,b) is as small as possible.
But da(d’, z) < da(d',a) + da(a, z), equivalently

dc(alv’z) < dC(alva’) ® dC(a’a Z)'

Hence,
de(d',b) < dc(d,z)®dc(z,b)
< (de(dya) @ de(a, 2)) ® de(z,b)
=dc(d,a) ® (de(a, z) ® do(z,b))
=dc(d',a) ® dc(a,b).
This completes the proof. O

We are now ready to further analyze the structure of the universal spectrum without
positive limits, but first some useful terminology.

Definition 11. Let § a universal spectrum without positive limits.
1. For s € S, let s~ be the largest number in & smaller than s if s > 0, and 0~ = 0.

2. If s # max S, then let s™ be the smallest number in S larger than s, and let sT = s
if s = maxS.

3. Two numbers s < t € S are said to be consecutive if st =1t (or if t~ = s).
4. The cover of {r,t}, is the number (in S):

min{s € §: |r —t| < s}.
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5. The gap at s € S, denoted by gap(s), is the number (in R):

min{|s —t|: t € S\ {s}}.

6. If T C S-y, then gap(7') = min{gap(t) : t € T'}.

Note that if {s,t} € S with s # ¢, then gap(s) < |s — t|. Hence, we immediately have
the following general fact.

Fact 12. Let S be a universal spectrum without positive limits, and M be a metric space
with spec(M) C S. However, if d(x,y) < gap(d(x,z)) for any three distinct points
{z,y,2} C M, then d(z,z) = d(y, 2).

Lemma 13. If S is a universal spectrum without positive limits, then the cover ¢ of two
consecutive numbers r <t € § with r +r >t is an initial number of S.

Proof. Note that ¢ < r because r+1r > t and c is the smallest number in § with r+c¢ > t.
Assume that ¢ is not initial. Then there exists a number p < ¢ with p + p > ¢; this
implies that the two triangles, Ty with side lengths p, p, ¢, and Ty of side lengths {r, ¢, c},
are metric. These two triangles form an amalgamation instance via the common side c.
Hence, because S satisfies the 4-values condition there exists a number s € S and a metric
space M € I1(Ty, Ty) with amalgamation distance s.

This is not possible. Indeed first note that » + p < ¢ because p < ¢ and again c is
the smallest number in § with » +¢ > t. Now, if s < r, then s+ p <r+p <t and the
triangle {t,p, s} is not metric. If on the other hand s > r, then s > ¢ because r < t are
consecutive; but now r + p < t < s and the triangle {r, p, s} is not metric. O

This gives the following.

Lemma 14. Let S be a universal spectrum without positive limits. If 0 is a limit of S,
then 0 is also a limit of the set of initial numbers of S, and also a limit of the set of jump
numbers of S.

Proof. Let r <t < £ € S be two consecutive numbers, and let ¢ be their cover. If r+r > t,
then ¢ < r and it follows from Lemma 13 that c is initial. However, if r 4+ r < t, then ¢
itself is initial by definition. Thus, § contains arbitrarily small initial numbers.
Moreover, is s is an initial number, then s~ is a jump number. We therefore have that
S contains arbitrarily small jump numbers as well. O

3.1 The case where S has no positive limits

In this subsection we continue with & a universal spectrum without positive limits, but
we will focus on Ug the homogeneous structure with spectrum S and construct some well
chosen automorphisms.

Recall that if s > 0 is a jump number of S, then the relation ~ given by = ~ y if
d(x,y) < s is an equivalence relation on Us. If E is an ~ equivalence class and M the
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metric space induced by E, then spec(M) = {r € § : r < s} = S<s. On the other hand,
it is evident that spec(M) satisfies the 4-values condition, and hence, it is a universal
spectrum. It follows that M is isomorphic to the universal homogeneous metric space

Scs
We now define the notion of dense subset of Ug, and show that similar to the rationals,
if Ug is partitioned into finitely many dense sets, then there is a non-trivial automorphism
preserving the partition.

Definition 15. Let S be a universal spectrum. A subset A of Ug is dense if ANE # ()
for every jump number s € Sug and for every equivalence class E of the relation ~.

We will in fact build a non-trivial automorphism which is an involution.

Lemma 16. Let S be a universal spectrum without positive limits but with 0 as a limit,
and let {A; 1 i € n} form a finite partition of Us into dense sets. It then follows that
there exists, for every number s € Ssqo, an automorphism f of Us such that:

1. f preserves the partition, that is f[A;] = A; for every i € n, and
2. f(f(x)) =2 and d(x, f(x)) = s for all x € Us.

Proof. The proof is an inductive construction on the countable domain of Ug, and is a
consequence of the following claim handling the inductive step.

Claim. Let A and B be two disjoint and finite subspaces of Ug for which there exists an
automorphism ¢ of the subspace induced by AU B so that:

1. g preserves the partition restricted to AU B, and
2. g(z) € B, g(g9(x)) = x, and d(z, g(x)) = s for all z € A.

Let u € Us \ (AU B). Then there exists a point v € Us and an automorphism ¢’ of the
subspace induced by AU B U {u, v} so that:

1. ¢’ extends g, that is ¢’(z) = g(x) for all z € AU B,

2. d(u,v) = s,

3. w and v are in the same member of the partition, and
4. ¢'(u) =v and ¢'(v) = u.

To prove the claim, we first show that there exists a metric space M with M =
AU BU{u,v} so that the following hold.

1. M restricted to AU B U {u} is equal to Ug restricted to AU B U {u}.
2. dp(u,v) = s.

3. dy(v,x) = d(u, g(x)) (and so dps(v, g(x)) = d(u,z)) for all x € AU B.
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To verify that M will indeed be a metric space under these conditions, it suffices that
every triangle of M is metric. Let {z,y,z} be a triangle of M. If v & {z,y,z}, then
the triangle {z,y, z} is metric because every triangle of Ug is metric. Now let {z,y,v}
be a triangle of M with u & {x,y}; but the triangle {g(z), g(y), u} is metric and has the
same side lengths as the triangle {z,y, v}, hence, the latter is metric. Let {z,u,v} be
a triangle of M. The sides have lengths d(z,u), dpr(x,v) = d(g(z),u), and s; but the
triangle {x, g(z),u} is metric and has the same side lengths.

Now the bijection § of AU B U {u,v} extending g and interchanging u and v is an
automorphism of M because dps(u, z) = d(u,x) = dpr(v, g(x)) for all z € AU B.

Because Us is homogeneous there exists an embedding h of M into Ug with h(z) = x
for all x € AUBU{u} (see Theorem 4). By Lemma 14, let 0 < r € S be a jump number
with 0 < r < gap({d(h(v),z) : x € AU B U {u}}, and let E be the ~ equivalence class
containing the point h(v). If i € n is such that h(v) € A;, then choose w € A; N E; this
is possible because A; is assumed to be dense. It follows from the choice of r and from
Fact 12 that d(w, z) = d(h(v),z) = dp (v, x) for all z € AU B U {u}.

The required automorphism ¢’ is simply the map corresponding to ¢ interchanging u
and w. O

4 Distinguishing Number of Homogeneous Urysohn Metric
Spaces

In this section, we show that the distinguishing number Ug is either 2 or infinite for any
countable universal spectrum S. When it is 2, we will show this is so by decomposing
Us into a rigid subspace particularly constructed so that all automorphisms fixing this
subspace also fix its complement.

In all cases but one, the rigid subspace is made from a rigid forest. First we show how
to use the graph structure of a metric space.

Definition 17. Consider a metric space M with distances in S C R. For s € §, the
s-distance graph of M is the (simple) graph on the elements of M (as vertices), and two
vertices are adjacent if and only if their distance is s.

This following observation will play a crucial role in building rigid subspaces.

Observation. If the s-distance graph of a metric space is rigid, then the metric space is
rigid.

4.1 Basic Construction

Here is the first such construction.

Lemma 18. If S be a universal spectrum, then the distinguishing number of Us is 2 if
there exists a positive number s € S for which the following hold.

1. The element s is not a jump number; that is, there exists a number r € S with
s<r<s-+s.
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2. For every positive t € S, there exist numbers {hy, k;} C S so that:

(a) S<ht<kt.
(b) het ke >t > ke — h.

Proof. We say that a set P of pairs of points in Ug \ M is stabilized by the subspace M
Of US if:

1. The s-distance graph of M is a rigid forest.
2. For all (z,y) € P, there exists a point z € M with d(z, z) # d(y, z).

The proof of the lemma is an inductive construction on the countable domain of Ug,
building such an M as an increasing union of finite spaces such that any pair (z,y) €
Us \ M is stabilized by the subspace M. We then have that the partition of M and its
complement shows that the distinguishing number of Ug is 2.

The construction of M is a consequence of the following claim handling the inductive
finite stages.

Claim. Let P be a set of pairs of points in Us which is stabilized by the finite subspace
M of Ug, and let {z,y} be two points in Us\ M. We then have that there exists a finite
subspace IN of Ug containing M and stabilizing P’ = P U {(z,y)}.

To prove the claim, if there already exists a point z € M with d(z, z) # d(y, z), then
we can let N = M. Hence, we assume that d(x, z) = d(y, z) for all z € M.

Let r € S with s < r < s+ s. Let C be a metric space with spectrum {s,r} whose
s-distance graph is a rigid tree G which is not isomorphic to one of the trees of the s-
distance graph of the space M. Let e be an endpoint of the tree GG. Let T' be the metric
space with T = {z,y, e} so that dr(x,y) = t and dr(z,e) = hy and dr(y,e) = k; as per
the hypothesis. Then T is indeed a metric space because h;+k; >t > k; —h, and hy < k.
The pair of metric spaces (T',C) forms an amalgamation instance. Now because s < r
and s < hy, then s <7’ = min{r, h;}. It follows from Lemma 5 that there exists a metric
space C' € IIg(T, C) with de/(v,2) = ' and with de/(v,y) = 7/ for all v € C and so that
de'(v,x) < der(v,y) for every v € C.

Now let M’ be the subspace of Us induced by the set M U{z,y} of points. The metric
spaces M’ and C' form an amalgamation instance. It follows from Lemma 5 again that
there exists a metric space M" € IIs(M’, C') so that dp;»(v,z) =1’ > s for every v € C'
and every z € M.

Because Us is homogeneous there exists an embedding f of M"” into Us with f(z) = z
for all z € M’. Then the image IN of M" under the embedding f, removing x and y, is
as required. O

This yields the following case.

Corollary 19. Let S be a universal spectrum. If S contains a positive number s which
is not a jump number, and has a limit r (not necessarily in S) with s < r, then the
distinguishing number of Us is 2.
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Proof. By Lemma 18, if suffices to show that for every positive ¢t € S there exist numbers
{h¢, e} € S so that s < hy < ky, and hy + ke >t > ky — hy.

If t < r, then because r is a limit point of S one can find the required numbers
s < hy < ky € S (close enough to r). If ¢ > r, then choose h; € S close enough to r so
that s < hy < t, and let k; = t; again this is possible because r is a limit point of §. [

The case of S having a positive limit in § can be handle in a similar manner, but the
more general case of the positive limit not necessarily in § is more delicate. In that case
the rigid forest will be replaced by a “crab nest”.

4.2 Crab Nest

In the more general situation of § having a limit point not in & and all points below are
jump numbers, we may not be able to retain the connected components in the intended
rigid s-graph, and therefore, we need a new structure.

First call a finite graph S a spider if it is a tree which contains exactly one vertex, the
centre of S, of degree larger than 2 and then all of the other vertices have degree 2 or are
endpoints having degree one.

Two cliques C and C’ of a graph G are called adjacent if they are vertex disjoint, the
order of one of them (say C') is less than or equal to the order of the other (C), and
there exists an injection f of V(C") to V(C) so that a vertex 2 € V(C") is adjacent to a
vertex y € V(C) if and only if f(z) = y.

A finite graph G = G(S,n,C) is a crab if S is a rigid spider, n > 5 is an integer, called
the heft of G denoted by heft(G), C is a set of maximal cliques of the graph G:

1. Every vertex of GG is a vertex of exactly one of the cliques in C.

2. Exactly one of the cliques in C, the centre clique of GG, has order n + 1 and all other
cliques in C have order n.

3. Cliques in C are either adjacent, or have no edges between them.

4. If C is the centre clique, then for every vertex x € V(C) there exists exactly one
clique C" € C which is adjacent to C and for which no vertex in V(C") is adjacent
to x.

5. There exists a bijection 7 of C to V(S) which maps the centre clique of G to the
centre of S, and such that C” is adjacent to C” (in C) if and only if 7(C") is adjacent
to 7(C") (in 9).

A clique C € C is an end clique of the crab G if 7(C) is an endpoint of the spider S.
Note that the degree of the centre of the spider S is equal to n + 1.

Lemma 20. Fvery crab is rigid.

THE ELECTRONIC JOURNAL OF COMBINATORICS 29(3) (2022), #P3.58 13



Proof. Let G = G(S,n,C) be a crab with associated spider S, heft(G) = n, and C its set
of maximal cliques. Note that the structure of such a crab implies that any triangle in G
must be contained in one of the cliques C € C; indeed any edge (x,y) across two different
cliques implies the cliques are adjacent.

This implies that any automorphism g of GG induces a permutation of of C, and fixes the
centre clique C because it is the only one of size n+1. Hence, g induces an automorphism
of its associated spider S and thus, because the latter is assumed to be rigid, C as a set
is actually fixed by g.

We claim that g is the identity map on G. First let = € V(C) the centre clique, and
assume that = # g(z). There exists a (unique) clique C’ which is adjacent to the clique C
and which does not contain a vertex which is adjacent to g(x). We then have that V(C")
contains a vertex x’ which is adjacent to z, implying that g(z') € V(C"), a contradiction.
Hence, g(x) = z for all z € V(C). But this implies inductively on the distance from the
centre that g(z) = x for all z € V(G). O

The rigid subspaces we are looking for will be built of crabs into what we call crab
nests.

Definition 21. A graph G = G(H = {H;,i € I[},R) (where  =worl =n €w)is a
crab nest if V(G) is the disjoint union of the V(H;)’s, R C V(G) (called the distinguished
endpoint set of G), so that for every i € I:

1. H; as an induced subgraph of G is a crab (with its specified spider, heft and decom-
position into maximal cliques).

3. R contains exactly one vertex r; € V(H;), belonging to an end clique of H;.

4. If (z,y) € E(G) \ E(H), then the following hold:
(a) If v € V(H;) and y € V(H;) for some j < i, then y = r;.
(b) If (2,7;) € E(G) \ E(H) and z € Hy, with k < ¢, then z = .

Thus 4a implies that only 7, € H; may be connected to a previous H;, and if so only
once by 4b.

Lemma 22. Every crab nest is rigid.

Proof. Let G = G(H = {H;,i € I}, R) be a crab nest, and let g be an automorphism of
G. We show that g must be the identity.

Assume that there exists a vertex x € V(H;) with i > 0 such that g(x) € V(Hy). Let
C be the maximal clique (thus, of size at least three) of H; containing z, and set:

j=max{k € I: for some y € V(C),g(y) € V(H,)}.

First assume that j > 0. Note that if y € V(C) is such that g(y) € V(H,), then
(9(y),g9(x)) € E(G)\ E(H), and thus, by item (4a) we must have f(y) = r;. But now

g
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if z is a third element of V(C') and ¢(z) € V(Hy), then k < j by definition. But k < j
since g(y) is the only vertex of V(H;) connected to g(x), and k > j since g(x) is the only
vertex of any V(Hy) for £ < j connected to g(y).

It follows that 7 = 0. That is, the automorphism g maps every element of V(C') into
V(Hp). But every triangle of Hy is in one of the cliques of Hy, implying that g maps
the maximal clique C' into a maximal clique of Hy. But this is not possible because
heft(H;) > heft(Hy) + 2. It follows that g does not map any vertex of V(G) \ V(Hy) into
V(Hy). Implying that if x € V(H,), then g(z) € V(H,).

This in turn implies, because the crab Hy is rigid, that g(z) = z for all z € V(H,).
Then via induction on the index set I it follows that g(z) = z for all z € V(G). O

We are now ready to handle the general case of S having a positive limit not necessarily

in S.

Lemma 23. Let S be a universal spectrum. If S has a positive limit (not necessarily in
S), then the distinguishing number of Ug is 2.

Proof. If § has a positive limit r (not necessarily in &) and one can find a non-jump
number s < r, then Corollary 19 applies. This is the case if § has two positive limits
r’ < r, in which case one can find such a non-jump number s € S close to r’. Similarly,
this is the case if r is a limit of the elements of S below 7.

Hence, we may assume that S has only one positive limit r, every number in S less than
r is insular, and the elements of S above r form a (possibly two way) sequence converging
to r. In particular this means that every non-empty and bounded above subset of S has
a maximum, that is S is inversely well ordered. Thus the operation @ is defined for S
and we will be using this fact.

We are now ready to undertake the construction of the stabilizing subspace using a
rigid s-graph, where s € S is chosen close enough to r so that r < s < s’ < §” <r+r for
some §',s” € S; this is possible due to the elements of S above r converging to r. That
space and its complement will show that the distinguishing number of Ug is 2.

For the sake of this proof, we say that a set P of pairs of points in Ug is stabilized by
the subspace M if the following properties hold.

1. The s-distance graph of M is a crab nest G = G(H = {H; : i € n}, R).
2. If u # v are two points of M, then d(u,v) > r.

3. For every pair (z,y) € P, there exists a crab H; and point r; € R N H; such that
d(x,ri) # d(y, r:).

The proof of Lemma 23 is an inductive construction on the countable domain of Ug,
building such an M as an increasing union of finite spaces such that any pair (z,y) €
Us \ M is stabilized by the subspace M. We then have that the partition of M and its
complement shows that the distinguishing number of Ug is 2.

The construction is a consequence of the following claim handling the inductive step.
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Claim. Let P be a set of pairs of points in Us which is stabilized by the finite subspace M
of Us. Let {z,y} be two points in Us\ M such that d(z,y) =t > 0, and d(z, z) = d(y, 2)
for all z € M. Then there exists a finite subspace IN of Ug containing M and stabilizing
P =PU{(x,y)}.

To prove the claim, let G = G(H = {H; : i € n}, R) be the s-distance graph of M.
If ¢t < r, then let r < hy < k; be two numbers in S (close to r) with k; — h, < ¢. If
r<t<r+r, then let hy = ¢ and k; = s”. Finally if » + r < ¢, then let h; = s’ and
k; = t. Note that hy < k, ky — hy <t, and t < hy + k; in all cases, and thus the triangle
with distances {t, hy, k;} is metric in all cases.

Let C be a metric space with spectrum {r, s} whose s-distance graph is a crab H,
disjoint from each H; for i € n and for which heft(H,_1) + 2 < heft(H,). Let r, be a
vertex of an end clique of the crab H,, and let R = RU {r,}. Let T be the metric space
with T' = {x,y,r,} so that dr(z,y) =t and dp(z,r,) = hy and dr(y,r,) = k. Note that
T is in all cases indeed a metric space in 2(S). The pair of metric spaces (T, C') forms
an amalgamation instance. It follows from Lemma 5 and from &' <r+r <r+h; <r+k;
that there exists a metric space C' € II5(T, C) with

der(v, ) = 8" and dei(v,y) = 8 forall r, v e C (i.)

and so that de (v, z) < der(v,y) for every v € C.

Now let M’ be the subspace of Us induced by the set M U {z,y}. The metric spaces
M’ and C’ form an amalgamation instance, and we let M" = 11§ (M’, C") provided by
Lemma 10. Then by that construction we have for v € C' and z € M:

dpyg (v, 2) 2 der (v, 2) @ d(x, 2) = der (v, x). (ii.)

Thus dpz~ (v, z) = §' for any r,, # v € C' and z € M. Moreover, for v = r, and any z € M,
we have:
if t > r, then hy = ¢, so

dpgr (T, 2) = 8" > s,and (iii.)
if t < r, then by construction
dpg (T, 2) = hy @ d(z, 2). (iv.)

We claim that M"” = M" \ {z,y} is the desired subspace.

First we must verify that the s-distance graph of M" is a crab nest G = G"'(H" =
{H;,i € n+ 1}, R’), and only Item (4) of Definition 21 remains to be verified. To do so,
let (z,v) € E(G")\ E(H"), and hence dpym(z,v) = s.

If {z,0} C M, then the requirements of Item (4) in Definition 21 for the pair (z,v) will
be satisfied by the assumptions on M. If {z,0} C C, then {z,v} € E(H,) because the
spectrum of C' is {s,r} and the s-distance graph of C is the crab H,. Hence, we may
assume that v € C' and z € M.

Ift > rorif v # r, it follows from ii. and iii. above that dypn(v,2) > s > s,
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contradicting dpp(z,v) = s.
Thus, t < r and v = r,. If r < d(z, z) (=d(y, z) by assumption), then by iv. dpg(rp,2) =
hi ®d(x,z) > r@&r > s > s, which is again a contradiction. If on the other hand
p = d(x,z) < r, then it is possible that dy;»(r,,2) = hy @ d(x,z) = hy & p = s, and we
must show that z is the only such vertex. So assume that ¢ = d(r,,w) < r for a point
w € M. We then have that p and ¢ are insular numbers of S and both smaller than r. If
z # w, then d(z,w) > r by assumption, which is a contradiction because as insular points
p®q = max{p,q} < r. Hence, z = w verifying Item (4) of Definition 21 and G is a crab
nest.

Finally by construction (see ii., iii., and iv.), dpz»(u,v) > r for any u # v in M"'| and
dpygr(z,1) = hy # ke = dpgr (y,1).

The space M"" is not immediately a subspace of Us as constructed, but since Us

is homogeneous, there exists an embedding f of M"™ into Us with f(a) = a for all
a € M. Then the image of M"' under the embedding f is the required subspace stabilizing
P U (x,y) and the proof of the lemma is complete. H

4.3 The Remaining Cases

There are a few remaining cases to handle, made possible from previous results and
techniques.

Lemma 24. Let S be a universal spectrum. If S contains two distinct and positive
elements of distance smaller than or equal to the minimum positive element of S, then
the distinguishing number of S is 2.

Proof. Let p=1inf S5y > b — a, where 0 < a < b € S. If § has a positive limit, then the
distinguishing number of Ug is 2 according to Lemma 23. Thus, we assume that S does
not have a positive limit. In particular, p € S.

Moreover, the set S must contain an initial non-jump number. Assume to the contrary
that there is no such number. Note that a < b < p+a < a+ a = 2a and thus, a is
a non-jump number and hence must be non-initial. Thus there is a; € SN [a/2,a], a
non-jump number, and hence a; must be non-initial. Continuing in this manner yields a
positive limit in S, a contradiction.

Now, let s be the smallest positive initial non-jump number of S, and let r be the
smallest number in § larger than s. We cannot have a < s because being a non-jump
number and smaller that s would make a again a non-initial number; and similar to above
would yield § with a positive limit point. If s < a, then we claim that Lemma 18 applies.
Consider an arbitrary positive element t € S: if t > r, let hy = a and k;, = b, and if t < r,
let with Ay = r and k;, = ¢. Thus the conditions of Lemma 18 are indeed satisfied and
hence, Ug has then distinguishing number 2.

Hence, we may assume that s = a and thus r can be used in the role of b, meaning
that that »r — s < p, and of course ¢ > p for all ¢ € S. We then proceed analogously to
the proof of Lemma 18, and construct a subspace together with its complement showing
that the distinguishing number of Ug is 2.
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For the sake of this proof, we say that a set of pairs P in Ug is stabilized by the subspace
M of Ug if for all (z,y) € P:

1. There exists a point z € M with d(z, z) # d(y, 2).

2. The s-distance graph of M is a rigid forest.

The proof of the Lemma is an inductive construction on the countable domain of Usg,
and is a consequence of the following claim handling the inductive step.

Claim. Let P be a set of pairs of points in Ug which is stabilized by the finite subspace
M of Us. Let {x,y} be two points in Us \ M with ¢t = d(x,y) > 0. Then there exists a
finite subspace N of Us containing M and stabilizing P’ = P U {(x,y)}.

To prove the claim, if there exists a point z € M with d(z, 2) # d(y,z) let N = M.
Hence, we may assume that d(z, z) = d(y, z) for all z € M.

Let C be a metric space with spectrum {s, r} whose s-distance graph is a rigid tree S
which is not isomorphic to one of the trees of the s-distance graph of the space M. Let
e be an endpoint of the tree S. If t < r let hy = s and k; = r; and if t > r let hy = r and
ky = t. Let T be the metric space with 7' = {x,y, e} so that dr(z,y) = t, dr(z,e) = hy
and dr(y,e) = k. Note that T is indeed a metric space in all cases. The pair of metric
spaces (T, C) forms an amalgamation instance, and it follows from Lemma 5 and from
r < s+ hy < s+ k; that there exists a metric space C' € (T, C) with de/(v,z) > r
and with de(v,y) > r for all e # v € C and so that de/ (v, ) < der(v,y) for every v € C.
Hence, der(v,y) 2 der(v,2) > s for allv € C

Let M’ be the subspace of Us induced by the set M U {z,y} of points. The metric
spaces M’ and C' form an amalgamation instance. Let M" = IIE(M',C"). It follows
from the definition of @ that:

dpyg (v, 2) 2 der(v,2) D d(x,2) 2 s D d(z,2) >

Thus the s-distance graph of M"\ {z,y} is a rigid forest, and there exists a point z € M
with d(z,z) # d(y,z) (namely z = r,). Because Us is homogeneous there exists an
embedding f of M" into Us with f(a) = a for all a € M’ (see Theorem 4), and the image
N of M"\ {z,y} under the embedding f is as required for the claim. O

We arrive at the first case where Ug has infinite distinguishing number.

Lemma 25. Let S be a universal spectrum which does not have a limit, then the distin-
guishing number of Us is 2 or infinite. If p = min(Ssg), then the distinguishing number
of Us is 2 if and only if there exist positive numbers a < b e S with b —a < p.

Proof. If there exist positive numbers a < b € § with b — a < p, then the distinguishing
number of Ug is 2 again according to Lemma 24. This is the case if p is not a jump
number, because if p < ¢ < p+ p, then ¢ —p < p. Thus, we may assume that p is a jump
number, and hence, an insular number because being the smallest positive number of S
it is an initial number.
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Thus, we assume that p is insular and p < b—a for all a < b € S, and we show that the
distinguishing number of Ug is not finite. Let v be a colouring function of Us with n € w
colours, that is y[Us] € n. Note that because p is a jump number and p = min(Ssy),
the relation ~ on Ug given by x ~ y if and only if d(z,y) = p is an equivalence relation.
Let E be a ~ equivalence class of Ug. By our assumption, d(z, z) = d(y, z) for all points
z of Us \ E and all points z,y € E ( see Fact 12). The set E is infinite because every
finite metric space M with spec(M) = {p} is an element of the age 2(S). Hence, there
are two points x # y in E with v(z) = v(y). The function f with f(z) = z for all points
z of Us \ {z,y}, and f(x) = y and f(y) = =z, is then a colour preserving non-trivial
automorphism of Ug. O

The following is another instance where we can show that the distinguishing number
is infinite.

Lemma 26. Let S be a universal spectrum with no positive limits but with 0 as a limait.
If gap(Sss) > 0 for every positive number s € S, then there exists for every n € w and
every partition P = {A; : i € n} of Us a non-trivial automorphism f of Us preserving
P.

Proof. Under these assumptions, 0 is also a limit of the set of initial numbers of S (see
Lemma 14). Thus we can find a jump number s of S, a non-empty subset I C n and an
R equivalence class E so that for all 7 € I the set A; is dense for the homogeneous metric
space E (isomorphic to Us_, ), and so that A; N E = () for all i ¢ I.

Let r € S be a jump number with 0 < r < gap(Ss;). According to Lemma 16 (applied
to E and r), there exists an automorphism f’ of E with d(x, f'(x)) = r for all x € E which
preserves the partition of E induced by the partition P of Ugs. It follows from Fact 12
that d(y,x) = d(y, f'(x)) for all points y in Us \ F and all points € E. It follows that
the function f : Us — Us with f(z) = f'(z) if x € F and with f(y) =y ify & Fis a
non-trivial automorphism of Ug preserving P. O

We can then characterize the case of a universal spectrum with no positive limits but
with 0 as a limit.

Lemma 27. Let S be a universal spectrum with no positive limits but with 0 as a limat,
then the distinguishing number of Us is 2 or infinite. The distinguishing number of Ug
is infinite if and only if gap(Sss) > 0 for every positive number s € S.

Proof. On account of Lemma 26 it remains to prove that if there exists a positive number
s € § for which gap(S=s) = 0, then the distinguishing number of Ug is equal to 2.

But if every number in gap(Sss) is insular, then gap(Sss) > s > 0. Let r be the
smallest non-insular initial number larger than or equal to s. Then gap(Ss,) = 0 and in
turn then gap(Ss,+) = 0. By Lemma 18, the distinguishing number of Ug is 2. O

This completes all the results required to prove the Main Theorem characterizing the
distinguishing number of universal homogeneous Urysohn metric spaces.
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5 Conclusion

We have shown that the distinguishing number of every universal homogeneous Urysohn
metric spaces is either 2 or infinite, and moreover characterized when each case occurs by
structural properties of the corresponding universal spectrum. It is interesting that this
is the case even though the permutation group of these Urysohn metric spaces is often
imprimitive. This is for example the case when the spectrum S contains a jump number
s > 0, then the relation ~ given by = < y if d(z,y) < s is an equivalence relation on Usg.
Hence if this is a non-trivial relation, for example if S contains an element larger than s,
then the automorphism group of Ug is imprimitive. We thus propose an open problem
suggested by the referee.

Open Problem. Characterize universal spectra S such that the corresponding universal
homogeneous Urysohn metric space Us has a primitive automorphism group.

In these cases of imprimitivity, it is due to the homogeneity and universality that the
distinguishing number passes directly from 2 to infinity. However, one cannot expect the
distinguishing number of every metric space to always be either 2 or infinite, even for
homogeneous metric spaces. This is the case of the pentagon C5 equipped with the graph
distance, making it into an homogeneous metric space with primitive automorphism group
Dy and distinguishing number 3. One can also produce an infinite homogeneous metric
space of distinguishing number 3, but with imprimitive automorphism group. Indeed
consider the Rado (homogeneous) graph, first turn it into a metric space R with spectrum
{0,3,5} by assigning distance 5 to every edge, distance 3 to non-edges, and then consider
the wreath product R[M] for M the metric space consisting of two points of distance
1. This creates an homogeneous metric space R[M| with spectrum {0, 1,3,5}. Since the
Rado graph has distinguishing number 2, we must use 3 colours to obtain two different sets
of two different colours to assign to elements of M. Finally, the automorphism group of
R[M] is imprimitive because points of distance 1 form a non-trivial equivalence relation.
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