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Abstract

We give a new unified proof that any simple graph on n vertices with maximum
degree at most ∆ has no more than a

(

∆+1
t

)

+
(

b

t

)

cliques of size t (t > 3), where
n = a(∆ + 1) + b (0 6 b 6 ∆).

Mathematics Subject Classifications: 05C35

1 Introduction

For a positive integer t > 3, let kt(G) be the number of cliques of size t in a simple graph
G = G(V,E). In [3], Gan, Loh, and Sudakov asked how large kt(G) can be for graphs
with maximum degree at most ∆. They made a conjecture, which we henceforth refer to
as the GLS Conjecture, that kt(G) is maximized by a disjoint union of a cliques of size
∆ + 1 and one clique of size b, where |V | = a(∆ + 1) + b for 0 6 b 6 ∆. Moreover, they
proved in [3] that

the GLS Conjecture holds for t = 3 =⇒ the GLS Conjecture holds for t > 4.

The proof is an application of the Lovász version of the famed Kruskal–Katona theorem
(see [2]).

Later on, Chase proved that the GLS Conjecture holds for t = 3 in [1], and hence
resolved the GLS Conjecture completely. In this short note we present a new proof of
the GLS conjecture that works for all t > 3 uniformly without using the Kruskal–Katona
theorem. The proof can be viewed as a simplification and a generalization of Chase’s
proof in [1]. We prove the following statement:
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Theorem 1. Let G be a simple graph on n vertices with maximum degree at most ∆.

For any integer t > 3, if n = a(∆ + 1) + b where a, b ∈ Z and 0 6 b 6 ∆, then

kt(G) 6 a
(

∆+1
t

)

+
(

b

t

)

.

For every simple graph G = G(V,E), write u ∼ v if uv is an edge, and u ≁ v if uv is

a nonedge. We denote by N(v)
def

= {v} ∪ {u ∈ V : u ∼ v} the closed neighborhood of v.
Let Tv be the set of all t-cliques intersecting N(v). The proof of Theorem 1 relies on the
following lemma:

Lemma 2. For any integer t > 3, if G = G(V,E) is a simple graph, then

∑

v∈V

|Tv| 6
∑

v∈V

(

deg(v) + 1

t

)

.

This note is organized as follows: We first show that Theorem 1 follows from Lemma 2,
and then prove Lemma 2 in a separate section.

Proof of Theorem 1 assuming Lemma 2. Fix t > 3 and ∆ ∈ N+, and let G be an n-vertex
graph. Then there exists v ∈ V such that |Tv| 6

(

deg(v)+1
t

)

, by Lemma 2.
We induct on n. The base case is obvious, as Theorem 1 is trivially true for n =

0, 1, . . . ,∆+ 1. Suppose Theorem 1 is true for n− 1, n− 2, . . . , n−∆− 1. Then we have
that

kt(G) 6

{

(

deg(v)+1
t

)

+ a
(

∆+1
t

)

+
(

b−deg(v)−1
t

)

, when b > deg(v) + 1,
(

deg(v)+1
t

)

+ (a− 1)
(

∆+1
t

)

+
(

b+∆−deg(v)
t

)

, when b < deg(v) + 1 6 b+∆+ 1.

Since the sequence
{(

n

t

)}

n>0
is convex, we have that

(

deg(v)+1
t

)

+
(

b−deg(v)−1
t

)

6
(

b

t

)

when

b > deg(v) + 1, and
(

deg(v)+1
t

)

+
(

b+∆−deg(v)
t

)

6
(

∆+1
t

)

+
(

b

t

)

otherwise. We conclude that

kt(G) 6 a
(

∆+1
t

)

+
(

b

t

)

.

2 Proof of Lemma 2

Define the set

Φ
def

= {(u, x1, . . . , xt) ∈ V t+1 : x1, . . . , xt form a t-clique in G, and u ∼ xi for some i ∈ [t]}.

Observe that each (v, x1, . . . , xt) ∈ Φ consists of a vertex v ∈ V and a t-clique x1 · · · xt ∈
Tv. Since for every t-clique in G, there are t! ways to label its t vertices as x1, . . . , xt, we
have that

|Φ| = t!
∑

v∈V

|Tv|. (1)

For each tuple (u, x1, . . . , xt) ∈ Φ, the vertices u, x1, . . . , xt are not necessarily distinct.
However, there are at least t distinct vertices among u, x1, . . . , xt, because x1, . . . , xt form
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a t-clique. For every tuple (u, x1, . . . , xt) ∈ V t+1, we call it good if u, x1, . . . , xt are distinct,
and bad otherwise. Let

Φgood
def

= {(u, x1, . . . , xt) ∈ Φ : (u, x1, . . . , xt) is good},

Φbad
def

= {(u, x1, . . . , xt) ∈ Φ : (u, x1, . . . , xt) is bad}.

Then Φgood and Φbad partition Φ.
Fix v ∈ V . If (v, x1, . . . , xt) ∈ Φbad, then v, x1, . . . , xt are vertices of a t-clique in G,

where exactly one xi happens to be v. There are t choices for this xi, and at most
(

deg(v)
t−1

)

choices for the rest of the vertices x1, . . . , xi−1, xi+1, . . . , xt, and (t − 1)! choices for their
possible permutations. Hence,

|Φbad| 6
∑

v∈V

t ·

(

deg(v)

t− 1

)

· (t− 1)! = t!
∑

v∈V

(

deg(v)

t− 1

)

. (2)

To upper bound |Φgood|, we need to introduce the auxiliary set

Ωgood
def

= {(w, y1, . . . , yt) ∈ V t+1 : (w, y1, . . . , yt) is good, w ∼ yi for all i ∈ [t],

and y1, . . . , yt contain a (t− 1)-clique in G}.

For any fixed v ∈ V , if (v, y1, . . . , yt) ∈ Ωgood, then y1, . . . , yt are distinct neighbors of v,
and so

|Ωgood| 6 t!
∑

v∈V

(

deg(v)

t

)

. (3)

We claim that
|Φgood| 6 |Ωgood|. (4)

Assume that (4) is established. From the combination of (1), (2), (3), and (4), we obtain

t!
∑

v∈V

|Tv| = |Φ| = |Φbad|+ |Φgood| 6 |Φbad|+ |Ωgood|

6 t!
∑

v∈V

(

(

deg(v)

t− 1

)

+

(

deg(v)

t

)

)

= t!
∑

v∈V

(

deg(v) + 1

t

)

,

which concludes the proof of Lemma 2.

Proof of estimate (4). When u
def

= (u, x1, . . . , xt) ∈ Φgood or w
def

= (w, y1, . . . , yt) ∈ Ωgood,
the induced subgraph G[u] or G[w] is connected and contains a t-clique. Consider any
induced (t + 1)-vertex subgraph H of G that is connected and contains a t-clique. Let
z1, . . . , zt be the vertices of the t-clique (choose arbitrary ones if there are several). Let z∗

be the remaining vertex of H. Assume without loss of generality that z∗ ∼ z1, . . . , z
∗ ∼ zk,

and z∗ ≁ zk+1, . . . , z
∗
≁ zt. Note that t > 3, we count for different values of k the

contribution of H to |Φgood| and |Ωgood|, respectively:
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• 1 6 k 6 t − 2. If (u, x1, . . . , xt) ∈ Φgood, then u = z∗ since the degree of z∗ in H

is less than t − 1, and hence {x1, . . . , xt} = {z1, . . . , zt}. If (w, y1, . . . , yt) ∈ Ωgood,
then w ∈ {z1, . . . , zk}, and hence {y1, . . . , yt} = {z∗, z1, . . . , zt} \ {w}. Such an H

contributes t! and k · t! elements to Φgood and Ωgood, respectively.

• k = t−1. If (u, x1, . . . , xt) ∈ Φgood, then {x1, . . . , xt} ⊃ {z1, . . . , zt−1}, and hence u ∈
{zt, z

∗}. If (w, y1, . . . , yt) ∈ Ωgood, then w ∈ {z1, . . . , zt−1}, and hence {y1, . . . , yt} =
{z∗, z1, . . . , zt−1}\{w}. Such an H contributes 2 · t! and (t−1) · t! elements to Φgood

and Ωgood, respectively.

• k = t. Then H = Kt+1. Such an H contributes (t+ 1)! elements to both Φgood and
Ωgood.

The claimed estimate (4) follows from the cases above.
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