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Abstract

We give a new unified proof that any simple graph on n vertices with maximum
degree at most A has no more than a(Azrl) + (i’) cliques of size t (t > 3), where
n=alA+1)+b(0<b<A).

Mathematics Subject Classifications: 05C35

1 Introduction

For a positive integer ¢ > 3, let k;(G) be the number of cliques of size ¢ in a simple graph
G = G(V,E). In [3], Gan, Loh, and Sudakov asked how large k;(G) can be for graphs
with maximum degree at most A. They made a conjecture, which we henceforth refer to
as the GLS Conjecture, that k,(G) is maximized by a disjoint union of a cliques of size
A + 1 and one clique of size b, where |V| = a(A + 1) + b for 0 < b < A. Moreover, they
proved in [3] that

the GLS Conjecture holds for t =3 == the GLS Conjecture holds for ¢ > 4.

The proof is an application of the Lovasz version of the famed Kruskal-Katona theorem
(see [2]).

Later on, Chase proved that the GLS Conjecture holds for ¢ = 3 in [1], and hence
resolved the GLS Conjecture completely. In this short note we present a new proof of
the GLS conjecture that works for all ¢ > 3 uniformly without using the Kruskal-Katona
theorem. The proof can be viewed as a simplification and a generalization of Chase’s
proof in [1]. We prove the following statement:
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Theorem 1. Let G be a simple graph on n vertices with maximum degree at most A.
For any integer t > 3, if n = a(A + 1) + b where a,b € Z and 0 < b < A, then
k(G) <a(*)) + ()

For every simple graph G = G(V, E), write u ~ v if uv is an edge, and u ~ v if uv is
a nonedge. We denote by N(v) = {v} U{u € V : u ~ v} the closed neighborhood of v.
Let T, be the set of all ¢-cliques intersecting N (v). The proof of Theorem 1 relies on the

following lemma:

Lemma 2. For any integer t > 3, if G = G(V, E) is a simple graph, then

AESD <deg(? - 1).

veV veV

This note is organized as follows: We first show that Theorem 1 follows from Lemma 2,
and then prove Lemma 2 in a separate section.

Proof of Theorem 1 assuming Lemma 2. Fixt > 3 and A € N, and let G be an n-vertex
graph. Then there exists v € V' such that |T,| < (deg(:)ﬂ), by Lemma 2.

We induct on n. The base case is obvious, as Theorem 1 is trivially true for n =
0,1,...,A+1. Suppose Theorem 1 is true forn —1,n —2,...,n — A — 1. Then we have
that

k(G < (deg(zj)+1) + a(Azq) i (b—degt(v)—l)’ when b > deg(v) + 1,
S (deg(:)-i-l) + ((l _ 1) (A;i—l) + (b—i—A—tdeg(v))’ when b < deg(v) C1<bhbrALT

Since the sequence {(?) }n>0 is convex, we have that (deg(f)H) + (bidegt(v)fl) < (It’) when

b > deg(v) + 1, and (deg(f)“) + (HAftdeg(U)) < (At“) + (lt’) otherwise. We conclude that

k(@) < a(*) + (). 0

2 Proof of Lemma 2

Define the set

o= {(u,1,...,2,) € V't 2y, ... 2, form a t-clique in G, and u ~ z; for some i € [t]}.
Observe that each (v,z1,...,2;) € ® consists of a vertex v € V and a t-clique zq -+ -z, €
T,. Since for every t-clique in GG, there are t! ways to label its t vertices as x1,...,x;, we

have that
@] = 1> |T|. (1)

veV

For each tuple (u,xq,...,x;) € @, the vertices u, 1, ..., x; are not necessarily distinct.
However, there are at least ¢ distinct vertices among u, x4, ..., x;, because x1, ..., z; form
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a t-clique. For every tuple (u, 1, ..., ;) € VI we call it good if u, 1, ..., z; are distinct,
and bad otherwise. Let

Pyo0d S {(u,x1, .. 1) €D (u,xq, ..., 1) is good},
Brog = {(u, 1, ..., 24) €D : (u, ..., 1) is bad}.

Then ®@g440q and Py,,q partition .

Fix v € V. If (v,21,...,2;) € Ppaq, then v, zq, ..., 2, are vertices of a t-clique in G,
where exactly one z; happens to be v. There are ¢ choices for this x;, and at most (di’ﬁ(lv ))
choices for the rest of the vertices x1,...,2;1,Zis1,..., 2, and (¢ — 1)! choices for their

possible permutations. Hence,
deg(v deg(v
_ |
|Praal <Y - ( ) (t—1)! tZ(t_l) (2)
veV veV
To upper bound |®4u0a|, We need to introduce the auxiliary set
Qgood = {(w,y1, ..., y) € VL (w,y1, ..., y) is good, w ~ y; for all i € [t],
and yy, ...,y contain a (¢t — 1)-clique in G'}.

For any fixed v € V, if (v,y1,...,4:) € Qgood, then yy, ...,y are distinct neighbors of v,

and so O <13 <degt(v))_ 3)

veV
We claim that
|(I)good| < |ngod|‘ (4)
Assume that (4) is established. From the combination of (1), (2), (3), and (4), we obtain

Y " |T = 1P| = [Praa] + [Psood] < [Phad] + [Qgo0d]

veV
deg(v) deg(v)

< !
()« ("
veV

deg(v) +1

— ¢l
> ()
veV

which concludes the proof of Lemma 2. m

Proof of estimate (4). When u £ (w,21,...,2;) € Pgooa OF W = (w,y1,. .. Yt) € Qgood,
the induced subgraph Glu| or G[w] is connected and contains a t-clique. Consider any
induced (¢ 4 1)-vertex subgraph H of G that is connected and contains a t-clique. Let
21, ..., 2 be the vertices of the t-clique (choose arbitrary ones if there are several). Let z*
be the remaining vertex of H. Assume without loss of generality that z* ~ z1,..., 2" ~ z,
and 2* » 2zpiq,...,2° % z. Note that t > 3, we count for different values of k the
contribution of H to |®goed| and [Qgeodl, respectively:
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o 1 <hk<t—2 If (u,21,...,24) € Pgood, then u = 2* since the degree of z* in H
is less than ¢t — 1, and hence {xy,.... 2} = {z1,..., 2} I (w,y1,..., %) € Qgoods
then w € {z,..., 2}, and hence {y1,...,y:} = {z*,21,..., 2} \ {w}. Such an H
contributes ¢! and k - t! elements to ®g00q and Qgo0q, respectively.

o k=1t—1. If (u,xq,...,2) € oo, then {z1, ..., 2} D {21,...,2-1}, and hence u €
{z, 2"} If (w,y1,...,Yt) € Qgooa, then w € {21,..., 21}, and hence {y,...,y:} =
{z*,z1,..., 221} \ {w}. Such an H contributes 2-¢! and (£ —1) - t! elements to Pgooq

and Qg004, Tespectively.

e k=t. Then H = K;;;. Such an H contributes (¢ 4+ 1)! elements to both ®4,,q and
ngod-

The claimed estimate (4) follows from the cases above. ]
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