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Abstract

We prove bounds for the number of solutions to the energy equation

a1 + · · ·+ ak = a′1 + · · ·+ a′k

over N -element sets of reals, which are sufficiently convex or near-convex. A near-
convex set will be the image of a set with small additive doubling under a convex
function with sufficiently many strictly monotone derivatives. We show, roughly,
that every time the number of terms in the equation is doubled, an additional saving
of 1 in the exponent of the trivial bound N2k−1 is made, starting from the trivial
case k = 1. In the context of near-convex sets we also provide explicit dependencies
on the additive doubling parameters.

Higher convexity is necessary for such bounds to hold, as evinced by sets of
perfect powers of consecutive integers. We exploit these stronger assumptions using
a different methodology and avoiding the use of the Szemerédi-Trotter theorem,
which has not been adapted to embrace higher convexity.

As an application of our new estimates for k > 2 we improve the best known
bounds for sumsets of convex sets under additional convexity assumptions.
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1 Introduction

Let A := {a1 < · · · < aN} be a finite subset of reals of cardinality |A| = N . A is
called convex if the sequence of adjacent differences ai+1 − ai is strictly monotone for all
1 ! i ! N − 1.

Convexity is thought to pose an obstruction to additive structure in A. A key measure
of the presence of additive structure in A is the smallness of the cardinality of its sum or
difference set

A± A := {a1 ± a2 : a1, a2 ∈ A} .
The first nontrivial result in the opposite direction is due to Hegyvári [7] who showed,

in response to an earlier question by Erdős, that if A is convex,

|A+ A| ≫ log |A|
log log |A| |A| .

Current best known lower bounds for |A ± A| are considerably stronger: they are
summarised in the Theorem 20 in the sequel. In Theorem 21 in this paper we slightly
improve these bounds under mild additional convexity assumptions.

However, this improvement becomes only an application of the new upper bounds for
“long” second moment quantities (which imply corresponding lower bounds for cardinal-
ities via the Cauchy-Schwarz inequality) that this paper focuses on, defined next.

The additive energy of A is defined as

E(A) := |{(a1, a2, a′1, a′2) ∈ A4 : a1 + a2 = a′1 + a′2}|.

More generally, the aforesaid “longer” moments are as follows.

Definition 1. Let A1, . . . , Ak be sets of reals. Define

T (A1, . . . , Ak) := |{(a1, . . . , ak, a′1, . . . , a′k) ∈
k!

i=1

Ai×
k!

i=1

Ai : a1+ · · ·+ak = a′1+ · · ·+a′k}|.

(1)
Here and henceforth

"k
i=1 Ai means Cartesian product, which will also be denoted as

Ak when all Ai = A. In the latter case we also write

Tk(A) := T (A, . . . , A# $% &
k times

).

For the special case when there are only two summands, we write E(A) := T2(A) and
E(A,B) := T (A,B).

Notation. We use Vinogradov’s symbol extensively. We write X ≪ Y to mean that
X ! CY for some absolute constant C, and X ≲ Y to mean that X ! C1Y (log Y )C2

for some absolute constants C1, C2. For several proofs herein, a suppressed constant
C := C(k) may depend on the dimension of the problem k. These dependencies can be
easily calculated explicitly in the proofs, however we will not, since we canonically think
of k as fixed and small compared to the other parameters in our results.
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The quantities Tk(A) are easily interpreted via L2k-norms of trigonometric polynomials
with frequencies in A, see e.g. [8].

Their analogues, for k > 2, have been studied quite extensively in the context of the
Erdős-Szemerédi sum-product conjecture [4], see e.g. [1], [17], [12], [18], [2]. However,
although the questions about (the lack of) additive structure in convex sets may be
viewed as a generalisation of pivotal questions in sum-product literature (such as the “few
products – many sums question), the methods developed in the sum-product literature rely
heavily on algebraic ring properties of addition and multiplication that have no analogue
in the convex setting.

Hence, for k > 2 the estimates in this paper have no precedents, and the methodology
enabling us to induct in k is new, once we have adopted an idea from an over a 20 years
old paper by Garaev [5], to be described shortly.

If |A| = N , then trivially Nk ! Tk(A) ! N2k−1, and we are interested in proving
non-trivial upper bounds for Tk(A), under the heuristic that having “enough” convexity
should push these upper bounds, ideally, close to the lower bound Nk. The fact that more
and more convexity should be required for higher k is illustrated by setting A to be the
set of consecutive perfect powers.

Many of today’s state of the art results concerning additive properties of convex sets
have been obtained via a particular version of the Szemerédi–Trotter theorem, which
assumes that one can write a convex set A in the form A = f([N ]) where the function f
has strictly monotone derivative. From now on we just say “monotone”, meaning “strictly
monotone”. Here [N ] = {1, . . . , N}, the integer interval. Indeed, spline interpolation can
be used to produce such an f , so there is no loss of generality in assuming A = f([N ]).

The Szemerédi–Trotter theorem was fetched to study the sums of convex sets by Elekes,
Nathanson and Ruzsa [3]. In fact, the special Cartesian product set case of the theorem
needed can be proved by an elementary lucky pairs method. The lucky pairs terminology
has been adopted from J. Solymosi; the argument goes back, in particular, to [19].

In this paper, we also define a notion of lucky pairs, however a different one and
without proceeding towards geometric incidence arguments. Instead, we develop the idea
of Garaev from [5], which underlies his elementary proof of the following energy bound.
This bound was previously established by Konyagin [9] via the Szemerédi-Trotter theorem.

Theorem 2 (Konyagin–Garaev). Let A be a convex set of N elements. Then

E(A) ≪ N5/2.

For the purposes of this paper, one can inductively define higher convexity for finite
sets of reals, beginning by saying a 0-convex set is a set, written in monotone order.
For s # 1, a set A with N elements is s-convex if the set of neighbouring differences
{ai+1 − ai, 1 ! i ! N − 1} is (s − 1)-convex. Under this definition, a 1-convex set is
simply a convex set. A telescoping argument implies that if A is s-convex, then for any
1 ! h < N , the set

∆hA := {ai+h − ai, 1 ! i ! N − h}
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is (s− 1)-convex. At times, we may implicitly assume that the h-difference set ∆hA has
N elements (rather than N − h), but this will not be of any consequence.

Higher convexity was recently investigated by Roche-Newton and the last two authors
[6] aiming at proving ad infinitum with k, growth of k-fold sumsets of sufficiently convex
sets. This paper develops a different, although not unrelated and also elementary approach
to moments Tk(A). Corollary 4 and estimate (3) in Corollary 7 imply, at least on the
qualitative level, the main results in [6]. Hence in some sense, this paper is a stronger
sequel to [6]. Garaev’s method, explored ihere, has been brought to our attention by the
work [13] by Olmezov.

Garaev’s argument uses only the following weaker implication of the convexity of A,
namely that for every 1 ! h < N , the collection of differences {ai+h − ai} is indeed a set,
rather than a multiset. In our forthcoming induction of Garaev’s argument for s-convex
sets, we will iterate this property, applying it to the difference sets {ai+h − ai} as well as
to A.

We extend Theorem 2 to s-convex sets as follows.

Theorem 3. For s # 0, let k = 2s and let A1, . . . , Ak be s-convex sets with |Ai| ! N for
all 1 ! i ! k. Then

T (A1, . . . , Ak) ≪ N2s+1−1−s+αs ,

where α0 = 0 and αs =
's

j=1 j2
−j.

Loosely speaking, Theorem 3 says that provided our sets are convex enough, each time
we double the number of terms k in the energy equation (1), we essentially get a “saving”
of an additional factor of N off the trivial estimate N2k−1 for the quantity T (A1, . . . , Ak).

We remark that in a recent preprint [11] Mudgal has shown, using an ingenious appli-
cation of the Balog-Szemerédi-Gowers theorem, that cardinality bounds of [6] alone enable
one to conclude that for an s-convex set A one has the estimate Tk(A) ! N2k−1−s+αk ,
with αk → 0 as k → ∞, although quite slowly, the characteristic scale being roughly
k ∼ 22

s
, rather than k = 2s here.

Theorem 3 has a standard sumset implication after an application of the Cauchy–
Schwarz inequality, which also illustrates the rough saving of N every time k doubles.

Corollary 4. For s # 1, let k = 2s and let A1, . . . , Ak be s-convex sets with |Ai| = N for
all 1 ! i ! k. Then

|A1 ± A2 ± · · · ± Ak| ≫ N1+s−
!s

j=1 j2
−j

.

We remark that for s # 2, the proof of Theorem 3 can be refined to give the improved
αs = − 2

13
+

's
j=1 j2

−j and slightly more for higher values of s. This is follows from us

bounding 2s−1
2s

by 1 in the induction proof of Theorem 3 plus the fact that the induction
can start at s = 1, where we have Shkredov’s [17] estimate E(A) ≲ |A|32/13, see Theorem
20 below. However, this is not the focus of the theorem and perturbs the exposition so
we only comment on the modifications needed to admit this improvement.

However, since we will use the explicit bounds for k = 4 in the last section of this
paper, we state the improved result, according to the remark above.
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Theorem 5. If A1, A2, A3, A4 are 2-convex sets all of size N , then

T (A1, A2, A3, A4) ≲ N4+24/13 and |A1 ± A2 ± A3 ± A4| ≳ N2+2/13 .

Moreover, for A1, A2, A3, A4 being s > 1-convex and 1 ! r ! N3, one has

|{x : rA1±A2±A3±A4(x) # r}| ≲ N4

r7/3
Es−1 , (2)

where
Es = sup

B s-convex, |B| = N
E(B).

We proceed towards formulating our results concerning near-convex sets. It is easy
to see (we show it explicitly in the forthcoming Lemma 11) that if A = f([N ]) where f
is a Cs(R) function with monotone derivatives f (0), f (1), . . . , f (s), then A is s-convex. A
function f with this property is henceforth referred to as an s-convex function.

Using s-convex functions is not necessary to prove the above results about s-convex
sets, but they provide a natural way to generalise to near-convex sets. We say that a set
A = f(B) is near-convex (more specifically K− near-convex) if f is an s-convex function
and the set B is such that

|B − B +B| ! K|B| .

The parameter K will be referred to as the doubling constant associated with B.
Our main result, Theorem 6, reflects the maxim that “convex functions destroy ad-

ditive structure”, and that the more convex a function, the more it destroys additive
structure. Its proof arises from generalising Garaev’s method to longer sums and more
convex sets. In light of our main theorem, and one can view Theorem 3 as its corollary
by setting B1 = · · · = Bk = [N ]. 1

Theorem 6. Let B1, . . . Bk be any sets with |Bi| = N , |Bi + Bi − Bi| = KiN for all
1 ! i ! k. With s # 0 and k = 2s, let Ai = fi(Bi) for some s-convex functions f1, . . . , fk.
Then we have

T (A1, . . . , Ak) ≪
(

k!

i=1

K
2−(2+2s−2αs)2−s

i

)
·N2s+1−1−s+αs ,

where α0 = 0 and αs =
's

j=1 j2
−j.

Due to the generality of Theorem 6, it yields useful corollaries. The following follows
by setting all the Bi and all the fi to be the same.

1For this to be exactly true, one needs to check that all s-convex sets are of the form f([N ]) for some
s-convex function f , for s > 1.
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Corollary 7. Let B be any set with |B| = N and |B + B − B| = KN . If A := f(B)
where f is an s-convex function and k = 2s, then

Tk(A) ≪ K2s+1−2−2s+2αs ·N2s+1−1−s+αs ,

where α0 = 0 and αs =
's

j=1 j2
−j.

Thus
|A± A± · · · ± A# $% &

k times

| ≫ K−2s+1+2+2s−2αsN1+s−αs . (3)

It should be mentioned that such bounds which depend on doubling constants can be
used to obtain sum-product-type results, along the lines of [6, Corollary 1.5]. We will
not however explicitly discuss sum-product phenomena further. Other sum-product type
results in the context of convex sets can be seen in recent work of Stevens and Warren
[20].

We also prove the following asymmetric energy bound:

Theorem 8. Let B,C be sets with |B| = N , |B + B − B| = KN and |C| = L. If
A := f(B) for some convex function f , then

E(A,C) ≪ K1/2NL3/2.

Our result improves the following result, which was previously the best-known and
which follows from a straightforward extension of Konyagin’s Szemerédi–Trotter proof of
Theorem 2. The improvement is in the dependence on K.

Theorem 9. Let B,C be sets with |B| = N , |B − B| = KN and |C| = L. If A := f(B)
for some convex function f , then

E(A,C) ≪ KNL3/2.

Indeed, the improved Theorem 8 is sharp when |A| = |C|. Let A = C = f(B) where
B = {x2 : x ∈ [N ]} and f(x) :=

√
x. Then we get E(A,C) = K1/2|A||C|3/2 = N3.

The utility of incorporating higher convexity into the main results is as follows. For 1-
convex sets, the best known estimates for Tk(A), have been derived in [8] using induction
and Szemerédi-Trotter bounds, namely

Tk(A) ≪ N2k−2+2−(k−1)

. (4)

This in particular implies that |kA| ≫ N2−2−(k−1)
. This estimate cannot be improved

beyond N2, as evinced by the first N squares, which form a 1-convex (but not 2-convex)
set. Consequently, the energy bound (4) is almost best-possible. One would naturally
expect better estimates for more convex sets, but the choice techniques based on the
Szemerédi–Trotter theorem have not been adapted to allow for nontrivial estimates. A
different elementary technique has been developed in [6] to account for the following
growth of particular sumsets:

|2sA− (2s − 1)A| ≫ |A|s+1.
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In this paper we show that Garaev’s idea underlying his proof of Theorem 2, allows
for upper bounds for the quantities T2s , which are in line with the sumset bounds in [6].

Note that bounds for Tk(A) can be immediately recycled into L2k bounds for expo-
nential sums over A (see [8] and the references contained therein).

In the last section of this paper we use our estimates for the quantities T3(A) and
T4(A) to get small improvements on the best known sumset and energy estimates for sets
which are s-convex, for s # 2. Although our quantitative improvements are quite modest
(and most likely not best possible within the technology we present) they do break the
ice in some sense, for previously used methods based on the Szemerédi-Trotter theorem
did not enable one to benefit by using higher convexity.

1.1 Organisation of this paper

Section 2 contains the notation used herein which relates to energy and difference sets. It
also briefly discusses the relevant properties of convex sets and convex functions. Section
3 introduces the Garaev argument and a generalised definition of “lucky pairs”. The key
result is Proposition 15, which forms the framework for proving the main results of the
paper. Sections 4 and 5 respectively contain the proofs of the main results in the convex
and near-convex cases. Section 6 is devoted to proving new sumset results for s-convex
functions where s # 2.

2 Preliminaries and Notation

Throughout this paper, if x ∈ A1 + · · ·+ Ak, then

rA1+···+Ak
(x) := |{(a1, . . . , ak) ∈

k!

i=1

Ai : x = a1 + · · ·+ ak}|.

Also for r # 1, we define

Xr := {x ∈ A1 + · · ·+ Ak : r ! rA1+···+Ak
(x) < 2r},

the set of r-rich sums in a given sumset. Whenever we use (extensively) the notation Xr,
context will make it clear what sumset it is contained in.

In this language we can express the energy in either of the following ways:

T (A1, . . . , Ak) =
*

x∈A1+···+Ak

r2A1+···+Ak
(x),

or
T (A1, . . . , Ak) ≈

*

r dyadic

r2|Xr|.

For a convex set A with N elements, and 1 ! h < N its h-difference set is

∆hA := {ai+h − ai : i ∈ [N − h]} .
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We will not explicitly deal with the fact that |∆hA| < |A| = N, but rather simply add h
extra elements to ∆hA ad hoc.

We also define “discrete derivatives”. Given a function f , let its h-derivative be

∆hf(x) := f(x+ h)− f(x).

Lemma 10. If f is an s-convex function, then for any h, ∆hf is an (s − 1)-convex
function.

Proof. We use induction on s. Suppose f is 1-convex. We have

∆hf(x) := f(x+ h)− f(x) =

+ x+h

x

f ′(y)dy.

Since f ′ is monotone, it follows that ∆hf is also monotone, and hence 0-convex.
Next assume the statement holds for (s − 1)-convex functions. Let f be an s-convex

function. By definition, this implies that f ′ is an (s− 1)-convex function. The induction
hypothesis implies that ∆h(f

′) is an (s− 2)-convex function. But since ∆h(f
′) = (∆hf)

′,
it follows that ∆hf is (s− 1)-convex, completing the induction.

A one-way relationship between s-convex functions and s-convex sets is intuitive and
is summarised in the following lemma.

Lemma 11. If f is an s-convex function, then f([N ]) is an s-convex set.

Proof. By induction on s. If f is a 0-convex function, then f([N ]) is clearly ordered as a
0-convex set.

Assume the statement holds for (s−1)-convex functions. Let f be an s-convex function.
Then (∆1f)(x) := f(x + 1) − f(x) is an (s − 1)-convex function. By the induction
hypothesis, (∆1f)([N ]) is an (s− 1)-convex set, which proves that f([N ]) is an s-convex
set, completing the induction.

We expect the converse to the statement of Lemma 11 to be true, as it is for s = 1.
However, proving this may require interpolation techniques beyond the scope of this paper.

3 Methods

We begin by presenting a version of Garaev’s proof of Theorem 2. This proof is essentially
synthesised from its exposition by Olmezov [13], with an additional observation that
convexity can be used more sparingly, which enables one to extend the estimate for E(A)
to E(A,B), where A is a convex set and B is any set. This is based on replicating estimate
(8) below, known earlier via the Szemerédi-Trotter theorem.

In the forthcoming argument, we only need the following property of a convex set

A = {a1, a2, . . . aN},

written in increasing order: For each h < N , the differences ai+h − ai, i = 1, . . . , N − h
are all distinct.
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Proof of Theorem 2. We are estimating the number of solutions to

ai1 + aj1 = ai2 + aj2 : (ai1 , aj1 , ai2 , aj2) ∈ A4 . (5)

Consider some x ∈ Xr. Recall that this means r ! rA+A(x) < 2r where rA+A(x) is
the number of realisations of x as a sum of two elements in A. Write

x = ai1 + aj1 = · · · = air + ajr ,

with i1 < i2 < . . . < ir. Since aiu + aju = x for all u, we also have j1 > j2 > . . . > jr. We
may also assume that ju # iu for all u, affecting only the multiplicative constant implied
in the ≪ notation of the final estimate. It follows that

r−1*

u=1

(iu+1 − iu) ! N and
r−1*

u=1

(ju − ju+1) ! N.

By the pigeonhole principle, at least 3r/4 of the summands in each sum cannot exceed
4N/r. This implies that there is a set of indices U ⊂ [r − 1] with |U | # r/2 such that
for every u ∈ U , iu+1 − iu ! 4N/r and ju − ju+1 ! 4N/r. For u ∈ U , we say the pair
(aiu , aju), (aiu+1 , aju+1) is a lucky pair, so there are at least r/2 lucky pairs.

Since each lucky pair gives rise to a solution to the energy equation (5), there are least
r/2 distinct solutions of the equation

ai1+h1 − ai1 = ai2+h2 − ai2 ,

where i1, i2 ∈ [N ] and 1 ! h1, h2 ! 4N/r.
By considering all x ∈ Xr, it follows that

r|Xr| ≪ (N/r)2 max
1!h1,h2≪N/r

|{(i1, i2) ∈ [N ]2 : ai1+h1 − ai1 = ai2+h2 − ai2}| .

Now comes the only part of the argument where we use the convexity of A: given h1, all
differences ai1+h1 − ai1 are distinct, hence for any fixed h1 and h2, we have trivially that

|{(i1, i2) ∈ [N ]2 : ai1+h1 − ai1 = ai2+h2 − ai2}| ! N . (6)

It follows that
|Xr| ≪ N3/r3. (7)

We write E(A) =
'

r dyadic r
2|Xr| and, for some parameter r∗ to be chosen, use the trivial

bound |Xr| ≪ N2/r for r ! r∗ and estimate (7) for r > r∗. Choosing the optimal
r∗ = N1/2 yields the desired

E(A) ≪ N5/2.

We remark that since the lucky pairs argument itself involves solely the pigeonhole
principle and no assumptions on the set A, the above proof generalises immediately to
the case of E(A,B), where A is convex and B any set. Bound (7) becomes

|Xr| ≪ |A||B|2/r3 , (8)
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with Xr now being the set of r-rich sums in A + B. Indeed, the only necessary changes
to the proof are that now h2 pertain to the set

B = {b1, b2, . . . , b|B|},

so that 1 ! h2 ≪ |B|/r, and the trivial bound (6) is replaced by |B|. This takes into
account that given h2, the quantities bi2+h2 − bi2 are not necessarily all distinct. What
matters is that ai1+h1 − ai1 are all distinct.

Hence, Garaev’s method enables one to obtain the standard corollary of estimate (8),
which is usually proved using the Szemerédi-Trotter theorem.

Corollary 12. If A is a convex set, then for any B,

E3(A,B) :=
'

x r
3
A±B(x) ≪ |A|B|2 log |A| ,

E1+p(A,B) :=
'

x r
1+p
A±B(x) ≪ |A||B|1+p/2 , for 1 < p < 2 .

Earlier expositions of Garaev’s method appear to overlook the fact that it generalises
easily to embrace two different sets A and B, owing to an overreliance on convexity in
the proof.

In order to generalise Theorem 2 to the quantity T2k(A), we need to generalise the
concept of lucky pairs from above. In order not to repeat ourselves, we do it in the general
setting, suitable for all the results in this paper. In the convex set setting, B1, . . . , Bk

below are all just the interval [N ]. In the near-convex setting, the full generality of
Definition 13 and Proposition 15 will be needed.

Definition 13 (Lucky Pairs). For 1 ! i ! k, suppose Bi is a finite set of real numbers,
gi is a monotone function and Ai = gi(Bi). Given any r, where r1/(k−1) ≪ |Bi +Bi −Bi|
for all 1 ! i ! k, let

Xr = {x ∈ A1 + · · ·+ Ak : r ! rA1+···+Ak
(x) < 2r}

be the r-rich sums in A1 + · · ·+ Ak. Suppose P := (b1, . . . , bk) and P ′ := (b′1, . . . , b
′
k) are

distinct points, each belonging to
"k

i=1 Bi. For x ∈ Xr, we say (P, P ′) forms a lucky pair
associated with x if the following two conditions hold.

1. The pair (P, P ′) gives rise to a solution to the energy equation for the sum x. That
is,

g1(b1) + · · ·+ gk(bk) = x = g1(b
′
1) + · · ·+ gk(b

′
k).

2. In all coordinates, there are not many elements of Bi +Bi −Bi between P and P ′.
That is, if nBi

(b, b′) is the number of elements of Bi + Bi − Bi lying in (b, b′] (or
(b′, b] if b > b′), then

nBi
(bi, b

′
i) ≪ |Bi +Bi − Bi|/r1/(k−1), (9)

for all 1 ! i ! k.
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Remark 14. In (9), we will always be treating the upper bound on nBi
(bi, b

′
i) as an integer.

This is why we insist that r1/(k−1) ≪ |Bi + Bi − Bi| in Definition 13. For all the results
in this paper, this condition will hold trivially, so it will not be discussed further.

Proposition 15. Let r, k # 1 and for 1 ! i ! k, suppose Bi is a finite set of real numbers,
gi is a monotone function and Ai = gi(Bi). Let

Xr = {x ∈ A1 + · · ·+ Ak : r ! rA1+···+Ak
(x) < 2r}

be the r-rich sums in A1 + · · · + Ak. Then for each x ∈ Xr, there are ≫ r lucky pairs
associated with x.

We will need the following lemma in the proof:

Lemma 16. Suppose we have a k-dimensional box in Rk (a Cartesian product of k or-
thogonal intervals) which is composed of rk smaller (nonidentical) boxes (or cells) in an
r × · · · × r grid. Then any generic hyperplane H (not parallel to any one-dimensional
edge of the box) can pass through at most krk−1 cells.

Proof. By translation and scaling, we may assume that the origin is one of the corners
of the box, the facets of the box are all parallel to coordinate hyperplanes and that the
hyperplane H is of the form X1 + · · ·+Xk = C for some constant C.

We can index each cell by a k-tuple (e1, . . . , ek) which denotes its position among the
cells on each axis, starting from the origin. Now for each cell in which at least one of the
ei is 1, we define its associated diagonal as the set of cells with indices (e1+ a, . . . , ek + a)
for 0 ! a ! r −maxi ei.

There are at most krk−1 such diagonals which cover all the cells, and H intersects each
diagonal in at most one cell, completing the proof.

Proof of Proposition 15. For each i, partition Bi +Bi −Bi into r1/(k−1)/4 intervals, each
containing 4|Bi+Bi−Bi|/r1/(k−1) elements. Since Bi ⊂ Bi+Bi−Bi, this also partitions
the elements of Bi. Doing this for each i partitions

"
i Bi into boxes and hence, since the

gi are all monotone functions, also partition
"

i Ai into boxes (or cells).
Now consider some x ∈ Xr. Each solution to

x = g1(b1) + · · ·+ gk(bk)

corresponds to a point (g1(b1), . . . , gk(bk)) on the hyperplane

x = X1 + · · ·+Xk.

By Lemma 16 this hyperplane can pass through at most (k/4k−1) · r ! r/2 cells and the
hyperplane has r points on it. By the pigeonhole principle, there must be ≫ r pairs of
points which lie together in the same cell. By construction, these are lucky pairs, which
completes the proof.
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4 Proof of Theorem 3

Despite the fact that Theorem 3 is essentially a less general version of Theorem 6, we
present its proof separately to illustrate exactly how much convexity is needed.

Proof of Theorem 3. Let us denote the desired universal bound for Tk(A1, . . . , Ak) as

Tk := Tk(N) = supTk(A1, . . . , Ak)

where the supremum is taken over all k-tuples of s-convex sets of size N . Let Ai := {a(i)1 <

. . . < a
(i)
N } for each 1 ! i ! k. We are counting solutions to the equation

a(1)e1
+ · · ·+ a(k)ek

= a
(1)

e′1
+ · · ·+ a

(k)

e′k
, (10)

for some indices e1, . . . , ek, e
′
1, . . . , e

′
k ∈ [N ].

The proof is by induction on s where k = 2s, the base case s = 0 being trivial: the
number of solutions of

a = a′ : a, a′ ∈ A1

is at most (in fact precisely) N .

Let us assume that in the equation (10) no two terms a
(i)
ei and a

(i)

e′i
are the same for

i = 1, . . . , k. More precisely, suppose that such non-degenerate solutions to equation (10)
constitute at least half of the quantity Tk(A1, . . . , Ak). Indeed, the number of degenerate
solutions is at most

k*

j=1

Tk−1(A1, . . . , Aj−1, Aj+1, . . . , Ak)

and by freezing all but k/2 of the variables on each side and applying Cauchy-Schwarz,
we get

Tk(A1, . . . , Ak) ≪k N
k−1Tk/2 ≪ Tk.

Thus if the degenerate solutions constituted more than half of the upper bound, the proof
would be complete.

Recall that Xr is the set of r-rich sums. For each x ∈ Xr, we apply Proposition 15
with B1 = . . . = Bk = [N ] and gi(y) := a

(i)
y , for all 1 ! i ! k. By considering all lucky

pairs arising from any x ∈ Xr, one obtains

r|Xr| ≪ # solutions to (10) ,

where |ei − e′i| ≪ N/r1/(k−1) for all 1 ! i ! k. We now choose the hi := ei − e′i for
1 ! i ! k which maximise the number of solutions to (10).

Notice that for each hi, ∆hi
Ai := {a(i)e′i+hi

−a
(i)

e′i
} is an (s−1)-convex set (not a multiset)

and has ! N elements. Here we have used that hi is non-zero, which is a consequence of
the non-degeneracy assumption. We can subtract all the elements on the right-hand side
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of (10), and since there are Nk/rk/(k−1) ways altogether of choosing e1 − e′1, . . . , ek − e′k,
it follows that

r|Xr| ≪
Nk

rk/(k−1)
·# of solutions to a1 + . . .+ ak = 0

where ai ∈ ∆hi
Ai for 1 ! i ! k. Rearranging the terms of the above equation so there are

k/2 terms on each side of the equation and using Cauchy-Schwarz, one can then apply
the induction hypothesis to obtain

|Xr| ≪
Nk

r(2k−1)/(k−1)
· Tk/2 . (11)

Using Tk(A1, . . . , Ak) =
'

r dyadic r
2|Xr|, we optimise in r by taking, for some r∗ to be

determined, the trivial bound r∗N
k for r ! r∗, and the dyadic sum with (11) over the

values of r # r∗. Thus

Tk(A1, . . . , Ak) ≪ r∗N
k +

Nk

r
1/(k−1)
∗

Tk/2 .

Taking the optimal choice of
r∗ = T 1−1/k

k/2 ,

we get

Tk(A1, . . . , Ak) ≪ NkT 1−1/k
k/2 = N2s ·N (2s−s+αs−1)(1−2−s) ≪ N2s+1−1−s+αs .

This closes the induction and completes the proof.

Remark 17. The step where we apply Cauchy–Schwarz is a variation on the well-known
procedure to prove that

E(A,B) ! E(A)1/2E(B)1/2.

As alluded to in the introduction, we can refine this approach to obtain a slightly
better bound, specifically a smaller value of αs. If we assume that s # 2 then s = 2
becomes the base case of the induction. Using the bound (11), T (A1, A2, A3, A4) can be
bounded in terms of E(A) where A is a 1-convex set of size N . Estimating E(A) using
Theorem 2 produces the improvement αs = −1

8
+

's
j=1 j2

−j. Using instead Shkredov’s
stronger bound [17]

E(A) ≪ N32/13,

gives the further improvement αs = − 2
13

+
's

j=1 j2
−j.

In the above proof, s-convexity is only used in one place. Since all the Ai are s-convex,
the sets ∆hi

Ai are (s− 1)-convex. In particular, this implies that ∆hi
Ai will always be a

set rather than a multiset which is essential when iterating the argument.
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5 Proofs of Theorems 8 and 6

In this section, we focus on the results pertaining to sets with small additive doubling.
The following lemma is included to clarify the key step for generalising our earlier results.

Lemma 18. Let D := {d1 < d2 < · · · < d|D|} be the positive differences in B − B. If
b, b′ ∈ B with b > b′ and nB(b, b

′) ! Z, then b− b′ ! dZ. In other words, if nB(b, b
′) ! Z

then there are at most Z possible values that b− b′ can take.

Proof. If not then b− b′ = dY where Y > Z. But then

b′ < b′ + di ! b,

for i = 1, . . . , Y . Thus there are at least Y > Z elements of B + B − B in (b′, b],
contradicting that nB(b

′, b) ! Z.

Proof of Theorem 8. Let C := {c1 < · · · < cL}. For each x ∈ Xr, we apply Proposition
15 with k = 2, B1 = B,B2 = [L] and functions g1(t) := f(t), g2(t) := ct. By considering
all x ∈ Xr, this implies that the total number of lucky pairs from r-rich sums is ≫ r|Xr|.
Since lucky pairs give rise to solutions to the energy equation, it follows that

r|Xr| ≪ # solutions to f(b1)− f(b2) = ce2 − ce1 , (12)

where nB(b1, b2) ≪ KN/r and |e2 − e1| ≪ L/r. It follows from Lemma 18 that there are
at most KN/r possible values for |b2 − b1|.

After fixing b1 − b2, e2 − e1 and ce1 in (12), which can be done in KNL2/r2 ways, the
energy equation admits at most one solution since fd(x) := f(x+d)−f(x) is a monotone
function.

It follows that |Xr| ≪ KNL2/r3. Since

E(A,B) ≪
*

r dyadic

r2|Xr| ≪ r∗
*

r dyadic
r!r∗

r|Xr|+
*

r dyadic
r>r∗

KNL2

r
≪ r∗NL+

KNL2

r∗

we get that, upon choosing r∗ = (KL)1/2,

E(A,B) ≪ K1/2NL3/2.

Proof of Theorem 6. As in the proof of Theorem 3, denote the desired universal bound
for Tk(A1, . . . , Ak) as

Tk(N ;K1, . . . , Kk) .

We are counting solutions to the equation

f1(b1) + · · ·+ fk(bk) = f1(b
′
1) + · · ·+ fk(b

′
k), (13)

where bi, b
′
i ∈ Bi for all i.
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The proof is by induction on s where again the base case s = 0 is trivial: the number
of solutions of

f1(b) = f1(b
′) : b, b′ ∈ B1

is at most N .
Let us assume that for each solution to (13) no two terms fi(bi) and fi(b

′
i) are equal for

any i = 1, . . . , k. More precisely, suppose that such non-degenerate solutions to equation
(13) constitute at least half of the quantity Tk(A1, . . . , Ak). For otherwise, as in the proof
of Theorem 3, using a trivial upper bound and the induction hypothesis, we would have

Tk(A1, . . . , Ak) ≪ Nk−1Tk/2(N ;Kι1 , . . . , Kιk/2) ≪ Tk(N ;K1, . . . , Kk),

where Kι1 , . . . , Kιk/2 are the largest k/2 terms among all the Ki. This would complete
the proof immediately.

As previously seen, Xr contains the sums x ∈ A1+· · ·+Ak with r ! rA1+···+Ak
(x) < 2r.

For each x ∈ Xr, we now apply Proposition 15 with gi(b) := fi(b) for 1 ! i ! k. This
obtains

r|Xr| ≪ # solutions to (13),

where nBi
(bi, b

′
i) ≪ KiN/r1/(k−1) for all 1 ! i ! k.

We now choose the hi := bi− b′i for 1 ! i ! k which maximise the number of solutions
to (13), and then rearrange to obtain

(∆h1f1)(b
′
1) + · · ·+ (∆hk/2

fk/2)(b
′
k/2) = (∆hk/2+1

fk/2+1)(bk/2+1) + · · ·+ (∆hk
fk)(bk). (14)

By Lemma 18, there are at most
"k

i=1(KiN)/rk/(k−1) ways altogether of choosing the
bi − b′i, so we have

r|Xr| ≪
"k

i=1(KiN)

rk/(k−1)
·# solutions to (14).

Applying Cauchy–Schwarz proves that the number of solutions to (14) is bounded
above by

T ((∆h1f1)(B1), . . . , (∆hk/2
fk/2)(Bk/2))

1/2T ((∆hk/2+1
fk/2+1)(Bk/2+1), . . . ,∆hk

(fk)(Bk))
1/2.
(15)

Since all the functions ∆hi
fi are (s−1)-convex, the induction hypothesis upper bounds

(15) by
Tk/2(N ;K1, . . . , Kk/2)

1/2Tk/2(N ;Kk/2+1, . . . , Kk)
1/2,

whence

|Xr| ≪
"k

i=1(KiN)

r(2k−1)/(k−1)
· Tk/2(N ;K1, . . . , Kk/2)

1/2Tk/2(N ;Kk/2+1, . . . , Kk)
1/2. (16)

Using Tk(A1, . . . , Ak) =
'

r dyadic r
2|Xr|, we optimise in r by taking, for some r∗ to be

determined, the trivial bound r∗N
k for r ! r∗, and the dyadic sum with (16) over the

values of r # r∗. Thus

Tk(A1, . . . , Ak) ≪ r∗N
k+

"k
i=1(KiN)

r
1/(k−1)
∗

Tk/2(N ;K1, . . . , Kk/2)
1/2Tk/2(N ;Kk/2+1, . . . , Kk)

1/2 .
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Taking the optimal choice of

r∗ =

(
k!

i=1

K
1− 1

k
i

)
· Tk/2(N ;K1, . . . , Kk/2)

( 1
2
− 1

2k
)Tk/2(N ;Kk/2+1, . . . , Kk)

( 1
2
− 1

2k ) ,

it is elementary to check that

Tk(A1, . . . , Ak) ≪ r∗N
k ≪

(
k!

i=1

K
2−(2+2s−2αs)2−s

i

)
·N2s+1−1−s+αs .

This closes the induction and completes the proof.

Similar to Theorem 3, we can refine this approach to obtain a bound with a slightly
smaller (at least by 1/8) value of αs for s # 2.

The above proofs apply to sums of length k = 2s, where we start the induction with the
trivial estimate for s = 0. One can also easily develop similar inductions that start with
the quantity T (A1, A2, A3) and formulate analogues of Theorems 3 and 6 for k = 3 · 2s.
We leave this to the interested reader, concluding this section by stating the base case
k = 3, since it will be once used in the next section.

Theorem 19. If A1, A2, A3 are 2-convex sets with N elements. Let Xr be the set of r-rich
sums from A1 + A2 + A3. Then

|Xr| ≪
N14/3

r5/2
. (17)

In particular
T3(A1, A2, A3) ≪ N4+ 1

9 .

Proof. By the familiar lucky pairs argument

r|Xr| ≪ N3/r3/2 · SA+B=C ,

where SA+B=C is the maximum number of solutions to

a+ b = c : a ∈ A, b ∈ B, c ∈ C.

for some 1-convex sets A,B,C with |A| = |B| = |C| = N . It remains to show that
SA+B=C ≪ N5/3.

Consider the r0-rich sums a + b ∈ A + B and recall the corresponding bound (8).
Combining with a trivial bound, we get

SA+B=C ≪ |A||B|2/r20 + |C|r0 = N3r−2
0 +Nr0,

and optimising in r0 obtains
SA+B=C ≪ N5/3 .
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6 Applications to convex sumsets

We use our estimates to improve the state of the art sumset bounds for convex sets. The
best known bounds to date are respectively due to Schoen and Shkredov [16], Rudnev
and Stevens [15] and Shkredov [17], and are summarised below.

Theorem 20. If A is convex, then

|A− A| ≳ |A|8/5 = 1.6

|A+ A| ≳ |A|30/19 ≈ 1.579 ,

E(A) ≲ |A|32/13 ≈ 2.4615 .

We can get small improvements of all these bounds for s-convex sets, with s # 2.
These estimates rely on using our new bounds apropos of the quantity T4(A) in Theorem
5, as well as T3(A) in (17). We will incorporate them into existing methods developed by
Shkredov and collaborators (see, e.g. [16], [17], [12]), which rely extensively on the use of
the third moment

E3(A) :=
*

x

r3A−A(x) ≪ N3 logN ,

by (7) (the same bound would normally be attributed to the use of Szemerédi-Trotter
theorem).

We have attempted to make exposition in this section prerequisite-free. Hence, observe
that after resummation the quantity E3(A) (not to be confused with T3(A)) has the
following meaning. If [a, b, c] denotes an equivalence class of triples (a, b, c) ∈ A3 by
translation, with r([a, b, c]) triples therein, and [A3] denotes the set of these equivalence
classes, then

E3(A) =
*

x∈[A3]

r2(x) . (18)

Let A be an s-convex set. When s = 2, the improvement comes from fetching the
equation, accounting for the moment T4(A), for which we have estimate (2), where for the
quantity Es−1 one can substitute the energy bound from Theorem 20 for 1-convex sets.
Furthermore, for s > 2 this process can then be iterated to obtain incrementally better
energy bounds for more convex sets, the iterations rapidly converging. We note that even
the simpler energy estimate E(A) ≪ N5/2 for 1-convex sets would already improve the
estimates of Theorem 20 for 2-convex sets. We present only estimates for 2-convex sets
in the next theorem; the small improvements for more convex sets can be found in the
forthcoming proof.

Theorem 21. If A is a 2-convex set with sufficiently large2 size N , then

|A− A| ≳ N1+151/234 ≈ 1.645 ,

|A+ A| ≳ N1+229/309 ≈ 1.587 ,

E(A) ! N2.4554 .
2If N is sufficiently large, then decimal approximation of the exponents enable one to replace the ≲,≳

symbols by, respectively, #,$.

the electronic journal of combinatorics 29(3) (2022), #P3.6 17



Proof. We begin with the technically least demanding bound for the set A−A, where A
is s-convex for s # 2. Consider a tautology on triples (a, b, c) ∈ A3 :

(a− c) = (a− b) + (b− c) .

If |A − A| = KN and D be the set of popular differences with ≫ N/K realisations, by
the pigeonhole principle the above tautology is valid for ≫ N3 triples

(a, b, c) ∈ A3 : b− c, a− b ∈ D .

On the other hand, considering equivalence classes of triples (a, b, c) by translation and
using (18) in combination with Cauchy-Schwarz, one has

N6 ≪ E3(A) |{d1 + d2 ∈ A− A : (d1, d2) ∈ D2}|
≲ N3(K/N)2 |{a1 − a2 + a3 − a4 = d : (a1, . . . , a4) ∈ A4, d ∈ A− A}| .

(19)

Using the Hölder inequality and (2) with dyadic summation yields

|{a1 − a2 + a3 − a4 = d : (a1, . . . , a4) ∈ A4, d ∈ A− A}| ≲ (KN)4/7(N4Es−1)
3/7 , (20)

with Es−1 as in (2). Thus

N19/7 ≲ K18/7E
3/7
s−1 .

Using Shkredov’s bound for Es−1 yields, for 2-convex A:

K ≳ N
151
234 .

If A is more than 2-convex, one can asymptotically use the forthcoming bound (24) for
Es−1, which improves the exponent for |A−A| just by slightly over .001. Namely, if A is
sufficiently convex and N is large enough, it follows that

K # N .646 ,

the decimal approximation having accounted for replacing ≲ by ! for sufficiently large
N and s.

Furthermore, to bound |A+A| we use a slightly more involved pigeonholing technique
which is exposed in more detail in [15]. Suppose, |A+A| = KN, define P as a set of sums
with ≳ N/K realisations, and D as a popular set of differences by energy (we will use
energy to connect the difference set with the sum set). Namely D is defined as follows.

By the dyadic pigeonhole principle, there exists D ⊆ A − A, and a real number
1 ! ∆ < |A|, such that for every d ∈ D, ∆ ! rA−A(d) < 2∆, and on top of this

E(A) ≲ |D|∆2. (21)

Moreover, by (7) one has |D|∆3 ≪ |A|3 so

∆ ≲ |A|3/E(A) . (22)
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Then (after possibly passing to a large subset of A, see [15, Proof of Theorem 5]) the
analogue of the argument underlying the above estimate (19) becomes the tautology

(a+ b)− (b+ c) = a− c ∈ D, a+ b, b+ c ∈ P ,

with the number of triples (a, b, c) ∈ A3 realising this being ≳ |A||D|∆.
Hence, using (18) and Cauchy-Schwarz as in (19) yields

(|A||D|∆)2 ≪ E3(A) |{s1 − s2 = d : (s1, s2, d) ∈ P 2 ×D}|
≲ N3(K/N)2 |{a1 + a2 − a3 − a4 = d : (a1, . . . , a4) ∈ A4, d ∈ D3}|
≲ K2N19/7E

3/7
s−1|D|4/7 ,

after using the Hölder inequality and (2), as in (20).

Multiplying both sides by ∆6/7 ≲
,

N3

E(A)

-6/7

(see (22)) to balance the powers of |D|
and ∆, so one can use |D|∆2 ≳ E(A) (see (21)), yields

E(A)16/7 ≲ K2E
3/7
s−1N

23/7 . (23)

Substituting Shkredov’s bound for Es−1 and using the standard Cauchy-Schwarz bound

K # N3

E(A)

yields
K ≳ N

229
390 .

Once again, if A is more than 2-convex, one can asymptotically use the forthcoming
bound (24) for Es−1, in which case (optimising between the Cauchy-Schwarz bound and
(23))

K ≳ N
16
27

≈ 0.592 ,

the decimal approximation having accounted for replacing ≲ by ! for sufficiently large
N and s.

We now turn to the energy E(A) estimate, where the analysis ends up being somewhat
more involved. For the reader’s convenience we briefly recall the key steps of Shkredov’s
spectral (alias operator) method we use, following, e.g. [17] (for an overview of the method
see [14]). The operator method is used to replace the lower bounds from easy tautologies
that enabled estimate (19) and its analogue in the bounds for |A± A| derived above.

Once again, let D be the set of popular differences by energy, satisfying (21), (22).
Identifying D with its characteristic function, consider the quantity

S :=
*

a,b,c∈A

D(a− b)D(b− c)rA−A(a− c) .

The quantity S takes triples (a, b, c) ∈ A3 for which a−b, b−c are in the “popular” set D,
and counts each one the number of times the difference a− c repeats itself. The spectral
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method enables one to get a lower bound on S, to be compared with the upper bound we
will again obtain by (18) and Cauchy-Schwarz.

Let us view D as a |A| × |A| symmetric boolean matrix with 1 at the position (a, b)
if a − b ∈ D and 0 otherwise. Similarly rA−A can be seen as a square symmetric matrix
R (where Rij := rA−A(i− j)), which in addition is non-negative definite (checking this is
tantamount to rearrangement of the energy equation, see e.g. [17]). Thus S = trDDR.

Let µ1 be a positive eigenvalue of D with the largest modulus and normalised eigenvec-
tor v # 0 with all non-negative entries; this is possible by the Perron-Frobenius theorem.
Since D is symmetric, one can estimate

µ1 = v ·Dv # |D|∆
|A| ,

replacing v by the vector 1√
|A|

1.

Since D is symmetric, one can write D = QD̃Q⊤ so that D̃ is diagonal with µ1 in the
top left corner, and v is the first column of orthogonal matrix Q. The basis-invariance of
trace gives

S = tr(D̃2Q⊤RQ).

Noting that R is nonnegative definite, the trace can be bounded from below by the (1, 1)-
entry, whence

S # µ2
1 v ·Rv.

Since v # 0, this can be estimated from below by making the matrix R entry-wise smaller,
namely replacing it with ∆D. But for the latter matrix, once again, we can replace v
with 1√

|A|
1 to get a lower bound v ·Rv ≳ E(A)/|A|, and hence

S ≳ (|D|∆)2E(A)

|A|3 .

On the other hand the quantity S, tautologically, is the number of solutions of the
equation

(a− b) + (b− c) = a′ − c′ : a− b, b− c ∈ D, a′, c′ ∈ A .

It follows from Cauchy-Schwarz that

S2 ! E3(A)
*

d1,d2∈D

r2A−A(d1 + d2) ,

and since each of d1, d2 has at least ∆ representations in A− A, this means

S2 ≲ |A|3∆−2
*

x

rA−A+A−A(x)r
2
A−A(x).

We partition A − A into “rich and poor” sets D1 and D2, so that for some τ to be
determined, rA−A(x) ! τ, for every x ∈ D1.

the electronic journal of combinatorics 29(3) (2022), #P3.6 20



We firstly consider the poor differences D1. By the Hölder inequality

*

x∈D1

rA−A+A−A(x)r
2
A−A(x) !

(
*

x∈D1

rA−A+A−A(x)
7/3

)3/7 (*

x∈D1

rA−A(x)
7/2

)4/7

.

From (2) we have, once again,

*

x

rA−A+A−A(x)
7/3 ≲ N4Es−1 ,

and from the definition of D1,

*

x∈D1

rA−A(x)
7/2 ≲ N3τ 1/2 .

As for the set D2, we have, from (7),

|D2| ! N3/τ 3 .

Without changing the notation, let us replace D2 by its subset {x : τ ! rA−A(x) < 2τ}:
this will not have consequences, after a subsequent dyadic summation. Then the quantity
to be estimated is

*

x∈D2

rA−A+A−A(x)r
2
A−A(x) ! τ 2|{d = a1 + a2 − a3 − a4 : d ∈ D2; a1, . . . , a4 ∈ A}| .

By the Hölder inequality, this is bounded by

τ 2

(
*

x

rA+A−A(x)
5/2

)2/5 (*

x

rA+D(x)
5/3

)3/5

.

The first bracketed term is estimated directly using (17). Moreover, by the second bound
of Corollary 12, *

x

rA+D(x)
5/3 ≪ N |D|4/3 .

Putting everything together,

|D|4∆6E2(A) ≲ |A|9
,
N24/7E

3/7
s−1τ

2/7 +N73/15τ−2/5
-
.

Optimising in τ yields
τ = N151/72E

−5/8
s−1 .

Multiplying both sides by ∆2, using E(A) ≲ |D|∆2 (see (21)) on the left and ∆ ≲
|A|3/E(A) (see (22)) on the right yields

E8(A) ≲ N15+24/7+151/252E
1/4
s−1 .
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It remains to substitute an estimate for Es−1. If A is 2-convex we can use Shkredov’s
bound Es−1 ≲ N32/13 , and we arrive at

E(A) ≲ N2+1705/3744 ! N2+.4554 ,

for sufficiently large N .
One can iterate this bound for higher convexity (namely using it as Es−1 if s = 3, etc.)

and it is easily seen that the iterates converge rapidly. In the limit when E(A) = Es−1 in
the above calculation one gets

E(A) ≲ N2+127/279 ! N2+.4552 . (24)
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