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Abstract

An Archimedean lattice is an infinite graph constructed from a vertex-transitive
tiling of the plane by regular polygons. A dominating set of vertices is a perfect
dominating set if every vertex that is not in the set is dominated exactly once. The
perfect domination ratio is the minimum proportion of vertices in a perfect domi-
nating set. Seven of the eleven Archimedean lattices can be efficiently dominated,
which easily determines their perfect domination ratios. The perfect domination
ratios are determined for the four Archimedean lattices that can not be efficiently
dominated.

Mathematics Subject Classifications: 05C88, 05C89

1 Introduction

In a simple graph G = (VG, EG), a vertex x dominates a vertex y if either x is adjacent to
y or x = y. A subset D ⊆ VG is a dominating set if every vertex in VG is dominated by at
least one vertex in D. More formally, define the closed neighborhood of a vertex v ∈ VG
by N [v] = {u ∈ VG : u = v or u is adjacent to v}. Vertices in N [v] \ {v} are neighbors of
v. A vertex v is said to dominate itself and all of its neighbors. A dominating set is a
set D ⊆ VG such that every vertex in VG is dominated by at least one vertex in D. An
efficient dominating set is a set D ⊆ VG such that every vertex in VG is dominated by
exactly one vertex in D. A perfect dominating set is a set D ⊆ VG such that every vertex
in VG \D is dominated by exactly one vertex in D. For a finite graph G, the domination
number γ(G) is the minimum number of vertices in a dominating set in G.

There is an extensive literature on domination in finite graphs. The classic compre-
hensive reference is the two-volume series by Haynes, Hedetniemi, and Slater [15]. Many
variants of domination motivated by different applications are defined and studied in, for
example, [4, 5, 16, 17]. Perfect domination was introduced in [1] in the study of perfect
codes, and has applications to facility location [21] and to efficient resource placement in
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a computer network [25]. A relatively recent survey of the main results in the literature
on perfect domination is provided by Klostermeyer [24], which provides 57 references.

Recently there has been considerable and growing interest in subsets of vertices of
infinite graphs with a variety of dominating or domination-like properties. Slater [27] con-
sidered fault-tolerant locating-dominating sets on the square lattice. Honkala [19] studied
locating-dominating sets on the triangular lattice. Perfect domination, quasi-perfect dom-
ination, and rainbow perfect domination on square and triangular lattices are treated in
[6, 7, 11]. Kincaid, Oldham, and Yu [22] found optimal open-locating-dominating sets in
the triangular lattice. Efficient total domination on vertex-transitive graphs was consid-
ered by Hu, Li, and Liu [20]. Kinawi, Hussain, and Niepel [23] studied locating-paired
domination on the triangular and king lattices. Bouznif et al [2] considered identifying
codes, locating-dominating codes, and location-total-dominating codes on the square, tri-
angular, and king lattices. Optimal (t, r) domination on the square and triangular lattices
is treated in [3, 10, 14, 18]. The focus of all this research is on domination properties of
a few infinite vertex-transitive graphs. In this article, we establish the existence or non-
existence of efficient domination and find optimal perfect dominating sets for every graph
in a larger class of infinite vertex-transitive graphs called Archimedean lattices.

Archimedean lattices are defined as follows: A regular tiling is a tiling of the plane
by regular polygons. Considering the vertices and edges of the polygons in a regular
tiling to be the vertices and edges of an infinite graph, an Archimedean lattice is a regular
tiling which is vertex-transitive. Due to the restriction that the sum of the angles in
polygons surrounding a vertex must equal 2π, there are only 21 possibilities for regular
polygons to surround a vertex, and only eleven of these can be continued indefinitely to
produce a vertex-transitive lattice. All eleven of the Archimedean lattices are illustrated
in the figures in this article. There is a naming convention for the Archimedean lattices, in
which the numbers of edges of the polygons incident to a vertex are listed in the order they
appear around the vertex, with exponents indicating the number of successive polygons of
a given size. In fact, the naming convention provides a prescription for constructing the
lattice. The most commonly recognized Archimedean lattices are the square (44) lattice,
the triangular (36) lattice, and the hexagonal (63) lattice. For a complete discussion, see
the beautiful monograph by Grünbaum and Shephard [13, pp. 58–64].

The concept of periodic graph is defined in Section 2. Since the dominating set of an
Archimedean lattice must be infinite, we define the domination ratio of an infinite periodic
graph, which is the smallest proportion of vertices that constitute a dominating set. We
also define the perfect domination ratio of an infinite periodic graph, which is the smallest
proportion of vertices that constitute a perfect dominating set. Technicalities justifying
these definitions and showing that they are independent of the periodic embedding of
the lattice are provided in the Appendix. This article shows that exactly seven of the
Archimedean lattices can be efficiently dominated, and determines the perfect domination
ratios of all eleven Archimedean lattices.

The concept of efficient domination is central to this work. Let |S| denote the cardi-
nality of set S. A dominating set D ⊆ VG is an efficient dominating set if |N [v] ∩D| = 1
for all v ∈ VG. Thus, an efficient dominating set must dominate every vertex in the graph
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exactly once. The existence of efficient dominating sets is studied in coding theory [1],
since it is a variant of the classical problem of the existence and non-existence of per-
fect codes as a set in a vector space. Each Archimedean lattice is vertex-transitive, and
thus k-regular, with k ∈ {3, 4, 5, 6}. If it is efficiently dominated, its domination ratio
and perfect domination ratio are both equal to 1

k+1
. Section 3 shows that seven of the

Archimdean lattices can be efficiently dominated, determining their domination ratios
and perfect domination ratios, and proves that the remaining four cannot be efficiently
dominated.

However, an efficient dominating set may not exist for a specific graph, as is proved for
four of the Archimedean lattices. For those lattices, 1

k+1
is a trivial lower bound, while the

proportion of dominating vertices in any dominating set or perfect dominating set provides
an upper bound for domination ratio and perfect domination ratio respectively. Section
4 exhibits perfect dominating sets to establish upper bounds on the perfect domination
ratios for the (3, 6, 3, 6), (3, 4, 6, 4), and (32, 4, 3,4) lattices. A “local” approach
uses elementary “forcing” arguments using triangles to prove that the upper bounds are
correct, establishing that the perfect domination ratios are 1

3
, 1

4
, and 1

4
respectively. For

the (4, 6, 12) lattice, which does not contain any triangles, a local forcing proof was
not discovered. Section 5 employs a “global” approach using a longer, more complicated
linear programming argument to prove that the perfect domination ratio of the (4, 6, 12)
lattice is equal to 5

18
. The reasoning had the fortunate consequence of proving that the

domination ratio is also equal to 5
18

. Our results are summarized in Table 1.
In Section 6, ongoing research and open questions are briefly mentioned.

Archimedean Lattice Efficient Domination Perfect Domination Ratio γp

(3, 122) Yes 1/4
(4, 6, 12) No 5/18
(4, 82) Yes 1/4
(63) Yes 1/4

(3, 4, 6, 4) No 1/4
(3, 6, 3, 6) No 1/3

(44) Yes 1/5
(34, 6) Yes 1/6

(32, 4, 3, 4) No 1/4
(33, 42) Yes 1/6

(36) Yes 1/7

Table 1: Results for the eleven Archimedean lattices. The middle column indicates
whether or not there exists an efficient dominating set for each lattice. The rightmost
column provides the exact value of the perfect domination ratio for each lattice.
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2 Definition of Domination Ratio and Perfect Domination Ratio

2.1 Periodicity

A periodic graph G is a locally-finite connected simple graph with a countably-infinite
vertex set, which can be embedded in Rd for some d <∞ such that G is invariant under
translation by each unit vector in a coordinate axis direction in Rd and each compact set
of Rd intersects only finitely many edges and vertices of G. Note that it is actually the
embedding which is periodic. For convenience, we will identify a graph with its periodic
embedding, although the properties of a dominating set only depend on the adjacency
structure of the graph. Each of the eleven Archimedean lattices is a periodic graph in R2.
Figures showing periodic embeddings of the Archimedean lattices are provided in [28] and
throughout this article.

2.2 Domination Ratio

For a periodic graph G, denote the subgraph of G induced by the vertices in the rect-
angle [m1,m2) × [n1, n2) ⊂ R2 by RG(m1,m2;n1, n2), where m1 < m2, n1 < n2, and
m1,m2, n1, n2 ∈ Z. Note that all induced subgraphs RG(m1,m2;n1, n2) corresponding to
translations of rectangles with the same edge lengths are isomorphic. Denote the min-
imum size of a dominating set for RG(0,m; 0, n), known as its domination number, by
γm,n(G), and the number of vertices in R(0,m; 0, n) by Nm,n(G). Denote N1,1(G) = k.
We define the domination ratio of G by

lim
m,n→∞

γm,n(G)

Nm,n(G)
= inf

r,s

1

rsk
γr,s(G).

A proof that the limit exists relies on subadditivity. Let G1 and G2 be vertex-disjoint
induced subgraphs of G. Since the union of dominating sets for G1 and G2 is a dominating
set for G, but there might be a smaller dominating set for G,

γ(G1 ∪G2) 6 γ(G1) + γ(G2),

while
N(G1 ∪G2) = N(G1) +N(G2).

Together, these imply that, for example, doubling the length or width of the rectangle
cannot increase the domination ratio of the subgraph, and may decrease it. While our
literature search did not find a proof of the existence of the limit for deterministic mul-
tiparameter subadditive functions, one may find a proof for the more difficult stochastic
case in [12]. For completeness, but to maintain the focus on domination for now, a proof
for the deterministic case is relegated to the Appendix.

2.3 Domination Proportion

To discuss upper bounds for the domination ratio, we need to consider dominating sets
which may not be minimum dominating sets and may not be periodic. For a finite graph G
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and a dominating set D, let the domination proportion, denoted γD(G), be the number of
vertices in D divided by total number of vertices in G. To extend the notion of domination
proportion to infinite graphs, given a dominating set, suppose the vertex set of an infinite
graph can be partitioned into finite subsets such that the subgraph induced by each subset
is connected and all these finite induced subgraphs have the same domination proportion.
The domination proportion of the dominating set is defined as the common value of the
domination proportion of the finite induced subgraphs.

For the induced subgraphs, we require connectedness and the same domination propor-
tion to avoid ambiguity arising from one-to-one or many-to-one correspondences between
subgraphs, which can be used to obtain different domination proportions for all the sub-
graphs.

If the same domination proportion is not required for the induced subgraphs, we will
have the following issue: For simplicity, assume the domination proportion of induced
subgraphs are either γ1 or γ2, where γ1 6= γ2. Since the graph is infinite, we can pair
every induced subgraph having domination proportion γ1 with two induced subgraphs
having domination proportion γ2 to obtain γ1+2γ2

3
as the domination proportion of the

infinite periodic graph. Similarly, we can pair every induced subgraph having domination
proportion γ1 with three induced subgraphs having domination proportion γ2 to obtain
γ1+3γ2

4
as the domination proportion of the infinite periodic graph. Therefore, the domi-

nation proportion of an infinite periodic graph is not well defined if the same domination
proportion is not required for the induced subgraphs.

If connectedness is not required for the induced subgraphs, we could have the following
issue: For simplicity, assume every induced subgraph is the disjoint union of two connected
components. The two connected components may have different domination proportions,
γ1 and γ2 respectively. The same reasoning as in the previous paragraph can be applied
to show that the domination proportion of an infinite periodic graph is not defined if
connectedness is not required for the induced subgraphs.

2.4 Perfect Domination Ratio

For a periodic graph G, recall the definition in Section 2.2 of RG(m1,m2;n1, n2), where
m1 < m2 and n1 < n2. Denote the minimum size of a perfect dominating set for
RG(0,m; 0, n), known as its perfect domination number, by γp;m,n(G), and the number
of vertices in R(0,m; 0, n) by Nm,n(G). We define the perfect domination ratio of G by

γp(G) = lim
m,n→∞

γp;m,n(G)

Nm,n(G)
,

To prove that this limit exists, we consider a variant of the perfect domination ratio,
for which we introduce some definitions. Given a graph G with a subgraph H, the internal
boundary of H is the set of vertices v ∈ H such that v is adjacent to a vertex that is not
in H. Given a graph G = (V,E), if a subset S of vertices is specified to be dominated
for free, then a perfect dominating set D of V is only required to perfectly dominate the
vertices of V \ S. (Note that D is allowed to contain vertices in S in order to dominate
other vertices in V \ S.)
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Denote the minimum size of a perfect dominating set of RG(0,m; 0, n) with the internal
boundary perfectly dominated for free by γBp;m,n(G). Define the variant of the perfect
domination ratio by

γBp (G) = lim
m,n→∞

γBp;m,n(G)

Nm,n(G)
.

A proof that the limit exists relies on superadditivity. Let G1 and G2 denote vertex-disjoint
induced subgraphs of G. Let D denote the minimum perfect dominating set of G1 ∪ G2

with internal boundary dominated for free. Let D1 = D ∩ V (G1) and D2 = D ∩ V (G2).
We claim that D1 is a perfect dominating set of G1 with the internal boundary domi-

nated for free. To see this: Vertices of G1 which are not in the internal boundary must be
dominated by vertices in D1 (of which some are allowed to be in the internal boundary).
Some vertices in the internal boundary of G1 may be dominated by vertices in D2, but
are dominated for free.

Since D1 may not be the minimum perfect dominating set of G1 with internal boundary
dominated for free, |D1| > γBp (G1). Similarly, |D2| > γBp (G2). Therefore,

γBp (G1 ∪G2) > γBp (G1) + γBp (G2),

while
N(G1 ∪G2) = N(G1) +N(G2).

Together, these imply that, for example, doubling the length or width of the rectangle
cannot decrease the variant of the perfect domination ratio of the subgraph, and may
increase it. By Corollary 73 in the Appendix, γBp;m,n(G) has a limit as m,n→∞, and the
limit equals supr,s

1
rsk
γBp;r,s(G). Also, as m,n → ∞, one may apply similar reasoning to

show the proportion of vertices on the internal boundary approaches zero, which implies
that the perfect domination ratio approaches a limit as m,n→∞, and the limit is

lim
m,n→∞

γp;m,n(G)

Nm,n(G)
= lim

m,n→∞

γBp;m,n(G)

Nm,n(G)
= sup

r,s

1

rsk
γBp;r,s(G).

The Appendix also proves that the perfect domination ratio is independent of the choice
of the periodic embedding.

3 Efficient Domination Results

3.1 Efficient Dominating Sets for Seven Archimedean Lattices

It is well-known that for finite graphs, efficient domination is optimal domination, and all
efficient dominating sets have the same cardinality [15]. Since the definition of domination
ratio for infinite periodic graphs is in terms of domination numbers for finite graphs, all
efficient dominating sets are optimal and have the same domination ratio.

Existence of an efficient dominating set was previously proved for the three most
common Archimedean lattices – the square (44) lattice [6, 9], the triangular (36) lattice [7],
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and the hexagonal (63) lattice [8]. For completeness, we illustrate the efficient dominating
sets in these three lattices in Figures 1 – 3. In Figures 4 – 7, we illustrate efficient
dominating sets for the (3, 122), (4, 82), (34, 6), and (33, 42) lattices, respectively. Each
of the figures shows a subgraph of the lattice that is sufficiently large to demonstrate
a periodic pattern that can be extended indefinitely to efficiently dominate the infinite
lattice. In each of the figures, a star with bold edges is centered at each vertex in the
dominating set, with the edges with arrows pointing to vertices that are dominated by
the central vertex. Notice that every non-central vertex is the endpoint of exactly one
arrow, so every vertex is dominated exactly once.

Since the Archimedean lattices are vertex-transitive, each is a regular graph. Each is
k-regular for some k ∈ {3, 4, 5, 6}. For each k-regular Archimedean lattice which can be
efficiently dominated, the domination ratio is 1/(k+1), since each vertex in the dominating
set dominates itself and precisely k neighbors, and no vertex is dominated more than once.

Figure 1: An efficient domi-
nating set in the square lat-
tice.

Figure 2: An efficient dom-
inating set in the triangular
lattice.

Figure 3: An efficient dom-
inating set of the hexagonal
lattice.

Figure 4: An efficient dominating set in the
(3, 122) lattice.

Figure 5: An efficient dominating set in
the (4, 82) lattice.
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Figure 6: An efficient dominating set in the
(34, 6) lattice.

Figure 7: An efficient dominating set in the
(33, 42) lattice.

Note that, for convenience, the (33, 42) lattice is drawn in a periodic rectangular struc-
ture, rather than using regular polygons.

3.2 Non-existence of Efficient Domination in Four Archimedean Lattices

Efficient dominating sets do not exist in the (3, 4, 6, 4), (32, 4, 3, 4), (4, 6, 12), and (3, 6, 3, 6)
lattices, as is shown in the following four lemmas. Since the proofs are similar, the first
lemma is proved in detail, while the later proofs are more abbreviated.

v2

v3

v5
v4

v6

v1

Figure 8: An illustration of the proof of non-existence of
an efficient dominating set in the (3, 4, 6, 4) lattice.

v1

v2

v3

v4

Figure 9: An illustration of
the proof of non-existence of
an efficient dominating set in
the (32, 4, 3, 4) lattice.

Lemma 1. There does not exist an efficient dominating set in the (3, 4, 6, 4) lattice.

Proof. The proof is by contradiction. Assume that there exists an efficient dominating set
D. Since D 6= ∅, there exists a vertex v1 ∈ D. Figure 8 illustrates the following reasoning.
By vertex-transitivity, any vertex may be chosen to represent v1.
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Vertex v2 is adjacent to a vertex in N [V1], so v2 /∈ D or the adjacent vertex would be
dominated by both v1 and v2. Therefore, v2 must be dominated by one of its neighbors.
The only neighbor v for which N [v] ∩N [v1] = ∅ is v3, so v3 ∈ D if D is to be an efficient
dominating set.

Similarly, v4 /∈ D and must be dominated by v5 ∈ D.
Continuing, N [v6] ∩ N [v5] 6= ∅ and N [v6] ∩ N [v3] 6= ∅, so v6 /∈ D. However, every

neighbor v of v6 satisfies either N [v] ∩ N [v5] 6= ∅ or N [v] ∩ N [v3] 6= ∅, so there does not
exist any vertex v ∈ D such that v ∈ N [v6]. Since there is no v ∈ D which dominates
v6, D is not a dominating set, and thus not an efficient dominating set, contradicting our
original assumption.

Lemma 2. There does not exist an efficient dominating set in the (32, 4, 3, 4) lattice.

Proof. The proof, by contradiction, is similar to that for the (3, 4, 6, 4) lattice, and is
illustrated in Figure 9. We provide an abbreviated description. Any vertex may represent
a vertex v1 ∈ D. Then v2 /∈ D, and must be dominated by v3 ∈ D. However, any vertex
that would dominate v4 would also dominate a vertex that is already dominated by v1 or
v3. Thus, efficient domination is not possible.

v1 v2
v3

v4

v5

v6

Figure 10: The left figure is a subgraph of the (4, 6, 12) lattice. The right figure is an
illustration of the proof of non-existence of an efficient dominating set in the (4, 6, 12)
lattice.

Lemma 3. There does not exist an efficient dominating set in the (4, 6, 12) lattice.

Proof. The proof follows the model of the previous two proofs, and is illustrated in Fig-
ure 10. Any vertex may represent v1 ∈ D. Vertex v2 /∈ D and must be dominated by
v3 ∈ D. Then vertex v4 /∈ D and must be dominated by v5 ∈ D. However, v6 cannot be
dominated if D is an efficient dominating set.

Lemma 4. There does not exist an efficient dominating set in the (3, 6, 3, 6) lattice.
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v1

v2

v6

v5

v4 v3

v7
v8

v9

v10

Figure 11: An illustration of the proof of non-existence of an efficient dominating set in
the (3, 6, 3, 6) lattice.

Proof. The proof is similar to those above, but is longer and has a more intricate sequence
of steps. It is illustrated in Figure 11.

Any vertex may represent v1 ∈ D. Then v2 /∈ D and must be dominated by either v3
or v4, but not both.

If v3 ∈ D, then v5 /∈ D but also cannot be dominated by D.
If v4 ∈ D, then v6 /∈ D and must be dominated by either v8 or v9. If v8 ∈ D, then v10

cannot be dominated. If v9 ∈ D, then v7 cannot be dominated.
Thus, every case leads to the contradiction that D cannot be a dominating set.

4 Proof of Perfect Domination Ratio by Forcing Arguments

We now provide some definitions, terminology, and lemmas that apply to perfect domi-
nation on all the Archimedean lattices.

If G is a graph with vertex set VG and edge set EG, for simplicity we will write v ∈ G
rather than v ∈ VG and write e ∈ G rather than e ∈ EG.

In the remainder of this article, we will abbreviate perfect dominating set as “PDS.”
As in any graph, given a PDS D in a graph G, the subgraph of G induced by vertices
in D is a disjoint union of connected components. Our proofs use certain features of
the structure of the the boundary of the components, described in the remainder of this
section. For brevity, proofs of some Lemmas and Facts are omitted.

Definition 5. Given a PDS D, let Dn denote a connected component of size n in the
subgraph induced by vertices in D.

Note 6. For a fixed positive integer n, there may exist components Dn which are not
isomorphic.

Definition 7. For two vertices v and u in a graph G, let dG(v, u) denote the number of
edges in a shortest path between v and u. For a vertex v and a subgraph S of G, define

the electronic journal of combinatorics 29(3) (2022), #P3.60 10



dG(v, S) = minu∈S{dG(v, u)}. For brevity, when the graph G is clear from the context,
we omit the subscript G.

Definition 8. Given a subgraph S in a graph G, define the external boundary of S as the
set of vertices v such that dG(v, S) = 1.

Definition 9. Given a subgraph S in a graph G, define the double external boundary of
S as the set of vertices v such that dG(v, S) ∈ {1, 2}.

Lemma 10. Given a component Dn in a PDS D, no vertex in the double external bound-
ary of Dn is in D.

Proof. Let v be in the double external boundary of Dn.
If d(v,Dn) = 1, then v is adjacent to a vertex in Dn, so if v ∈ D then v is in the

component Dn, contradicting d(v,Dn) = 1. Therefore, no vertex in the external boundary
is in D.

If d(v,Dn) = 2, there exists a path of length two with vertices v, w, and x, where
w /∈ Dn and x ∈ Dn. If v ∈ D, then vertex w is dominated by both v and x. Thus, w ∈ D
and thus also in Dn. This implies that v ∈ Dn also, contradicting that v is in the double
external boundary of Dn.

Lemma 11. Given a PDS D, if v /∈ D, u is a neighbor of v, and every other neighbor of
v is not in D, then u ∈ D.

Definition 12. Let v pulls in u indicate that for a PDS D and a vertex v /∈ D, u is a
neighbor of v and every other neighbor of v is not in D, requiring that u ∈ D by Lemma 11.

By the definition of PDS, a vertex that is not in the PDS must be dominated exactly
once. Thus, given a PDS D, if a vertex v has two neighbors u and w in D, then v ∈ D.

Definition 13. Let u and w double force in v indicate that for a PDS D, if a vertex v
has two neighbors u and w in D, then v ∈ D.

Lemma 14. Given a PDS D, if a vertex v /∈ D has a neighbor u ∈ D, then no other
neighbor of v is in D.

Definition 15. Let v and u force out w indicate that vertex v /∈ D has a neighbor u ∈ D,
so for any other neighbor w of v, w /∈ D.

Note 16. In each of subsections 4.1, 4.2, and 4.3, we consider a specific Archimedean
lattice. In each section, the notations such as PDS, γp, and Dn refer to only that specific
lattice.
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4.1 The Kagome or (3, 6, 3, 6) lattice

Lemma 17. γp(3, 6, 3, 6) 6 1
3
.

Proof. A periodic PDS D with γp(D) =1
3

is shown in Figure 12, establishing 1
3

as an upper
bound.

Definition 18. Let “a row of D1s” denote a sequence (possibly doubly-infinite) of at least
two consecutive D1s such that every two consecutive D1s in the sequence are distance three
apart in a 6-cycle.

Figure 12: A PDS D of the (3, 6, 3, 6) lattice with γp(D) =1
3
.

Lemma 19. A D1 must appear in a doubly-infinite row of D1s.

Proof. Suppose v1 ∈ D is a D1. Figure 13 (left) illustrates the following reasoning. By
vertex-transitivity, any vertex may be chosen to represent v1. Notice that v2 and v5 are
not in D since they are in the double external boundary of v1. Thus, v2 pulls in either v3
or v4, and v5 pulls in either v4 or v6.

If v3 ∈ D, then v4 /∈ D, so v6 is pulled in to dominate v5. However, then v4 is
dominated twice, by v3 and v6, providing the contradiction that v4 ∈ D. Hence v3 /∈ D.
The same reasoning applies if v6 ∈ D. Thus, v4 ∈ D and is a D1.

The same reasoning regarding v1 can be applied to v4 to show v9 is a D1. Thus, one can
show by induction that any vertex v on the line (extending infinitely in both directions)
going through v1 and v4 must be a D1.

Lemma 20. Two rows of D1s must be parallel.

Proof. To deduce a contradiction, suppose there exist two rows ofD1s that are not parallel.
By Lemma 19, the two rows of D1s must extend infinitely and therefore must intersect.
There are only three possible directions for a row of D1s, so these two rows of D1s must
form an angle of π

3
. Figure 13 (right) illustrates the reasoning. Notice that v1 and v2 are

in a row of D1s, and v3 and v4 are in another row of D1s. Thus, v2 and v4 are in the same
Dn. Then, v2 is in a D2 or larger Dn, contradicting that v2 is a D1.
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v1
v2

v3

v5

v6
v4

v9v10

v7

v8

v11

v1

v2
v3v4

Figure 13: The figure on the left illustrates the proof of Lemma 19. The figure on the
right illustrates the proof of Lemma 20.

Lemma 21. A D2 cannot exist.

Proof. To deduce a contradiction, suppose there exists a PDS D that contains a D2. Let
u and v be vertices in this D2. Since any edge in the Kagome lattice is in a 3-cycle, u and
v are in a 3-cycle {u, v, w}. Then w /∈ D is dominated by both u and v, contradicting
that D is a PDS.

Lemma 22. If a PDS D of an induced subgraph of the Kagome lattice does not contain
a D1, then the perfect domination proportion of D is at least 1

3
.

Proof. Suppose there exists a PDS D that does not contain a D1. By Lemma 21, any
vertex v ∈ D must be in a D3 or larger Dn. Observe that a vertex v in a D3 or larger Dn

has at least two neighbors in D. Thus, v dominates at most two vertices not in D, which
implies that the perfect domination proportion of D is greater than or equal to 1

3
.

The same reasoning can be applied to any induced subgraph to show that if D is a
PDS that does not contain a D1, then any vertex v ∈ D dominates at most two vertices
not in D. Thus, the domination proportion of the induced subgraph is at least 1

3
.

Lemma 23. A PDS D with perfect domination proportion strictly less than 1
3

must include
infinitely many rows of D1s.

Proof. Suppose there exists a PDS D that includes only finitely many rows of D1s. Let
W denote the set of vertices that are neither D1s nor dominated by D1s. Consider the
subgraph H induced by W , which by Lemma 22 has a perfect domination proportion at
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least 1
3
. Since the effect of finitely many rows of D1s is negligible, the perfect domination

proportion of D is at least 1
3
. Thus, any PDS D with a perfect domination proportion

strictly less than 1
3

must include infinitely many rows of D1s.

Lemma 24. γp(3, 6, 3, 6) > 1
3
.

Proof. The proof is by contradiction. Let V be the vertex set of the Kagome lattice.
Assume there exists a PDS D with perfect domination proportion strictly less than 1

3
. By

Lemma 23, D must contain infinitely many rows of D1s. By Lemma 20, the rows of D1s
in D must be parallel. Let W be a row of D1s. Figure 14 illustrates the reasoning.

Let v1 be a D1 in W . Notice that v2 /∈ D since it is in the double external boundary of
v1. Thus, v2 pulls in either v3 or v4. The two cases are equivalent by symmetry. Without
loss of generality, let v3 ∈ D and v4 /∈ D. Notice that v3 is not a D1, since otherwise by
Lemma 19, v3 and v5 form a row of D1s that intersects W , which contradicts Lemma 20.
By Lemma 21, v3 is in a D3 or larger Dn. Thus, v6 and v7 are in D.

Notice that v8 /∈ D since it is in the double external boundary of v1. Thus v8 /∈ D and
v6 ∈ D force out v9. Then v9 /∈ D and v6 ∈ D force out v10 and v11. A similar argument
as for v2 can be applied to v12 to show that v12 /∈ D and v13, v14, and v15 are in D. Then
v10 pulls in either v16 or v17. The two cases are equivalent by symmetry. Without loss of
generality, let v16 ∈ D, and v17 /∈ D. Then v7 and v16 double force in v18. Thus, v7 and
v18 double force in v19, and v16 and v18 double force in v20.

Next, v4 /∈ D and v3 ∈ D force out v21 and v22. Then v23 /∈ D, since otherwise v19 and
v23 double force in v24 and consequently v23 and v24 double force in v21, contradicting our
previous argument that v21 /∈ D. Thus, v21 pulls in v24. Finally, v24 and v19 in D double
force in v25.

The same reasoning can be applied to show that v26, v27, v28, v29, v30, v31, v32, v33,
and v34 are in D.

Next, we calculate a lower bound for the perfect domination proportion of such a PDS
D, given the reasoning above. Let W denote the line of D1s containing v1, and let H1

denote W ∪N(W ). As illustrated by Figure 14, let H2 denote the set of alternating D3s
and subgraphs of Dns with n > 9, together with the vertices that they dominate within
the region indicated, just above W ∪ N(W ). Let H3 denote the isomorphic subgraph
obtained by reflecting H2 through the line corresponding to W . Within H1 ∪H2 ∪H3 we
can form connected subgraphs consisting of four D1s, one D3 on each side, and one D7

on each side, and the vertices that they dominate.

Number of Components Subgraph Vertices in D Vertices Dominated
4 D1 1 5
2 D3 3 9
2 H2 ∩Dn, n > 9 7 15

Table 2: Data for calculation of the perfect domination proportion.

the electronic journal of combinatorics 29(3) (2022), #P3.60 14



Denoting the vertex sets of H1, H2, H3 by VH1 , VH2 , VH3 respectively, we have

|D ∩ (VH1 ∪ VH2 ∪ VH3)|
|VH1 ∪ VH2 ∪ VH3|

=
4× 1 + 2× 3 + 2× 7

4× 5 + 2× 9 + 2× 15
=

6

17
>

1

3
.

Let G denote the union of all rows of D1s and their corresponding H1, H2, H3. We
have shown above that the perfect domination proportion of G is strictly larger than 1

3
.

By definition of G, the subgraph induced by V \VG does not contain any D1s. However,
it does contain neighbors of H2 or H3 which are in D because they are part of a Dn, n > 9,
such as v25, In the subgraph induced by V \ VG, let VB denote the set of such vertices
and the two additional vertices dominated by each of them. The perfect domination
proportion of the subgraph induced by VB is exactly 1

3
.

Since V \ (VG ∪ VB) does not contain any D1, by Lemma 22, the perfect domination
proportion of the rest of the lattice is greater than or equal to 1

3
. Combining these, we

conclude that the perfect domination proportion of the lattice is at least 1
3
, contradicting

our original assumption.

Wv1

v2
v3v4

v5

v6

v7

v8
v9

v10

v11

v12

v13 v14

v15

v16 v17v18v19

v20

v21

v22

v23 v24

v25

v26 v27

v28

v29 v30

v31

v32

v33

v34

H1

H2

Figure 14: An illustration of the proof of Lemma 24.

Theorem 25. γp(3, 6, 3, 6) = 1
3
.

Proof. The result is immediate from Lemma 17 and Lemma 24.

4.2 The (3, 4, 6, 4) lattice

Lemma 26. γp(3, 4, 6, 4) 6 1
4
.
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Proof. A periodic PDS D with perfect domination proportion 1
4

is shown in Figure 15,
establishing 1

4
as an upper bound.

Figure 15: A PDS D on the (3, 4, 6, 4) lattice with γp(D) =1
4
.

The following definitions, facts, and lemmas apply for any PDS D.

Definition 27. A D-adequate subgraph is a connected subgraph of the (3, 4, 6, 4) lattice
with at most 12 vertices that has at least 1

4
of its vertices in D.

Definition 28. A triangle is a 3-cycle. A k-triangle is a triangle that has k vertices in
D.

Fact 29. A triangle cannot have exactly 2 vertices in D, since otherwise the third vertex
is dominated twice. Thus, a k-triangle only exists for k ∈ {0, 1, 3}.

Definition 30. Let two neighboring triangles denote two 3-cycles such that an edge in
the (3,4,6,4) lattice has an endpoint in each 3-cycle.

Fact 31. Given two neighboring triangles, there exist two edges with an endpoint in each
triangle. Each triangle has exactly three neighbors.

Lemma 32. Any 3-triangle, together with its three neighboring triangles, form a D-
adequate subgraph.

Proof. The subgraph has 12 vertices, at least 3 of which are in D, because it contains a
3-triangle. Thus, the subgraph is D-adequate.

Definition 33. Let R3 denote the union of all 3-triangles and neighbors of 3-triangles in
the (3, 4, 6, 4) lattice.

Lemma 34. R3 is a disjoint union of D-adequate subgraphs.
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Proof. We prove the claim by constructing a disjoint set of D-adequate subgraphs whose
union is R3.

The set of 3-cycles in the (3, 4, 6, 4) lattice is countably infinite. Order them in a
sequence {Tk}∞k=1. For each k, denote the union of Tk and its neighboring triangles that
are not 3-triangles by Gk. If Tk is a 3-triangle, we define Hk = Gk, and otherwise Hk = ∅.
Let H0 = ∅. Define a sequence of disjoint subgraphs by

Jk = Hk \

{
k−1⋃
i=0

Hi

}
.

Note that each nonempty Jk contains at least the three vertices of Tk in D, and no
more than 12 vertices, so each Jk is D-adequate.

Then R3 is the union of the nonempty Jk, k ∈ {1, 2, 3, . . .}, which are disjoint and
D-adequate.

Fact 35. Each triangle in Rc
3 is a 0-triangle or a 1-triangle.

Lemma 36. A 0-triangle in Rc
3 has no 0-triangle neighbor.

Proof. Figure 16 illustrates the reasoning. To deduce a contradiction, suppose T1 is a
0-triangle in Rc

3 and T2 ia a neighboring 0-triangle. Notice that v1 pulls in v4, and v2 pulls
in v7. Since T1 is in Rc

3, N1 and N2 are not 3-triangles. Thus, v5, v6 /∈ D. Consequently,
v3 cannot be dominated, contradicting that D is a dominating set.

v2

v3

v1

v5 v6

v4 v7T1

N1 N2

T2

Figure 16: An illustration of the proof of Lemma 36.

Lemma 37. A 0-triangle in Rc
3 cannot have a neighbor in R3.

Proof. Figure 17 illustrates the reasoning. To deduce a contradiction, suppose a 0-triangle
T in Rc

3 has a neighbor N1 in R3. Since T is in Rc
3, N1 is not a 3-triangle. Since N1 is in

R3, N1 must have a neighbor M that is a 3-triangle. Without loss of generality, assume
T , N1, and M are positioned as in Figure 17.
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By Lemma 36, N1 is not a 0-triangle. Since M is a 3-triangle, and N1 has a vertex
in D, all vertices in N1 are forced in D, contradicting the assumption that N1 is not a
3-triangle.

T

N1

M

Figure 17: An illustration of the proof of Lemma 37.

Lemma 38. Two 0-triangles in Rc
3 cannot have a common neighbor in Rc

3.

Proof. Figure 18 illustrates the reasoning. To deduce a contradiction, suppose T1 and T2
are two 0-triangles in Rc

3 and they have a common neighbor C in Rc
3. Since C is in Rc

3, it
is not a 3-triangle. By Lemma 36, C is not a 0-triangle. Thus, C is a 1-triangle. We will
consider different cases based on the location of the vertex of C which is in D.

Case 1 (v1 ∈ D): Suppose that v1 ∈ D, and thus v2 and v3 are not in D. Since T2 is
a 0-triangle, v6 pulls in v8. Since T2 is in Rc

3, N4 is not a 3-triangle, and thus v7 /∈ D.
Consequently, v5 pulls in v11. Since T2 is in Rc

3, N2 is not a 3-triangle. Consequently,
v11 ∈ D and v9 /∈ D force out v13, and v11 ∈ D and v10 /∈ D force out v14. By symmetry,
the same reasoning applies to the left side of the figure to show that v12 and v15 cannot
be in D either. We have achieved a contradiction, since v14 cannot be dominated by any
vertex in D.

Case 2 (v2 ∈ D): Suppose that v2 ∈ D, and thus v1 and v3 are not in D. (By symmetry,
the following reasoning also applies to the case when v3 ∈ D.)

Since T2 is a 0-triangle, v6 pulls in v8 and v4 pulls in v10. Since T2 is in Rc
3, N2 and N4

are not 3-triangles. Consequently, v7 /∈ D and v11 /∈ D. We have achieved a contradiction,
since v5 cannot be dominated by any vertex in D.

Lemma 39. A 0-triangle in Rc
3 has three 1-triangles as neighbors which do not have a

different 0-triangle in Rc
3 as neighbor.

Proof. Suppose that T is a 0-triangle in Rc
3. By Lemma 37, T does not have a neighbor

in R3. Therefore, each neighboring triangle is either a 0-triangle or a 1-triangle which is
in Rc

3.
By Lemma 36, T cannot have a neighbor which is a 0-triangle.
By Lemma 38, none of T ’s neighbors is a neighbor of a different 0-triangle in Rc

3.
Therefore, each neighbor of T is a 1-triangle which is in Rc

3 which is not a neighbor of
a different 0-triangle in Rc

3.

Theorem 40. γp(3, 4, 6, 4) = 1
4
.
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v15

Figure 18: An illustration of the proof of Lemma 38.

Proof. By Lemma 39, each 0-triangle in Rc
3 has three 1-triangles as neighbors which do

not have a different 0-triangle in Rc
3 as neighbor.

Notice a 0-triangle in Rc
3 together with its three neighboring 1-triangles contains 12

vertices with exactly 3 vertices in D, and thus it is a D-adequate subgraph. Furthermore,
by Lemma 39, these D-adequate subgraphs are disjoint. Denote the union of all such
subgraphs by R0.

Each triangle in Rc
3 ∩ Rc

0 is a 1-triangle, which has 1
3

of its vertices in D and is a
D-adequate subgraph. Denote the union of all triangles in Rc

3 ∩Rc
0 by R1.

Since R3 ∪ R0 ∪ R1 contains every vertex of the (3, 4, 6, 4) lattice, the lattice can be
decomposed into disjoint connected induced subgraphs which are all D-adequate. Thus,
we have γp(3, 4, 6, 4) > 1

4
.

By Lemma 26, γp(3, 4, 6, 4) 6 1
4
. We conclude that γp(3, 4, 6, 4) = 1

4
.

4.3 The (32, 4, 3, 4) lattice

We first provide a PDS that establishes an upper bound, then prove this PDS is actually
a minimal PDS, to conclude that γp(3

2, 4, 3, 4) = 1
4
.

Lemma 41. γp(3
2, 4, 3, 4) 6 1

4
.

Proof. Figure 19 shows a periodic PDS D on the (32, 4, 3, 4) lattice. To calculate the
domination ratio of this PDS, note that there are pairs of D1s which are distance three
apart. In the figure, there are D4s above and below each such pair of D1s. These four
components of D and their external boundaries induce a subgraph with 40 vertices which
are dominated by 10 vertices, giving a domination proportion of 1

4
. The lattice may be

decomposed into disjoint isomorphic connected subgraphs, so γp(D) =1
4
. Thus, 1

4
is an

upper bound for γp(3
2, 4, 3, 4).
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Figure 19: A PDS D in the (32, 4, 3, 4) lattice with γp(D) =1
4
.

Lemma 42. A PDS of the (32, 4, 3, 4) lattice cannot contain a D2.

Proof. To deduce a contradiction, suppose there exists a PDS D that contains a D2. Let
x and y denote the vertices in this D2. Since every edge is in a 3-cycle, there exists vertex
z /∈ D that is a common neighbor of x and y. Then z is dominated by both x and y,
contradicting the assumption that D is a perfect dominating set.

Lemma 43. A PDS of the (32, 4, 3, 4) lattice cannot contain a D3.

Proof. To deduce a contradiction, suppose there exists a PDS D that contains a D3. Let
x, y and z denote vertices in this D3. There are 2 possible types of D3s: a 3-path and a
3-cycle.

If the subgraph induced by {x, y, z} is a 3-cycle, then the adjacent 3-cycle (i.e., sharing
an edge with {x, y, z}) must be in D, and therefore {x, y, z} must be in a D4 or a larger
Dn.

If the subgraph induced by {x, y, z} is a 3-path, then the subgraph induced by {x, y, z}
includes an edge of a 3-cycle, and the 3-cycle must be in D. Thus, {x, y, z} must be in a
D4 or a larger Dn.

In either case, we reach the contradiction that {x, y, z} is not a D3.

Lemma 44. If a PDS D contains a D1, the PDS must be a union of D1s and D4s.

Proof. Figure 21 illustrates the reasoning, which is rather long and intricate.
Suppose there exists a PDS D that contains a D1. Let v1 denote this D1. The vertices

in the double external boundary of v1 are shown in Figure 21 as open circles. Therefore,
v2 pulls in v3.
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Figure 20: An illustration of the proof of Lemma 44.

We show that v4 /∈ D by contradiction: If v4 ∈ D, then v3 and v4 double force v5 ∈ D,
and consequently v4 and v5 double force v6 ∈ D. This contradicts the fact that v6 /∈ D
because it is in double external boundary of v1.

Since v4 is not in D, v6 pulls in v5. Then v3 and v5 double force v7 ∈ D, and
consequently v3 and v7 double force v8 ∈ D. Since v9 /∈ D and v3 ∈ D, the vertex v10
cannot double-dominate v9, so v10 is forced out. Similarly, v10 /∈ D and v8 ∈ D forces out
v11, and by repeating this reasoning v12, v13, v14, and v15 are forced out. Thus, v3, v5, v7,
and v8 form a D4. Furthermore, the double external boundary of this D4 contains v16, v17,
and v18, so they are not in D.

By reflection through the 45o line through v1, the same reasoning applies to show that
v19, v20, v21, and v22 are a D4, and, being in its double external boundary, v23, v24, and v25
are not in D.

Next, v26 pulls in v27, and we show that v28 /∈ D by contradiction: Otherwise v27
and v28 would double force v29 ∈ D, and consequently v28 and v29 would double force
v17 ∈ D, contradicting our previous conclusion that v17 /∈ D since it is in the double
external boundary of a D4.

Thus, v17 pulls in v29. Vertices v27 and v29 then force in v31 which helps double force
v32 ∈ D. Since v24 /∈ D, it forces out v30. Similarly, in sequence, the vertices v35, v34, and
v33 are forced out. We conclude that v27, v29, v31, and v32 are a D4.

Next we consider vertices in the lower left part with respect to v1 of the figure, where
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the reasoning proceeds somewhat differently. The double external boundary of the D4

formed by v19, v20, v21 and v22 contains v37 and v38, and therefore v37 and v38 are not in
D. Therefore, v39 pulls in v40.

Reason by contradiction that v42 /∈ D: Otherwise v42 and v40 double force v41 ∈ D,
contradicting the fact that v41 /∈ D because it is in double external boundary of v1.

With no alternative, v43 pulls in v44. By contradiction v45 /∈ D: Otherwise v40 and v45
double force v46 ∈ D, and consequently v45 and v46 double force v42 ∈ D, contradicting
our previous conclusion that v42 /∈ D.

Since v42 /∈ D, it pulls in either v46 or v47. The two cases are equivalent by symmetry.
Without loss of generality, let v47 ∈ D and v46 /∈ D. Then v40 ∈ D and v46 /∈ D force
out v48, and we conclude that v40 is a D1. On the other hand, v47 and v44 double force
in two neighbors to form a possible D4, and reasoning as in the previous cases forces out
the boundary to confirm that it must be a D4. (Note that if we had chosen v46 ∈ D and
v47 /∈ D, the resulting PDS would be isomorphic, but rotated by 90o.)

In the remainder of the proof, we show that the reasoning above can be extended to
the entire (32, 4, 3, 4) lattice. This second part the proof is illustrated in Figures 21, 22,
and 23. First, the entire argument so far can be repeated starting from v40 instead of v1,
to show that there are four D4s around v40, as is shown in the Figure 21. In particular,
note that v59 is in one of the four D4s around v40.

Next, notice that the double external boundary of the D4 formed by v19, v20, v21, and
v22 contains v49 and v50, and therefore v49, v50 /∈ D. Consequently, v25 pulls in v51.
Similarly, the double external boundary of the D4 formed by v27, v29, v31, and v32 contains
v52, and therefore v52 /∈ D. Thus, v51 ∈ D and v52 /∈ D force out v53, and then v51 ∈ D
and v53 /∈ D force out v54. We conclude that v51 is a D1.

The same reasoning as starting from v1 can be applied to v51 to show that exactly one
of v55 and v56 is a D1 and the other is in a D4.

Similarly, v57 can be shown to be a D1. The same reasoning as starting from v1 can
be applied to v57 to show that exactly one of v58 and v59 is a D1 and the other is in a D4.
Since we have showed that v59 is in a D4, we conclude that v58 is a D1.

Similarly, both v60 and v61 can be shown to be D1s. Thus, such an arrangement of
D1s and D4s must extend periodically in both directions, as illustrated by the dash dot
line in Figure 21.

Finally, we show that D is a union of only D1s and D4s. We have showed that exactly
one of v55 and v66 is a D1 and the other is in a D4.

If v55 is a D1 and v56 is in a D4, then the same reasoning as starting from v1 can be
applied to v51 to show that v51 is in an arrangement of D1s and D4s extending periodically
in both directions, as illustrated by Figure 22.

If v56 is a D1 and v55 is in a D4, then the same reasoning as starting from v1 can be
applied to v51 to show that v51 is in an arrangement of D1s and D4s extending periodically
in both directions, as illustrated by Figure 23.

Similarly, v62 can be shown to be a D1. The same reasoning as starting from v1 can be
applied to v62 to show that v62 is in an arrangement of D1s and D4s extending periodically
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in both directions.
We conclude that such an arrangement of D1s and D4s must extend periodically in all

directions, so the PDS D is a union of only D1s and D4s.
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Figure 21: An illustration of the proof of Lemma 44.

Theorem 45. γp(3
2, 4, 3, 4) = 1

4
.

Proof. We show that any PDS that consists of only D4s and larger Dns are less efficient
than a union of D1s and D4s. Any vertex x in a Dn, n > 4 must have a neighbor y in
this Dn. Since every edge is in a 3-cycle and {x, y} is an edge, there exists a vertex z
dominated by both x and y. Thus, z is also in this Dn. Since every vertex has degree 5
and x has two neighbors y and z in the same Dn, vertex x dominates at most 3 vertices
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Figure 22: An illustration of the proof of Lemma 44.
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Figure 23: An illustration of the proof of Lemma 44.
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outside this Dn. Thus, a PDS that consists of only D4s and larger Dns has domination
proportion at least 1

4
.

Lemma 44 shows that any PDS that contains a D1 must be a union of D1s and D4s. By
Lemma 42 and Lemma 43, D2s and D3s do not exist. Thus, the PDS given in Lemma 41
is the minimal PDS, and γp(3

2, 4, 3, 4) = 1
4
.

5 Proof of the Perfect Domination Ratio of the (4, 6, 12) Lattice
by Linear Programming

For domination number problems, the generic integer programming method requires an
integral variable for every vertex of the graph. The vertex set of an infinite periodic graph
is infinite. Therefore, the generic integer program will have infinitely many variables and
contraints.

To solve the minimum dominating set problem on the (4, 6, 12) lattice, we introduce a
linear programming relaxation on an infinite periodic graph. The relaxation is a minimiza-
tion problem on a particular polytope. (A polyhedron is the solution set of a finite system
of linear inequalities. A polytope is a polyhedron that contains no infinite half-line. An
inequality wTx 6 t is valid for a polyhedron P if P ⊆

{
x : wTx 6 t

}
.) Furthermore, the

relaxation has finitely many constraints and the number of constraints does not depend
on the number of vertices. Therefore, the relaxation can be solved in polynomial time by
any linear programming solver. Formulating the relaxation requires choosing a subgraph
of the infinite periodic graph and examining the properties of the subgraph.

One can use the relaxation to compute a lower bound for the domination ratio of an
infinite periodic graph. One can also use the relaxation to compute a lower bound for the
domination number of a finite subgraph of an infinite periodic graph.

Using the relaxation, we computed a lower bound for the domination ratio of the
(4, 6, 12) lattice. The lower bound equals an upper bound we obtained from a dominat-
ing set. Therefore, we obtain the exact value of the domination ratio and the perfect
domination ratio of the (4, 6, 12) lattice.

Lemma 46. γ(4, 6, 12) 6 γp(4, 6, 12) 6 5
18

.

Proof. A periodic PDS D with γp(D) = 5
18

is shown in Figure 24, establishing 5
18

as an
upper bound. The vertex set of the (4, 6, 12) lattice can be partitioned into subsets of
size 36 such that the subgraph induced by vertices in every subset is isomorphic to G′ as
shown in Figure 24.

To calculate the domination proportion, notice that every subgraph isomorphic to G′

has 10 vertices in D. Thus,

γp(D) =
10

36
=

5

18
.

Since any PDS is a dominating set, we have γ(4, 6, 12) 6 γp(4, 6, 12) 6 5
18

.
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G′
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Figure 24: A PDS D of (4,6,12) lattice with γp(D) = 5
18

Note 47. The vertex set of the (4,6,12) lattice can be partitioned into disjoint subsets
such that the subgraph induced by vertices in every subset is isomorphic to H shown in
Figure 25 with sub-divided edges on its boundary.

Note 48. The internal boundary ofH is illustrated by
{
v7, v8, v9, v10, v11, v12

}
. Throughout

Section 5, we do not consider the sub-dividing vertices at the ends of half-edges to be
vertices of H.

Definition 49. An Hn is a pair (G,D), where G is a graph isomorphic to H, and D is
an n-vertex dominating set of G assuming boundary vertices of G are dominated for free.

Recall that the definition of dominated for free is provided in Section 2.4.

Definition 50. Let H(1) = (G(1), D(1)) and H(2) = (G(2), D(2)) be two Hns. Insert a self-
loop (i.e. an edge that connects a vertex to itself) edge in G(1) at every vertex in D(1) and
a self-loop in G(2) at every vertex in D(2). If the resulting G(1)∗ and G(2)∗ are isomorphic,
then H(1) and H(2) are isomorphic. (Note that G(1)∗ and G(2)∗ are not isomorphic when
(but not only when) |D(1)| 6= |D(2)|.)

Definition 51. For a given n, let Hn denote the set of all non-isomorphic Hn.

Figure 25 (right) illustrates the following definitions. Let (G,D) be an Hn, where
G is an induced subgraph of the (4, 6, 12) lattice. We have the following notation and
definitions: Let VG denote the set of vertices in G.
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Figure 25: Left: A subgraph of the (4, 6, 12) lattice; right: H

Definition 52. The graphG contains a unique 6-cycle, illustrated by
{
v1, v2, v3, v4, v5, v6

}
.

Let CG denote the set of vertices in the unique 6-cycle in G.

Definition 53. The graph G has six vertices on its internal boundary, illustrated by{
v7, v8, v9, v10, v11, v12

}
. Let BG denote the set of vertices on the internal boundary of G.

Definition 54. Let lend(G,D) denote the number of vertices in (4, 6, 12) \G dominated
by a vertex in D.

Definition 55. Let borrow(G,D) denote the number of vertices in G not dominated by
a vertex in D.

Note 56. If a vertex v ∈ VG is not dominated by vertices in D, then we must have v ∈ BG

for D to be a dominating set of G assuming boundary vertices of G are dominated for
free.

Definition 57. For a fixed n,

netlend(Hn) = max
(G,D)∈Hn

(
lend(G,D)− borrow(G,D)

)
.

Lemma 58. If (G,D) is an Hn, then lend(G,D) = |D ∩BG|.

Proof. No vertex in CG could dominate any vertex in (4, 6, 12) \ G. Every vertex in BG

could dominate one vertex in (4, 6, 12) \G. Thus, lend(G,D) = |D ∩BG|.
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Lemma 59. If (G,D) is an Hn, then borrow(G,D) > 6− |D ∩ CG| − 2× |D ∩BG|.

Proof. Each vertex in CG can dominate only one vertex in BG. Every vertex in BG could
dominate two vertices in BG. Since some vertices in BG may be dominated twice, at most
|D ∩ CG| + 2 × |D ∩ BG| vertices in BG are dominated by vertices in VG ∩ D. Thus, at
least 6 − |D ∩ CG| − 2 × |D ∩ BG| vertices in BG are not dominated by vertices in VG.
Thus, borrow(G,D) > 6− |D ∩ CG| − 2× |D ∩ BG|. Note that all vertices of CG will be
dominated, by the definition of D.

Fact 60. If (G,D) is an Hn, then |D ∩BG| = n− |D ∩ CG|.

Lemma 61. If (G,D) is an Hn, then |D ∩ CG| > d6−n2 e.

Proof. Every vertex in CG could dominate three vertices in CG. Every vertex in BG could
dominate one vertex in CG. To dominate all six vertices in CG, we must have

3× |D ∩ CG|+ |D ∩BG| > 6.

By Fact 60, |D ∩BG| = n− |D ∩ CG|. Thus,

3× |D ∩ CG|+ (n− |D ∩ CG|) > 6,

so

|D ∩ CG| >
6− n

2
.

However, |D ∩ CG| must be an integer, so |D ∩ CG| > d6−n2 e.

Lemma 62. netlend(H2) = -4.

Proof. Assume (G,D) is an H2. By Lemma 61, |D∩CG| > d6−22 e = 2. Since (G,D) is an
H2, by Fact 60, |D∩BG| = 2− |D∩CG| = 0. By Lemma 58, lend(G,D) = |D∩BG| = 0.
By Lemma 59,

borrow(G,D) > 6− |D ∩ CG| − 2× |D ∩BG| = 6− 2− 0 = 4.

Thus,

netlend(H2) = max
(G,D)∈H2

(
lend(G,D)− borrow(G,D)

)
6 0− 4 = −4.

Figure 26 demonstrates a pair (G′, D′) that is an H2 where lend(G′, D′)−borrow(G′, D′) =
−4. Thus, netlend(H2) = −4.

Lemma 63. netlend(H3) = −1.
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Figure 26: An illustration of the proof of
Lemma 62.

Figure 27: An illustration of the proof of
Lemma 63.

Proof. Assume (G,D) is an H3. By Lemma 61, |D ∩ CG| > d6−32 e = 2. We consider two
cases, depending on the number of vertices of D in CG.

Case 1: |D∩CG| = 3. Since (G,D) is an H3, by Fact 60, |D∩BG| = 3−|D∩CG| = 0.
By Lemma 58, lend(G,D) = |D ∩BG| = 0. By Lemma 59,

borrow(G,D) > 6− |D ∩ CG| − 2× |D ∩BG| > 6− 3 = 3.

Thus,
lend(G,D)− borrow(G,D) 6 0− 3 = −3.

Case 2: |D∩CG| = 2. Since (G,D) is an H3, by Fact 60, |D∩BG| = 3−|D∩CG| = 1.
By Lemma 58, lend(G,D) = |D ∩BG| = 1. By Lemma 59,

borrow(G,D) > 6− |D ∩ CG| − 2× |D ∩BG| > 6− 2− 2 = 2,

so
lend(G,D)− borrow(G,D) 6 1− 2 = −1.

Thus,

netlend(H3) = max
(G,D)∈H3

(
lend(G,D)− borrow(G,D)

)
6 −1.

Figure 27 demonstrates a pair (G′, D′) that is an H3 where lend(G′, D′)−borrow(G′, D′) =
−1. Thus, netlend(H3) = −1.

Lemma 64. netlend(H4) = 2.

Proof. Assume (G,D) is an H4. By Lemma 61, |D ∩ CG| > d6−42 e = 1. We consider four
cases, depending on the number of vertices of D in CG.

Case 1: |D∩CG| = 1. Since (G,D) is an H4, by Fact 60, |D∩BG| = 4−|D∩CG| = 3.
Figure 28 represents the reasoning. Since |D ∩CG| = 1 and choices of vertex in |D ∩CG|
are equivalent by symmetry, let v1 ∈ D ∩ CG. To dominate v3, v4, v5, we must have
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Figure 28: An illustration of the proof of
Lemma 64.

Figure 29: An illustration of the proof of
Lemma 65.

v9, v10, v11 ∈ D. Since v8 is not dominated by a vertex in VG ∩D, borrow(G,D) = 1. By
Lemma 58, lend(G,D) = |D ∩BG| = 3. Thus,

lend(G,D)− borrow(G,D) 6 3− 1 = 2.

Case 2: |D∩CG| = 2. Since (G,D) is an H4, by Fact 60, |D∩BG| = 4−|D∩CG| = 2.
By Lemma 58, lend(G,D) = |D ∩BG| = 2. By Lemma 59,

borrow(G,D) > 6− |D ∩ CG| − 2× |D ∩BG| > 6− 2− 4 = 0.

Thus,
lend(G,D)− borrow(G,D) 6 2− 0 = 2.

Case 3: |D∩CG| = 3. Since (G,D) is an H4, by Fact 60, |D∩BG| = 4−|D∩CG| = 1.
By Lemma 58, lend(G,D) = |D ∩BG| = 1. By Lemma 59,

borrow(G,D) > 6− |D ∩ CG| − 2× |D ∩BG| > 6− 3− 2 = 1.

Thus,
lend(G,D)− borrow(G,D) 6 1− 1 = 0.

Case 4: |D∩CG| = 4. Since (G,D) is an H4, by Fact 60, |D∩BG| = 4−|D∩CG| = 0.
By Lemma 58, lend(G,D) = |D ∩BG| = 0. By Lemma 59,

borrow(G,D) > 6− |D ∩ CG| − 2× |D ∩BG| > 6− 4− 0 = 2.

Thus,
lend(G,D)− borrow(G,D) 6 0− 2 = −2.

In every case,

netlend(H4) = max
(G,D)∈H4

(
lend(G,D)− borrow(G,D)

)
6 2.

Figure 28 demonstrates a pair (G′, D′) that is an H4 where lend(G′, D′)−borrow(G′, D′) =
2. Thus, netlend(H4) = 2.
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Lemma 65. netlend(H5) = 4.

Proof. Assume (G,D) is an H5. By Lemma 61, |D∩CG| > d6−52 e = 1. Since (G,D) is an
H5, by Fact 60, |D∩BG| = 5−|D∩CG| 6 4. By Lemma 58, lend(G,D) = |D∩BG| 6 4.
Notice borrow(G,D) > 0. Thus,

netlend(H5) = max
(G,D)∈H5

(
lend(G,D)− borrow(G,D)

)
6 4− 0 = 4.

Figure 29 demonstrates a pair (G′, D′) that is an H5 where lend(G′, D′)−borrow(G′, D′) =
4. Thus, netlend(H5) = 4.

Lemma 66. For n > 6, netlend(Hn) = 6.

Proof. Assume (G,D) is an Hn, where n > 6. Notice lend(G,D) 6 6 and borrow(G,D) >
0. Thus,

netlend(Hn) = max
(G,D)∈Hn

(
lend(G,D)− borrow(G,D)

)
6 6.

Since n > 6, we can choose all vertices in BG to be in D such that D is a dominating set
of G. In this case, lend(G,D) = 6 and borrow(G,D) = 0. Consequently, lend(G,D) −
borrow(G,D) = 6. Thus, netlend(Hn) = 6.

Definition 67. Let D be a dominating set of the (4, 6, 12) lattice. Let G be a subgraph of
the (4, 6, 12) lattice whose vertex set can be partitioned into disjoint subsets S1, S2, . . . , Sm
such that for every subset Si, the pair (Gi, D ∩ Si) is an Hn for some n, where Gi is the
subgraph induced by vertices in Si.

For n ∈ {2, 3, 4, . . . , 12}, let pn(G) denote the proportion of Hn in the vertex disjoint
subgraphs of G.

Note 68. We can embed the (4, 6, 12) lattice in the plane such that the subgraph induced
by vertices in every unit square with integer coordinates is isomorphic to H as shown in
Figure 25. In Lemma 69 and Theorem 70, we consider such embedding.

Lemma 69. Let Rl,m denote a rectangular region RG(0, l; 0,m), where l,m > 0. We have

12∑
k=2

pk × netlend(Hk) > −εl,m,

where εl,m → 0+ as l,m→∞.

Proof. Let D be any dominating set of the (4, 6, 12) lattice. The vertex set of Rl,m can
be partitioned into disjoint subsets S1, S2, . . . , Slm such that for every subset Si, the pair
(Gi, D ∩ Si) is an Hn, where Gi is the subgraph induced by vertices in Si. For any
i ∈ {1, . . . , lm}, let Di = D ∩ Si. Let D(l,m) =

⋃lm
i=1Di.

Let Nk(Rl,m) denote the number of Hk in (G1, D1), (G2, D2), . . . , (Glm, Dlm). Let
a, b, c, d denote the number of vertices in the upper, lower, left and right internal boundary
of Rl,m respectively.
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Notice that

pk(Rl,m) =
Nk(Rl,m)

lm
.

Therefore,
12∑
k=2

pk(Rl,m)× netlend(Hk) =
12∑
k=2

Nk(Rl,m)

lm
netlend(Hk).

Since netlend(Hk) = max(G,D)∈Hk

(
lend(G,D) − borrow(G,D)

)
, for i ∈ {1, . . . ,m}, if

(Gi, Di) is an Hk, then netlend(Hk) > lend(Gi, Di)− borrow(Gi, Di). Therefore,

12∑
k=2

pk(Rl,m)× netlend(Hk) >
lm∑
i=1

lend(Gi, Di)− borrow(Gi, Di)

lm
.

For D to be a dominating set of the (4, 6, 12) lattice, every vertex v ∈ BGi
not dominated

by a vertex in Di must be dominated by a vertex in D \Di. In addition, a vertex v ∈ BGi

may be dominated both by a vertex in Di and by a vertex in D \Di. Therefore,

lm∑
i=1

(
lend(Gi, Di)− borrow(Gi, Di)

)
> lend(Rl,m, D

(l,m))− borrow(Rl,m, D
(l,m)).

Since lend(Rl,m, D
(l,m)) > 0 and borrow(Rl,m, D

(l,m)) 6 a+ b+ c+ d, we have

lend(Rl,m, D
(l,m))− borrow(Rl,m, D

(l,m)) > 0− (a+ b+ c+ d).

Consequently,

lm∑
i=1

(
lend(Gi, Di)− borrow(Gi, Di)

)
> −(a+ b+ c+ d).

Since l,m > 0, we divide both sides by lm and obtain

lm∑
i=1

lend(Gi, Di)− borrow(Gi, Di)

lm
> −a+ b+ c+ d

lm
,

so
12∑
k=2

pk(Rl,m)× netlend(Hk) > −
a+ b+ c+ d

lm
.

Letting εl,m = a+b+c+d
lm

, we have

12∑
k=2

pk(Rl,m)× netlend(Hk) > −εl,m.

Since a+ b = O(l) and c+ d = O(m), as m,n→∞, we have

εl,m =
a+ b+ c+ d

lm
→ 0+.
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Theorem 70. γ(4, 6, 12) = γp(4, 6, 12) = 5
18

.

Proof. We prove that both the domination ratio and the perfect domination ratio of the
(4, 6, 12) lattice are equal to 5

18
.

Consider a rectangular region Rl,m as above. We formulate the domination ratio
problem in Rl,m as a linear program. The set of all feasible solutions is described by a
polytope. Lemma 69 provides a valid inequality for the polytope, which is a constraint
for the linear program. We describe the constraints, objective function, linear program,
dual program in parts 1,2,3, and 4 of the proof respectively. The optimal solution to the
linear program provides a lower bound for the domination ratio of Rl,m, as described in
part 3.

We show that 5
18

is a lower bound for the domination ratio. Combined with Lemma 46,
we conclude that γ(4, 6, 12) = γp(4, 6, 12) = 5

18
.

1. Constraints
Let x = [p2, p3, p4, p5, pother]

T , where pother =
∑

k>6 pk.
By Lemma 69, we have

12∑
k=2

pk × netlend(Hk) > −εl,m,

where εl,m → 0+ as l,m→∞.
By Lemma 66, for n > 6, netlend(Hn) = 6, so(

5∑
n=2

pn × netlend(Hn)

)
+ 6 pother > −εl,m.

For n ∈ {2, 3, 4, 5}, netlend(Hn) was calculated in Lemmas 62, 63, 64, and 65. Thus,

[−4,−1, 2, 4, 6] · x > [−4,−1, 2, 4, 6] · [p2, p3, p4, p5, pother]T > −εl,m.

where εl,m → 0+ as l,m→∞.
Notice that we also have constraints

∑
k pk = 1 and 0 6 pk 6 1 for any pk.

2. Objective function
Let c = 1

12
[2, 3, 4, 5, 6]T . Notice c is multiplied by 1

12
because Hn has 12 vertices. For

any dominating set D of Rl,m,

γ(D) =
12∑
k=2

k

12
pk >

1

12
[2, 3, 4, 5, 6][p2, p3, p4, p5, pother]

T = cTx.

3. Linear program (LP)
The linear program below provides a lower bound for the domination ratio of Rl,m.

min cTx subject to
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[−4,−1, 2, 4, 6]x > −εl,m∑
i

xi = 1 and for any i, 0 6 xi 6 1.

The linear program provides a lower bound for the domination ratio of Rl,m because a
minimum dominating set D with associated vector x∗ satisfies the constraints above and
γ(D) > cTx∗.

Writing the LP explicitly in matrix form:

min cTx =
1

12
[2, 3, 4, 5, 6]x subject to x > ~0 and

Ax =



−4 −1 2 4 6
1 1 1 1 1
−1 −1 −1 −1 −1
−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1


x >



−εl.m
1
−1
−1
−1
−1
−1
−1


= b.

4. Dual program (DP)
The dual program is

max bTy = [−εl.m, 1,−1,−1,−1,−1,−1,−1]y subject to y > ~0 and

ATy =


−4 1 −1 −1 0 0 0 0
−1 1 −1 0 −1 0 0 0
2 1 −1 0 0 −1 0 0
4 1 −1 0 0 0 −1 0
6 1 −1 0 0 0 0 −1

 y 6
1

12


2
3
4
5
6

 = c.

5. Optimal solution
For the linear program, we obtain x∗ = [1/3+εl,m/6, 0, 2/3−εl,m/6, 0, 0]T as an optimal

solution with optimal objective function value 5
18
− εl,m/36.

For the dual program, we obtain y∗ = [5/180, 5/18, 0, 0, 0, 0, 0, 0]T as an optimal solu-
tion with optimal objective function value 5

18
− εl,m/36.

To check that x∗ is the optimal solution, one can verify that x∗ is primal feasible and
y∗ is dual feasible. One can also verify that the primal objective function value at x∗ and
dual objective function value at y∗ are both equal to 5

18
− εl,m/36. By the Strong Duality

Theorem, x∗ and y∗ are optimal solutions of primal and dual respectively.
Suppose to the contrary that γ(4, 6, 12) 6 5

18
− δ for some δ > 0. Since εl,m → 0+ by

Lemma 68, we can choose εl,m = 18 · δ for some l and m. The linear program provides
the lower bound γ(4, 6, 12) > 5

18
− 1

2
δ, contradicting γ(4, 6, 12) 6 5

18
− δ.
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Therefore, 5
18

6 γ(4, 6, 12). By Lemma 46, γ(4, 6, 12) 6 γp(4, 6, 12) 6 5
18

. Combining
the two inequalities, we get

5

18
6 γ(4, 6, 12) 6 γp(4, 6, 12) 6

5

18
.

Therefore, γ(4, 6, 12) = γp(4, 6, 12) = 5
18

.

6 Open Questions and Future Research

We have determined exact perfect domination ratios for all of the eleven Archimedean lat-
tices. We have determined exact domination ratios for eight of the eleven Archimedean lat-
tices. Solving for the exact domination ratios of the (3, 6, 3, 6), (3, 4, 6, 4), and (32, 4, 3, 4)
lattices remain open problems. Domination ratios and perfect domination ratios of other
classes of infinite lattices such as 2-uniform lattices, or three dimensional lattices such as
the simple cubic, face-centered cubic, and body-centered cubic, might also be investigated.

Further study might also consider possible perfect domination proportions and noni-
somorphic perfect dominating sets that achieve the same perfect domination proportion.
As examples, [30] shows that the number of possible perfect domination proportion val-
ues is infinite for the Kagome lattice and is only two for the (32, 4, 3, 4) lattice. It would
be interesting to consider nonisomorphic perfect dominating sets of and possible perfect
domination proportions for all Archimedean lattices, specifically, to determine whether
the number of possible perfect domination proportion values is finite or infinite.
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Appendix

A Proof that the Domination Ratio Exists

Theorem 71. For a periodic graph G, the limit

γ(G) = lim
m,n→∞

γm,n(G)

Nm,n(G)
= inf

m,n

γm,n(G)

Nm,n(G)

exists.

Proof. Let k = N1,1(G). Fix positive integers r and s. Any integers m and n sufficiently
large may be expressed as

m = αr + β, where α =
⌊m
r

⌋
and 0 6 β < r,

n = ρs+ σ, where ρ =
⌊n
s

⌋
and 0 6 σ < s.

The vertex set of the rectangular region RG(0,m; 0, n) is the disjoint union of vertex sets
of rectangular regions listed below [12].

Rij = RG((i− 1)r, ir; (j − 1)s, js), where 1 6 i 6 α, 1 6 j 6 ρ

Si = RG((i− 1)r, ir; ρs, ρs+ σ), where 1 6 i 6 α

Tj = RG(αr, αr + β; (j − 1)s, js), where 1 6 j 6 ρ

U = RG(αr, αr + β; ρs, ρs+ σ).

The rectangular regions are labeled in Figure 30. For simplicity, we do not label all of
Rij in Figure 30.

Using subadditivity and the fact that the domination number of a subgraph is no
greater than the number of vertices in the subgraph, we deduce that

γm,n(G) 6
α∑
i=1

ρ∑
j=1

γ(Rij) + (ασr + ρβs+ βσ)k.

Notice γ(Rij) is the same for all Rij from periodicity and the embedding of the graph.
Furthermore, γ(Rij) = γr,s(G).

γm,n(G) 6 αργr,s(G) + (ασr + ρβs+ βσ)k.

γm,n(G)

Nm,n(G)
6
αργr,s(G)

Nm,n(G)
+

(ασr + ρβs+ βσ)k

Nm,n(G)
.

Since Nm,n(G) = mnk, we have

γm,n(G)

Nm,n(G)
6
αργr,s(G)

mnk
+
ασr + ρβs+ βσ

mn
,
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Figure 30: An illustration of the proof that the domination ratio exists.

so

lim inf
m,n→∞

γm,n(G)

Nm,n(G)
6 lim inf

m,n→∞

αργr,s(G)

mnk
+ lim

m,n→∞

ασr + ρβs+ βσ

mn
,

since α 6 m and ρ 6 n, while σ, r, β, and s are fixed, so the rightmost term tends to zero
as m,n→∞. Therefore we have

lim inf
m,n→∞

γm,n(G)

Nm,n(G)
6 lim inf

m,n→∞

αρ

mnk
γr,s(G).

Since αr 6 m and ρs 6 n, we have αrρs 6 mn, so

αρ

mnk
γr,s(G) 6

1

rsk
γr,s(G).

Since 1
rsk
γr,s(G) does not depend on m or n, we have

lim inf
m,n→∞

αρ

mnk
γr,s(G) 6

1

rsk
γr,s(G).

Since the inequality above holds for any r and s, we have

lim inf
m,n→∞

αρ

mnk
γr,s(G) 6 inf

r,s

1

rsk
γr,s(G),

so

lim inf
m,n→∞

γm,n(G)

Nm,n(G)
6 inf

r,s

1

rsk
γr,s(G).

Since γm,n(G)

Nm,n(G)
= 1

rsk
γr,s(G) when r = m, s = n, we have

γm,n(G)

Nm,n(G)
> inf

r,s

1

rsk
γr,s(G),
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and therefore

lim inf
m,n→∞

γm,n(G)

Nm,n(G)
> inf

r,s

1

rsk
γr,s(G).

Thus, we conclude the limit exists and

lim
m,n→∞

γm,n(G)

Nm,n(G)
= inf

r,s

1

rsk
γr,s(G).

Remark 72. If a bounded function f(m,n) is subadditive, where m,n are length and
width of a rectangular region in an infinite periodic graph, then f(m,n) has a limit as
m,n→∞, and the limit equals infr,s

1
rsk
f(r, s).

Proof. Let f(m,n) be a bounded subadditive function, where m,n are length and width
of a rectangular region in an infinite periodic graph. The proof of Theorem 70 can be
applied to show that f(m,n) has a limit as m,n→∞. One may replace γm,n in the proof
of Theorem 70 by f(m,n) and obtain infr,s

1
rsk
f(r, s) as the limit.

Remark 73. If a bounded function f(m,n) is superadditive, where m,n are length and
width of a rectangular region in an infinite periodic graph, then f(m,n) has a limit as
m,n→∞, and the limit equals supr,s

1
rsk
f(r, s).

Proof. Let f(m,n) be a bounded superadditive function, where m,n are length and width
of a rectangular region in an infinite periodic graph. Notice that −f(m,n) is subadditive.
By Corollary 72, −f(m,n) has a limit as m,n → ∞, and the limit equals infr,s

1
rsk

{
−

f(r, s)
}

. Thus, f(m,n) has a limit as m,n→∞, and the limit equals supr,s
1
rsk
f(r, s).

A.2 Different Periodic Embeddings Yield the Same Domination Ratio

Theorem 74. The domination ratio of an infinite periodic graph does not depend on the
choice of periodic embedding.

Proof. Let A and B be two periodic embeddings of an infinite graph G. Let γ(GA) and
γ(GB) denote the domination ratio of G yielded by A and B respectively. The two peri-
odic embeddings A and B provide two sets of (x, y) axes that may have different scales
and angles between the x-axis and the y-axis. We can embed the infinite periodic graph
in the plane such that the x-axis and the y-axis corresponding to periodic embedding A
are orthogonal. Let coordinate-A and coordinate-B denote the coordinate system that
correspond to the set of (x, y) axes provided by periodic embeddings A and B respec-
tively. Recall that RG(m1,m2;n1, n2) denotes the subgraph of G induced by the vertices
in the rectangle [m1,m2)× [n1, n2) ⊂ R2. For simplicity, we denote RG(m1,m2;n1, n2) in
coordinate-A and in coordinate-B by RA(m1,m2;n1, n2) and RB(m1,m2;n1, n2) respec-
tively.
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A rectangular region RB(0,m; 0, n) is a parallelogram in coordinate-A. Figure 31
illustrates the reasoning. Fix positive integers r, s. The origin in coordinate-B is in a
r× s rectangle whose vertices have integer coordinates in coordinate-A. Let RA(αr, (α+
1)r; βs, (β + 1)s) denote the rectangular region that contains the origin in coordinate-B,
where α, β ∈ Z. Similarly, let points (m, 0), (m,n), (0, n) in coordinate-B be in rectangular
regions:

RA(αr + γr, αr + γr + r; βs+ δs, βs+ δs+ s)

RA(αr + γr + θr, αr + γr + θr + r; βs+ δs+ λs, βs+ δs+ λs+ s)

RA(αr + θr, αr + θr + r; βs+ λs, βs+ λs+ s)

respectively, where α, β, γ, δ, θ, λ ∈ Z.

γrθrαr

δs

λs

βs
x

y

r

s

Figure 31: A rectangle RB(0,m; 0, n) is a parallelogram in coordinate-A.

Notice a that union of rectangles with length r and width s in coordinate-A has
RB(0,m; 0, n) as a subgraph. Let k denote the minimum number of rectangles with
length r and width s in coordinate-A whose union has RB(0,m; 0, n) as a subgraph. Recall
that γm,n(G) denotes the domination number of RG(0,m; 0, n), and Nm,n(G) denotes the
number of vertices in RG(0,m; 0, n). For simplicity, we denote γm,n(G) and Nm,n(G) in
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coordinate-A by γm,n(A) and Nm,n(A) respectively. Similarly, we denote γm,n(G) and
Nm,n(G) in coordinate-B by γm,n(B) and Nm,n(B) respectively.

As a union of k rectangles with length r and width s in coordinate-A has RB(0,m; 0, n)
as a subgraph,

0 6 kNr,s(A)−Nm,n(B).

Notice that every rectangle in the union contains some vertices in RB(0,m; 0, n), oth-
erwise a union of less than k rectangles with length r and width s in coordinate-A has
RB(0,m; 0, n) as a subgraph, contradicting that k is the minimum number of r × s rect-
angles required. Since 2(γ + θ+ δ+ λ) rectangles with length r and width s can cover all
vertices on the internal boundary of RB(0,m; 0, n), at most 2(γ + θ+ δ+ λ) rectangles in
the union contain vertices not in RB(0,m; 0, n).

kNr,s(A)−Nm,n(B) 6 2(γ + θ + δ + λ)Nr,s(A),

0 6 kNr,s(A)−Nm,n(B) 6 2(γ + θ + δ + λ)Nr,s(A),

Nm,n(B) 6 kNr,s(A) 6 Nm,n(B) + 2(γ + θ + δ + λ)Nr,s(A),

1 6
kNr,s(A)

Nm,n(B)
6 1 +

2(γ + θ + δ + λ)Nr,s(A)

Nm,n(B)
,

where Nm,n(B) = Θ(mn) and γ+ θ+ δ+λ = Θ(m+n). Since 2Nr,s(A) is a fixed positive
integer, as m,n→∞, we have

2(γ + θ + δ + λ)Nr,s(A)

Nm,n(B)
→ 0.

Therefore, as m,n→∞,
kNr,s(A)

Nm,n(B)
→ 1.

Using subadditivity and the fact that domination number of a graph is no smaller
than the domination number of its subgraph, we deduce that

kγr,s(A) > γm,n(B).

kNr,s(A)

Nm,n(B)
× kγr,s(A)

kNr,s(A)
>

γm,n(B)

Nm,n(B)
.

As m,n→∞, kNr,s(A)

Nm,n(B)
→ 1. Therefore we have

lim
m,n→∞

kγr,s(A)

kNr,s(A)
> lim

m,n→∞

γm,n(B)

Nm,n(B)
.

where the existence of the limit is proved in Theorem 70.

lim
m,n→∞

γr,s(A)

Nr,s(A)
> lim

m,n→∞

γm,n(B)

Nm,n(B)
.
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Since limm,n→∞
γm,n(B)

Nm,n(B)
= γ(GB) and γr,s(A)

Nr,s(A)
is independent of m,n, we have

γr,s(A)

Nr,s(A)
> γ(GB).

inf
r,s

γr,s(A)

Nr,s(A)
> γ(GB).

Since infr,s
γr,s(A)

Nr,s(A)
= γ(GA), we have

γ(GA) > γ(GB).

Similarly, we can embed the infinite periodic graph on a plane such that the x-axis and
the y-axis corresponding to the subgraph B are orthogonal. The same reasoning can be
applied to show that γ(GA) 6 γ(GB). Thus, γ(GA) = γ(GB).
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