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Abstract

Baber and Talbot asked whether there is an irrational Turan density of a single
hypergraph. In this paper, we show that the Lagrangian density of a 4-uniform
matching of size 3 is an irrational number. Sidorenko showed that the Lagrangian
density of an r-uniform hypergraph F' is the same as the Turdan density of the
extension of F'. Therefore, our result gives a positive answer to the question of
Baber and Talbot. We also determine the Lagrangian densities of a class of r-
uniform hypergraphs on n vertices with ©(n?) edges. As far as we know, for every
hypergraph F' with known hypergraph Lagrangian density, the number of edges in
F is less than the number of its vertices.

Mathematics Subject Classifications: 05D05

1 Introduction

For a positive integer r and a set V, let (‘:) denote the family of all r-subsets of V. An r-

uniform graph or r-graph G consists of a vertex set V(G) and an edge set E(G) C (V(TG)).
We sometimes write the edge set of G as G. Let e(G) (v(G)) denote the number of
edges (vertices) of G. Given an r-graph F', an r-graph G is called F-free if it does
not contain a copy of F' as a subgraph. The Turdn number ex(n, F) is the maximum
number of edges in an F-free r-graph on n vertices. The Turdn density of F' is defined
as m(F) = lim,_ ex(n, F)/("); such a limit is known to exist. For 2-graphs (simple
graphs), Erdés-Stone-Simonovits determined the asymptotic values of Turdn numbers of
all graphs except bipartite graphs. Very few results are known for hypergraphs and a
recent survey on this topic can be found in Keevash’s survey paper [16].
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Chung and Graham [5] proposed the conjecture that the Turdn density of a finite family
of r-graphs is a rational number. Baber and Talbot [1], and Pikhurko [21] disproved this
conjecture by showing that there are a family of three 3-graphs and a finite family of -
graphs with irrational Turdn densities, respectively. Baber and Talbot [1] asked whether
there exists a single hypergraph whose Turan density is an irrational number. Let M] be
the r-graph formed by t disjoint edges. The extension of F', denoted by H¥ is obtained as
follows: for each pair of vertices v; and v; not contained in any edge of F', we add a set B;;
of r — 2 new vertices and the edge {v;, v;} U B;;, where the B;;’s are pairwise disjoint over
all such pairs {7,7}. In this paper, we show that the Turdn density of the extension of
M3 is an irrational number. This result gives a positive answer to the question of Baber
and Talbot. We remark that Yan and Peng [30] independently proved the existence of an
irrational Turan density of a single 3-graph.

Theorem 1. Let F be the extension of M3, then

207 —33V33
B 32 ‘

Lagrangian has been a very important tool to study hypergraph Turan problems.
Denote [n] = {1,2,...,n}. Let G be an r-graph on vertex set V' C [n]. Define the
Lagrangian function of G as w(G,x) = Y ;e %, where x = {x1,29,...,2,} €
[0, 00)™. Let

(F)

A={xeR":294+22+ - +z, =12, >0 for every i € [n]},

the Lagrangian of G is defined to be A(G) = maxgzea w(G, x). In fact, A(G) can be
regarded as the density of the densest blow-up of G. The value z; is called the weight
of the vertex i. We call a weighting & € A optimal if A\(G) = w(G,x). We first present
a classic result for simple graphs given by Motzkin and Straus [18] in 1965, when they
gave a new proof of Turan’s classical result on Turan densities of complete graphs. Let
K| denote the complete r-graph on t vertices.

Theorem 2. ([18]) If G is a simple graph in which a mazimum complete subgraph has t

vertices, then

MG) = A(K2) = + <1 - 1) |

2 t

The Lagrangian for hypergraphs was developed independently by Sidorenko [22], and
Frankl and Fiiredi [9], generalising work of Motzkin and Straus [18], and Zykov [31]. The
Lagrangian density of F' is defined to be

mA(F) = rlsup{\(G) : G is F-free}.

The Lagrangian density problem has been studied in the recent years, strongly con-
nected to the Turan problems. In fact, the Turan density of F' is no larger than the
Lagrangian density of F', equality holds when F' covers pairs, that is, every pair of ver-
tices is contained in some edge of F'. The following relation between Lagrangian densities
and Turdn densities is implied by Theorem 2.6 in [22] (see Proposition 5.6 in [3] and
Corollary 1.8 in [23] for the explicit statement).
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Proposition 3. ([22, 3, 23]) Let F be an r-graph. Then (i) and (ii) hold.
(i) 7(F) < ma(F);
(i) w(HY) = mx\(F). In particular, if F covers pairs, then w(F) = m\(F).

The Lagrangian density problem has very few results as yet. We list some of them as
follows. Let T be a tree or a forest on t vertices that satisfies Erdés and Sés’ conjecture.
Let F' be an r-graph obtained by joining r—2 fixed vertices into every edge of T'. Sidorenko
23] proved that my\(F) = rIA\(K],_3) = (H;_?’)ﬁ for ¢ large enough. Let H" be
the r-graph on r + 1 vertices consisting of two edges sharing r — 1 vertices. Sidorenko
22] showed that my\(H") = rIA(K!) = Z for r = 3 and 4. Let M; be the r-uniform
matching with ¢ disjoint edges (t-matching) and L] be the r-uniform linear star with edge
set {eU{vo} : e € M/'}. Hefetz and Keevash [13] determined the Lagrangian density of
M3. More generally, the authors [15] determined the Lagrangian density of M? and L.
Since K, contains no copy of F, ™(F) = T!/\(KZ(F)_1> clearly. If the equality holds,
then we call F' A-perfect. All hypergraphs in the above results are A-perfect. While,
Frankl and Fiiredi [10] proved that 7\(H®) = 5!:% and m\(H®) = 6!s5;, Bene Watts,
Norin and Yepremyan [2] proved that my\(M5) = (1 — 1/r)""! for r > 4, and thus, H®,
HS, M} (r > 4) are not A-perfect. For more relevant Hypergraph Lagrangian (density)
results, one may refer to [4, 6, 7, 8, 17, 24, 25, 26, 27, 28, 29] and so on.

Remark 4. If F'is A-perfect, then every spanning subgraph of F'is A-perfect.

It is interesting to study how dense a A-perfect r-graph F' can be. As far as we know,
for every known A-perfect r-graph F' (in fact, for all known results), we have e(F') < v(F).
It is interesting to study A-perfect F' with e(F) > v(F'). We show that there is a class
of A-perfect r-graphs on n vertices with ©(n?) edges. Let r,s,t be integers, let F, be the
r-graph obtained by adding r — 2 fixed vertices to every edge of a star with s edges, and
let H; be the r-graph obtained by adding r» — 2 fixed vertices to every edge of a complete
graph on t vertices. That is,

FS = {{U17U27"'7vr—1}u{uz‘} 01 < 7 < 3}
and
Hy = {{u17u27 v 7ur—2} U {U)Z‘,U}j} 1 <i< )< t}
Let Fi; = F5 U H; be the disjoint union of Fy and H,. For positive r > 2, set

frl@)=(@+r=3)" J] =+i-2).

i€[r—1]

Let M, be the last (i.e., the rightmost) maximum of the function f,(x) on the interval
[2,00). We determine the Lagrangian densities of the disjoint union of F; and H, for

various values of s and t.

Theorem 5. Let r, s and t be positive integers satisfying s +t + 2r — 4 > W*Zw
and s+t+r—12= M,. Let G be an r-graph. If G is F;-free, then N(G) < MK, 10._4)-
In particular, 7\(Fet) = r!'\N(K 1 0,_4)-
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Remark 6. Let r,s,t satisfy the conditions in Theorem 5, T(T;)t < s < ¢(r)t for some
S

constant ¢(r) depending on r. Then F, is A-perfect with e(Fy;) = s+ (}) = O(n?) if t is
large enough for fixed r, where n = v(Fjs4).

The paper is organized as follows. In Section 2, we give some preliminaries. In Section
3, we determine the Lagrangian density of My, which implies Theorem 1. In Section 4,
we give a proof of Theorem 5. In the last section, we give some concluding remarks.

2 Preliminaries

By the definition of Lagrangian, it is easy to see the following fact.
Fact 7. If G' C G, then \(G") < \(G).

An r-graph G is dense if and only if every proper subgraph G’ of G satisfies A(G') <
A(G). This is equivalent to all optimal weightings of G are in the interior of A, which
means no coordinate in an optimal weighting is zero.

Fact 8. ([12]) If G is dense, then G covers pairs.

Let G be an r-graph, U C V(G) and 4,5 € V(G). Let G —U ={e € G:enU = 0}
and G[U] = {e € G : e C U}. The link of i in G, denoted by Lg(i), is the hypergraph
with edge set {e € (VT(_C?) reU{i} € G}. Denote Lg(j\ %) = La—{i1(j) \ La(i). We say G
on vertex set [n] is left-compressed if Lg(j\ i) = 0 for every 1 < i < j < n. The following
Lagrangian result is useful for the proof of our result.

Lemma 9. ([15]) Let G be an M] -free r-graph. Then there exists an M] -free, dense and
left-compressed r-graph G' with |V (G")| < |V(G)| such that A\(G") = A\G).

Lemma 10. ([12]) Let G be an r-graph on [n] with at least an edge. Let © = (xq,...,xy)
be an optimal weighting on G. Then rA\(G) = w(Lg(i),x) < MN(Lg(i)) for every i € [n]
with x; > 0.

Lemma 11. ([12]) Let G be an r-graph on vertex set [n|. If Lg(i\ j) = La(j \ i), then
there is an optimal weighting € € A such that x; = x;.

The following Proposition follows from a result of Sidorenko in [23].

Proposition 12. ([23]) Let s and t be two positive integers. Let S be an r-graph with
edge set {{vy,va,..., vp_1,x} 1z € [s+t+r—2|} withs+t+r—1= M,. If an r-graph
G satisfies N(G) > MK}, 0,_4), then G contains a copy of S.

3 Lagrangians of 4-graphs containing no three disjoint edges

In this section, we determine the maximum Lagrangian of Mj-free 4-graphs with the help
of MATLAB for some calculations. Let S} (n) be the r-graph on n vertices with edge set
{e e ([:f]) :eN|[t] # 0}. Denote the r-graph S} on the infinite vertex set V' ={1,2,3,...}
with edge set {e € (V) :en[t] # 0}
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Theorem 13. ’/T)\(M4) - 4')\(5'4) 207— 33\ﬁ

Note that Theorem 13 and Proposition 3 yield Theorem 1. First, we classify the
left-compressed M, -free 4-graphs on vertex [n] into four types. For two positive integers
m,n with m < n, denote [m,n] = {m,m+1,...,n}. An edge e = {ay,as,...,a,} of an
r-graph will be simply denoted by ajas . ..a,. Define

(H1 = {lijk:2<i<j<k<n},

Ho = {lijk : 2 <i<5,i<j<k<n}uU{2345},
Hy ={ijkl:1<i<2,i<j<bj<k<l<n}, (1)

H4:([Z])U{2jkl <i<j<k<6<l<n}
\

Lemma 14. Let F be a left-compressed My -free 4-graph on vertex set [n] with n > 8.
Then F is contained in H; for some i € [4].

Proof. If F[[2,n]] = 0, then F C H;. So assume that F[[2,n]] # (), which yields 2345 € F
since F is left-compressed. Thus 1678 ¢ F since otherwise {1678,2345} forms a copy of
M in F, a contradiction. Now we divide it into three cases.

Case 1. 1578 € F. Then 2346 ¢ F since otherwise {1578, 2346} forms a copy of My
in F, a contradiction. As F is left-compressed, then F C H,.

Case 2. 1578 ¢ F and 3456 ¢ F. As F is left-compressed, then F C Hs.

Case 3. 1578 ¢ F and 3456 € F. Then 1278 ¢ F since otherwise {1278, 3456} forms
a copy of My in F, a contradiction. As F is left-compressed, therefore there is no edge e
in F such that {7,5} C e with 7 <i < j < n. Hence F C H,. O

Lemma 15. Lett > 3 and n > 4t be two integers. Let F be a left-compressed and M} -free
4-graph on vertex set [n]. If F[[2,n]] contains a copy of M}, then F[[2,4t — 3]] contains
a copy of M} |.

Proof. Denote the set of all (¢t — 1)-matchings in F[[2,n]] as 2. Let
J = {|(Ueeme) N [2,4t — 3]| : M € Q}.

Note that max .J < 4t — 4. So it is sufficient to prove that max.J = 4t — 4. Otherwise let
M € Q satistying |(Ueeme) N[2, 4t — 3]| = max J < 4t — 4. Then there exists e € M such
that e N [4t — 2,n] # 0. Denote A =eN[4t —2,n] and B = [2,4t — 3] \ (Usemf), clearly
|B| > |A|. Let B' € (IAI) and ¢ = (e \ A)U B’. Then ¢ C [2,4t — 3] and ¢’ N f = ( for
every f € M\ {e}. Since F is left-compressed, ¢’ € F. Let M’ = (M \ e) U {¢'}. Hence
M e Q. But |(Ugear f)N[2,4t=3]| > [(Userrf)N[2, 4t —3]|, which is a contradiction. [

Recall that Sg(n) = {e € (") :en[2] £ 0} and S§ = {e € (1"2F) ren 2] £ 0}.

Lemma 16. A(S4) = @155 0.02269457).

ot
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Proof. Let « = (x1,...,2,) be an optimal weighting of S3(n). By Lemma 11, we can
assume that o1 = 29 = a, 13 = 14 = - - - = 1,. Then A\(S3) = lim,, ., A(S3(n)) = f(a) :
5a*(1—2a)? +3a(1—2a)® = ga(1—2a)*(2—a). Hence f'(a) = —5((2a—1)(4a®> —Ta+1)).

Let f'(a) = 0, we have a = § or %@. It is not hard to see that f(a) < f((7—+/33)/8)

(69—11+/33)
Tfor0<a<1/2.

1

U

3.1 Proof of Theorem 13

Proof of Theorem 13. Let F be an Mj-free 4-graph on [n]. By Lemma 9, we may
assume that F is left-compressed and dense. As Sj(n) is Mj-free, therefore my(My) >
lim,, o 4IA(S3(n)) = 4IA(S3). We show the upper bound next. If n < 11, then F C K{,.
Therefore A(F) < MKf) = (1)) = 2% < A(S3). Now assume that n > 12. We divide
the proof into two cases.

Case 1. F|[2,n]] is My-free. Clearly, F[[2,n]] is left-compressed on [2,n]. By Lemma
14, F[[2,n]] is contained in a copy of H; for some i € [4]. Denote

o fec () e},

Subcase 1.1. F[[2,n]] is contained in a copy of H;. Then F C GU{2ijk :3<i < j <
k < n} = S3(n). Consequently, \(F) < A(S3(n)).
Subcase 1.2. F[[2,n]] is contained in a copy of Hs. Then

F CHip=GU{2ijk:3<i<6,i<j<k<n}U{3456}.

Let = (x1,...,2,) be an optimal weighting of H;5. By Lemma 11, we can assume that
rn=a,T9o=b r3=1x4=1x5=x5=cand z7+---+x, =dwitha+b+4c+d=1.
Then A(F) < A(H12) < max fi2 subject to a+b+4c+d = 1, where f12 = a(b(6¢* + 4ed +
0.5d%) + 4¢3 + 6¢2d + 2cd? + d3/6) + b(4c3 + 6c2d + 2¢d?) + ¢*. Hence fi5 < 0.02 by using
MATLAB! (see Table 1).

Subcase 1.3. F[[2,n]] is contained in a copy of Hj. Then

Fg?—[lg::{eé([z]>:166}U{ijkl:2<i<3,i<j<6,j</€<l<n}.

Let = (x1,...,2,) be an optimal weighting of H;3. By Lemma 11, we can assume that
r1=a,r9=x3=0b, x4y =25 =25 =cand r7+---+x, = d with a+2b+3c+d = 1. Then
AF) < M(Hi3) < max fi3 subject to a+2b+3c+d = 1, where fi3 = a(b*(3c+d)+2b(3c¢*+
3cd 4 0.5d%) + ¢ + 3¢*d + 1.5¢d? + d® /6) + b*(3¢ + 3ed + 0.5d?) + 2b(c® + 3¢*d + 1.5¢d?).
Hence fi3 < 0.021 by using MATLAB (see Table 1).

Subcase 1.4. F][2,n]] is contained in a copy of H4. Then

2
]:QHM::{eG([Z]):lGe}U([ ;17])U{ijkl:2<i<j<k<7<l<n}.

IMATLAB code URL: https://pan.baidu.com/s/1JKAZSpXximI2zkDMUVXJaQ?pwd=6a46
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Table 1: Computed results by MATLAB

Function Maximum value Value of variables
fi2 0.01900025 (a,b,c,d) ~(0.194817, 0.128138, 0.0576268, 0.446537)

J13 0.02091778 (a,b,c,d) ~(0.157263, 0.114602, 0.0710133, 0.400490)
fia 0.01841879 (a,b,c) ~(0.161020, 0.103510, 0.217918)
fo1 0.02179073 (a,b,c) =(0.125057, 0.0597065, 0.266589)
Jo2 0.02255088 (a,b,c,d) ~(0.115139, 0.104476, 0.0720990, 0.0359111)
fo3 0.02232719 (a,b,c) ~(0.113147,0.0844620,0.182471)
Let = (x1,...,2,) be an optimal weighting of Hj4. By Lemma 11, we can assume that
r1=a,x9="-+=2x7=>band xg+---+x, = c with a+6b+c = 1. Then A\(F) < A(H14) <

max fi4 subject to a+6b+c = 1, where fi4 = a(20b% + 15b%c + 3bc® + ¢ /6) + 15b* + 20b3c.
Hence f14 < 0.019 by using MATLAB (see Table 1).

Case 2. My C F[[2,n]]. By Lemma 15, My C FJ[[2,9]]. So {1,10,11,12} ¢ F.
Subcase 2.1. F[[3,n]] is contained in a copy of H; or Hs. Then

4,9
fQH’zl:={ijkl:z‘e[3],i<j<9,j<k<z<n}u<[’ ])

4
Let ¢ = (xy,...,x,) be an optimal weighting of #5,. By Lemma 11, we can assume that
xl—xg—xg—a ry=--+=x9=>band x19+ - -+ x, = c with 3a+6b+ c=1. Then

AF) < AM(H);) €< max fo; subject to 3a+ 6b+ ¢ = 1, where fo; = a®(6b+ ¢) + 3a*(150 +
6bc + 0.5¢2) + 3a(200® + 15b%c + 3bc?) + 15b%. Hence fy; < 0.022 by using MATLAB (see
Table 1).

Subcase 2.2. F|[3,n]] is contained in a copy of Hz. Then F is contained in the
following hypergraph, which is denoted by H)s,

{ijkl i€ 2,i<7<9,j<k<l<n}U{ijkl:3<i<4,i<j<7,j<k<l<n}.

Let € = (xy,...,x,) be an optimal weighting of H’,. By Lemma 11, we can assume that
T1 =29 =0a, 23 =24 =0b, x5 =26 =27 =c¢, 183 =9 = d and x19 + -+ + x,, = h with
2a+2b+3c+2d+h = 1. Then A\(F) < A(H),) < max fa subject to 2a+2b+3c+2d+h = 1,
where for = a?(b* +2b(3c+2d+ h) + 3c® + 3¢(2d + h) + d* + 2dh + h? /2) + 2a(b* (3¢ + 2d +
h)+2b(3c¢* +3c(2d+ h) + d* + 2dh+ h? /2) + ¢ + 3c¢*(2d + h) + 3c(d? + 2dh+ h? /2) + d*h +
dh?) +b?(3¢® + 3c(2d + h) + d* + 2dh + h? /2) + 2b(c® + 3c¢*(2d + h) + 3c(d* 4 2dh + h? /2)).
Hence fa < 0.02256 by using MATLAB (see Table 1).

Subcase 2.3. F|[3,n]] is contained in a copy of Hy. Then F is contained in the
following hypergraph, which is denoted by #s,

{ijkl i€ 2,i<j<9,j<k<l<n}U
{ijkl :3<i<j<k<9k<l< n}U(39)
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Let « be an optimal weighting of 7-['23. By Lemma 11, we can assume that 1y = x5 = a,

T3 =14 = -+ =x9 =band x;90+ -+ 2, = ¢ with 2a + 70+ ¢ = 1. Then A\(F) <
A(Hb3) < max fo3 subject to 2a+7b+c = 1, where fo3 = a?(210*+Tbc+0.5¢%) +2a(350° +

21b%c + 3.5bc?) + 35b* + 35b3¢c. Hence fo3 < 0.0224 by using MATLAB (see Table 1).

4 Proof for Theorem 5

Proof for Theorem 5. Suppose to the contrary that A(G) > (K, 0_4). Assume
that G is dense, otherwise replace G' by a dense subgraph with equal Lagrangian. Denote
V(G) = [n]. Let ® = (xq,...,x,) be an optimal weighting of G. Hence z; > 0 for every
i € [n] since G is dense. Let W = {vy,vq,...,0,_ 1} Let S be an r-graph with edge set
{Wu{i}:i€[s+t+r—2]}. Since \(G) > )\( viipor—g) and v(S) =s+t+2r -3, G
contains a copy of S by Proposition 12. For convenience, assume that S C G.

Let Gy = G and uy be an arbitrary vertex in V(Go). Let G be a dense subgraph
of Lg,(up) (the link-graph of vertex uy in V(Gy) with M(G1) = A Lg,(up)). Since Gy
is dense with positive Lagrangian, we have A\(G;) > rA(Gy) by Lemma 10. Similarly,
for every i € {0,1,2,...,r — 3}, we can find an arbitrary fixed vertex u; in V(G;) such
that A(Gi1) = (r — i) A(Gi), where G,y is a dense subgraph of L, (u;) with A(Gi41) =
A Lg,(u;)). Note that G; is an (r — i)-graph.

Claim. G,_5 is a complete graph on [ > r 4+t — 1 vertices. Under the condition that
the above Claim holds, for each i € {0,1,2,...,r — 3}, since V(G;41) is a proper subset
of V(G;), we have v(G;) > r +t — 1. By the arbitrariness of u;, we can always choose

Now we are going to prove the above Claim. As A(Giy1) > (r — i)A(G;) for each
i€{0,1,...,r — 3}, therefore

MGr—2) > 3NGr—3) >3 X 4ANG—y) > -+ >3 x4 x - xrA(G). (2)

Note that G,_5 is a simple graph. By Theorem 2, G,_5 is a complete graph. Denote | =
v(G,_3). Therefore A\(G,_5) = A(K}?) = 1 (1 — ). Combined with A(Go) > MK, 9,_4),
inequality (2) yields

2 [ k" 2kt ’

where k = s+t +2r —4 and A\(K}) = (]:)k—lr Inequality (3) implies

T

R e D D DR | £

=2 1<z < <zj1<r—1 j=1

Denote u; = K3 . H] 1%, 2 <1< r. Note that

r—1
Ujrq < k‘_iZl Z Ha:] = 7,—_1)uz < u;,

=1 1<z <<xj—1<r—1 j=1
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where the last inequality follows from k& > (tr=2rr=1) " Then we have u; > U1, which

2
yields that >0 ,(=1)'u; < uy = % Thus 7 < T(;;D, which combines with k£ >
MLW imply that [ > r(ﬁn >t+r—2 Sol>t+r—1.

Let wy,wy, ..., wy € V(G,_3) \ W be t different vertices. We know that {{ug, u,...,
Up—g,wi,wit 1 < i < j < t} forms a copy of Hy in G. Since |[s + ¢+ 1 — 2] \
{wy, wa, ..., Wy, ug, U,y .o Up—g | = s and {wy, we, . .., wy, ug, U, - .., up—3 W = (0, there-
fore S — {wy,wa, ..., wy,up,ug, ..., u—3} contains a copy of Fs. Note that H; and Fj are

disjoint. So we get a contradiction that G is Fy;-free. We complete the proof.

5 Concluding remarks

Since every spanning subgraph of an A-perfect hypergraph is also A-perfect, it is interesting
to study those “dense” A-perfect r-graphs. Let f(n,r) be the maximum number of edges in
all \-perfect r-graphs on n vertices. Since every simple graph is A-perfect by Theorem 2, we
have f(n,2) = (3) for all n > 2. Let K}~ be the 3-graph on 4 vertices with 3 three edges.
Frankl and Fiiredi [11] showed that 7(K};~) > 2/7. Since K covers pairs, therefore
m(K]T) = 7(K;7) > 2/7>2/9 =3I\(K3). So K~ is not A\-perfect, which implies that
K3 is not A-perfect, either. On the other hand, m,({123,124}) = 3!\({123}) = 2/9 by
Sidorenko [22]. Therefore f(4,3) = 2. It seems that it is hard to determine f(n,r) even
for special pair (n,r) when n > r > 3. Now we propose the following problem.

Problem 17. Let n,r be two integers with n > r > 3.
(i) Whether lim,, o f(n,r)/(") = 07
(ii) Can we determine f(n,r) for some special pair (n,r), such as f(5,3)?

Let us close this paper with a conjecture. Recall that S} ,(n) = {e € ([7:}) ceN[t—1] #
0}. Note that S]_;(n) and K, ; are two obvious maximum M -free 4-graphs. We propose
the following conjecture.

Conjecture 18. Let F be an M/ -free r-graph. Then
A(F) < max{A(K7, 1), A(57 1)}
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