
On the Performance of the

Depth First Search Algorithm in

Supercritical Random Graphs

Sahar Diskin ∗ Michael Krivelevich †

Submitted: Dec 1, 2021; Accepted: Sep 5, 2022; Published: Sep 23, 2022

© The authors. Released under the CC BY-ND license (International 4.0).

Abstract

We consider the performance of the Depth First Search (DFS) algorithm on the
random graph G

(
n, 1+ε

n

)
, ε > 0 a small constant. Recently, Enriquez, Faraud and

Ménard proved that the stack U of the DFS follows a specific scaling limit, reaching
the maximal height of (1 + oε(1)) ε2n. Here we provide a simple analysis for the
typical length of a maximum path discovered by the DFS.

1 Introduction

We consider the structure of the spanning tree of the giant component of G(n, p) uncovered
by the Depth First Search (DFS) algorithm, for the supercritical regime p = 1+ε

n
.

As for the notation of the sets in the DFS algorithm, we follow the conventions similar
to [5]: We denote by S the set of vertices whose exploration is complete; by T the set of
vertices not yet visited, and by U the set of vertices which are currently being explored,
kept in a stack. At any moment 0 6 m 6

(
n
2

)
in the DFS, we denote by S(m), T (m) and

U(m) the sets S, T and U (respectively) at m.
The algorithm starts with S = U = ∅ and T = V (G), and ends when U ∪ T = ∅.

At each step, if U is nonempty, the algorithm queries T for neighbours of the last vertex
in U. The algorithm is fed Xi, 0 6 i 6

(
n
2

)
, i.i.d Bernoulli(p) random variables, each

corresponding to a positive (with probability p) or negative (with probability 1 − p)
answer to such a query. If U is nonempty and the last vertex in U has no more queries
to ask, then we move the last vertex of U to S. If U = ∅, we move the next vertex from
T into U. Formally, after completing the discovery of all the connected components, we
query all the remaining pairs of vertices that have not been queried by the DFS.

∗School of Mathematical Sciences, Tel Aviv University, Tel Aviv 6997801, Israel. Email: sa-
hardiskin@mail.tau.ac.il.

†School of Mathematical Sciences, Tel Aviv University, Tel Aviv 6997801, Israel. Email: kriv-
elev@tauex.tau.ac.il. Research supported in part by USA-Israel BSF grant 2018267 and by ISF grant
1261/17.

the electronic journal of combinatorics 29(3) (2022), #P3.64 https://doi.org/10.37236/10894

https://doi.org/10.37236/10894

Enriquez, Faraud and Ménard provided in [2] an analysis of the performance of DFS:
tracking the stack U, they showed it follows a specific scaling limit, reaching the maximal
height of (1 + oε(1)) ε2n. Here we provide a simpler, and perhaps more telling argument
for the typical maximal length of a path found by DFS.

Our result is as follows:

Theorem 1 Let ε > 0 be a small enough constant, and let p = 1+ε
n
. Run the DFS algo-

rithm on G(n, p). Then, whp, a longest path in the obtained spanning forest is of length
ε2n+O(ε3)n.

We should note that while the precise length of a longest path in G(n, p) is an open
problem, it is known that a longest path is whp at least of length 4ε2

3
n and at most 7ε2

4
n

(see [4], [6]). Hence, while the DFS finds a path of the correct magnitude (Θ(ε2)n) as was
shown already in [5], the longest path found by the algorithm is significantly shorter than
a longest path in the graph.

Furthermore, while we treat ε as a constant, our statements and proof hold for any
ε = ε(n) that tends to 0 with n → ∞, as long as ε(n) � n−1/3+o(1) (see the comment
following the proof of Lemma 2.3), covering a substantial part of the barely-supercritical
regime as well.

2 Two-step Analysis

We define the excess of a connected graph G = (V,E) to be |E(G)| − |V (G)| + 1. We
define the excess of a graph to be the sum of the excesses of its connected components.

We require the following well-known facts regarding G(n, p) (see, for example, [3]):

Theorem 2.1 Let ε > 0 be a small enough constant. Then, whp:

1. In G
(
n, 1+ε

n

)
there is a unique giant component, L1, whose size is asymptotic to Θ(ε)n.

All the other components are of size O (lnn/ε2).

2. The excess of G
(
n, 1+ε

n

)
is at most 6ε3n.

3. In G
(
n, 1−ε

n

)
, all the components are of size O (lnn/ε2).

When p = 1+ε
n

, we call G(n, p) a supercritical random graph. When p = 1−ε
n

we call
G(n, p) a subcritical random graph.

We also require the following simple lemma:

Lemma 2.2 Let ε > 0 be a small enough constant, and let p = 1+ε
n
. Then, whp, by the

moment m = n ln2 n we are already in the midst of discovering the giant component.

Proof. By Theorem 2.1, the largest component is whp of size Θ(ε)n, and all the other
components are of size O

(
lnn
ε2

)
. As long as we are prior to the discovery of the giant

component, every time U empties, the new vertex about to enter U has probability at
least Θ(ε) to belong to the giant component. Every time a vertex that does not belong

the electronic journal of combinatorics 29(3) (2022), #P3.64 2

to the giant enters U, U empties after at most O
(
n lnn

ε2

)
queries, corresponding to at

most O
(

lnn
ε2

)
positive answers. Therefore, the probability that after n ln2 n rounds we are

still not in the midst of discovering the giant component is at most (1−Θ(ε))

n ln2 n

O(n lnn
ε2

) =

(1−Θ(ε))Ω(ε2) lnn = o(1).

We will focus on the stack of the DFS, U, and its development throughout the DFS
run.

2.1 The Straightforward Analysis

In hindsight, we know that U reaches its maximal height around the moment εn2

1+ε
. However,

around this moment issues with critically begin to occur. We thus define two moments
which will be useful as points of reference for us:

m1 :=
(ε− ε2)n2

1 + ε
, m2 :=

(ε− ε2 + ε3)n2

1 + ε
. (1)

The following straightforward lemma gives a bound on the height of U at the moment
m1, depending only on the number of queries between U and T , which we will analyse
afterwards:

Lemma 2.3 Let ε > 0 be a small enough constant and let p = 1+ε
n
. Let m1 be as defined

in (1). Run the DFS algorithm on G(n, p). Then, at the moment m1 we have whp:

|U(m1)| = ε2n

2
+
qm1(U, T)

n
+O(ε3)n,

where qm1(U, T) is the number of queries between the vertices of U(m1) and T (m1) by
moment m1.

Proof. We consider the different types of queries that occurred by moment m1:

1. qm1(S, T) is the number of queries between the vertices in S(m1) and T (m1) by the
moment m1. By properties of the DFS,

qm1(S, T) = |S(m1)||T (m1)|.

2. qm1(S ∪ U) is the number of queries inside S(m1) ∪ U(m1) by the moment m1. By
Theorem 2.1, the excess of the graph is whp at most 6ε3n. Hence, we have that
whp: (

|S(m1)|+ |U(m1)|
2

)
− 6ε3n2 6 qm1(S ∪ U) 6

(
|S(m1)|+ |U(m1)|

2

)
.

Indeed, there are
(|S(m1)|+|U(m1)|

2

)
possible queries inside S(m1) ∪ U(m1). In order

to obtain the full description of the graph, we will need to ask all these queries.
Should there be more than 6ε3n2 queries remaining after the DFS run, there would
be whp (by a standard Chernoff-type bound, see, for example, Theorem A.1.11 of
[1]) at least 6ε3n additional edges, contradicting Theorem 2.1.

the electronic journal of combinatorics 29(3) (2022), #P3.64 3

3. qm1(U, T) is the number of queries between the vertices in U(m1) and T (m1) by the
moment m1.

These types of queries account for all the queries by moment m1. We thus have that:

m1 =
(ε− ε2)n2

1 + ε
= qm1(S, T) + qm1(S ∪ U) + qm1(U, T),

and∣∣∣∣∣ (qm1(S, T) + qm1(S ∪ U))−

(
|T (m1)||S(m1)|+ (|S(m1)|+ |U(m1)|)2

2

)∣∣∣∣∣ 6 6ε3n2.

By Lemma 2.2, by the moment n ln2 n we are already in the midst of discovering the
largest component. As such, by the moment m1, U emptied whp at most 2 ln2 n times
(every time U emptied we must have had at least (1−Θ(ε))n queries, whp). Therefore,
by properties of the DFS run and by Lemma 2.2 we have that whp,∣∣∣∣∣|S(m1)|+ |U(m1)| −

m1∑
i=1

Xi

∣∣∣∣∣ 6 2 ln2 n,

and |T (m1)| = n − |S(m1)| − |U(m1)|. Using a standard Chernoff-type bound together
with the union bound, we obtain that with exponentially high probability:∣∣∣∣∣

m1∑
i=1

Xi − (ε− ε2)n

∣∣∣∣∣ 6 ε3n.

Hence whp,

|S(m1)|+ |U(m1)| = (ε− ε2)n+O(ε3)n,

and thus whp,

(ε− ε2)n2

1 + ε
= |T (m1)||S(m1)|+

(
|S(m1) + |U(m1)|

2

)
+ qm1(U, T) +O(ε3)n

= (n− (ε− ε2)n)
(
(ε− ε2)n− |U(m1)|

)
+
ε2n2

2
+ qm1(U, T) +O(ε3)n2

= εn2 − 3ε2n2

2
− n|U(m1)|+ qm1(U, T) +O(ε3)n2,

where the last equality follows since U(m1) spans a path, and whp a longest path is of
length at most 2ε2n (see [6]). Multiplying both sides of the inequality by 1+ε

n
, we obtain

that whp:

εn− ε2n = (1 + ε)

(
εn− 3ε2n

2
− |U(m1)|+ qm1(U, T)

n
+O(ε3)n

)
= εn− ε2n

2
− |U(m1)|+ qm1(U, T)

n
+O(ε3)n,

the electronic journal of combinatorics 29(3) (2022), #P3.64 4

for small enough ε. Rearranging, we derive that whp:

|U(m1)| = ε2n

2
+
qm1(U, T)

n
+O(ε3)n,

as required.

We remark that with slight adjustment in the proof of Lemma 2.2, we have that whp
by the moment n ln2 n

ε
we are already in the midst of discovering the largest component.

Then, with a more careful treatment of the error terms, the proof of Lemma 2.3 follows
through for any ε� n−1/3+o(1) (and subsequently, so do the proofs of the following lemmas
and Theorem 1).

An immediate corollary of Lemma 2.3 is that the DFS uncovers whp a path of size at
least ε2n

2
− O(ε3)n. In order to obtain tight bounds, we will need to analyse the quantity

qm1(U, T).

2.2 Estimating qm1(U, T)

We now want to obtain a good estimate for qm1(U, T). For that, we first observe that
G[T (m)] behaves like a random graph. Specifically, for m 6 m1, G[T (m)] behaves like a
supercritical random graph, having a unique giant component with all other components
of size at most logarithmic in n; for m > m2, G[T (m)] behaves like a subcritical random
graph, with all components of size at most logarithmic in n. For m1 < m < m2, G[T (m)]
might behave like a critical random graph, however, these two moments are close enough
so this does not affect the size of U significantly. We now state and prove this formally:

Lemma 2.4 Let ε > 0 be a small enough constant. Let p = 1+ε
n

, and let m1,m2 be as
defined in (1). Run the DFS on G(n, p). Then, whp, for all m 6 m1, G[T (m)] behaves
like a supercritical random graph, and for all m > m2, G[T (m)] behaves like a subcritical
random graph.

Proof. First we note that since at any moment m the vertices in T (m) have not been
queried against each other, G[T (m)] is distributed like G

(
|T (m)|, 1+ε

n

)
random graph.

Now, let f(ε), g(ε) be positive constants depending on ε. Then, G[T (m)] is supercritical
if |T (m)|p > 1 + f(ε), and subcritical if |T (m)|p 6 1 − g(ε). Recall that |T (m)| =
n− |S(m)| − |U(m)|, and that by Lemma 2.2 and by a Chernoff-type bound, whp∣∣∣∣∣|S(m) + |U(m)| −

m∑
i=1

Xi

∣∣∣∣∣ 6 ln2 n.

Substituting m = m1, we have whp that:

|T (m1)|p >
(
n− (ε− ε2)n− 4

√
n lnn

) 1 + ε

n

> 1 + ε3 − 5

√
lnn

n
.

the electronic journal of combinatorics 29(3) (2022), #P3.64 5

Similarly, substituting m = m2 we get whp that

|T (m2)|p 6
(
n− (ε− ε2 + ε3)n+ 3

√
n lnn

) 1 + ε

n

6 1− ε4 + 4

√
lnn

n
.

All that is left is to note that, by properties of the DFS, for any two moments m 6 m′

we have that T (m′) ⊆ T (m) and thus |T (m′)| 6 |T (m)|.

We are now ready to provide a good estimate for qm1(U, T):

Lemma 2.5 Let ε > 0 be a small enough constant. Let p = 1+ε
n

, and let m1 be as defined
in (1). Run the DFS on G(n, p). Then, whp,

|U(m1)|
2

− 8ε3n 6
qm1(U, T)

n
6

(1 + ε)|U(m1)|
2

.

Proof. At any moment m 6 m1, by Lemma 2.4 G[T (m)] behaves like a supercritical
random graph. As such, by Theorem 2.1, whp it has a unique giant component of size
linear in n, with all other components of size at most logarithmic in n.

Consider a vertex that entered U at some moment m 6 m1. If it belonged to the giant
component of G[T (m−1)], then we will explore all of the giant component of G[T (m−1)],
whose size is linear in n, before it will move out of U . If it did not belong to the giant
component of G[T (m − 1)], then we will explore a component of size logarithmic in n,
before removing it from U . As such, all but the last ln2 n vertices of U(m1) entered U
from a giant component (indeed, the last ln2 n vertices of U(m1) form a path, and a path
of length ln2 n belongs to the giant component), and we can focus on these vertices.

Consider such a moment m 6 m1 where a vertex belonging to the giant component of
G[T (m− 1)] entered U , and denote the last vertex in U(m) by v. Noting that these giant
components are nested, and since by Lemma 2.4 whp G[T (m1)] has a giant component,
we have that whp this holds for all m 6 m1. Hence, whp G[T (m)] also has a giant
component, and since v belonged to the giant component of G[T (m − 1)], it must have
at least one neighbour in the giant component of G[T (m)]. Let q(v,m) be the random
variable representing the number of queries the vertex v in U had against the vertices in
T (m), before the next vertex belonging to the giant of G[T (m)] enters U.

For the upper bound, observe that q(v,m) is stochastically dominated by the random
variable Uni(1, n), since we know that there is at least one neighbour of v in the giant
of G[T (m)], and there are at most n vertices in T (m). Therefore, qm1(U, T) is stochas-
tically dominated by the sum of |U(m1)| i.i.d random variables distributed according to
Uni(1, n), together with at most n ln2 n additional queries accounting for the last ln2 n
vertices in U(m1). By the Law of Large Numbers, we have that:

P

[
qm1(U, T)

n
>

(1 + ε)|U(m1)|
2

]
= o(1),

the electronic journal of combinatorics 29(3) (2022), #P3.64 6

since |U(m1)| > ε2n
2
.

For the lower bound, observe that any additional neighbours that v may have in the
giant component of G[T (m)], besides the one guaranteed by construction, contribute to
the excess of the giant component. Indeed, the edges between v and these additional
neighbours will not be queried during the DFS run, since the entire giant component
of G[T (m)] will be explored before we return to v in U. By Theorem 2.1, the excess
of the giant component is whp at most 6ε3n. Furthermore, while it is possible that
some vertices moved from T to U (and later on to S) between the moment m and the
moment where we found the first neighbour in the giant, we still have that for all m 6 m1

whp |T (m)| > |T (m1)| > (1 − 2ε)n. Thus qm1(U, T) stochastically dominates the sum
of |U(m1)| − 6ε3n − ln2 n random variables distributed according to Uni(1, (1 − 2ε)n).
Since |U(m1)| > ε2n

2
, by the Law of Large numbers we obtain the required lower bound

whp.

3 Proof of Theorem 1

By Lemma 2.3 and Lemma 2.5, whp at the moment m1 as defined in (1),

|U(m1)| = ε2n

2
+
qm1(U, T)

n
+O(ε3)n

=
ε2n

2
+
|U(m1)|

2
+O(ε3)n.

Rearranging, we obtain that whp |U(m1)| = ε2n + O(ε3)n. This immediately proves the
lower bound. For the upper bound, observe that by Lemma 2.4, between m1 and m2 (as
defined in (1)) we have at most O(ε3)n2 queries, corresponding to at most O(ε3)n addi-
tional vertices to U, whp. Afterwards, by Lemma 2.4, whp the DFS enters the subcritical
phase, and by Theorem 2.1 whp all the components in G[T] are of size logarithmic in n,
at most. As such, |U | could increase by at most ln2 n, before decreasing back again.

References

[1] N. Alon and J. H. Spencer, The probabilistic method, 4th Ed., Wiley, New York,
2016.

[2] N. Enriquez, G. Faraud and L. Ménard, Limiting shape of the depth first search tree
in an Erdős-Rényi graph, Random Structures & Algorithms 56 (2020), 501–516.

[3] A. Frieze and M. Karoński, Introduction to random graphs, Cambridge Univer-
sity Press, Cambridge, 2016.

[4] G. Kemkes and N. Wormald, An improved upper bound on the length of the longest
cycle of a supercritical random graph, SIAM J. Discrete Math. 27 (2013), 342–362.

[5] M. Krivelevich and B. Sudakov, The phase transition in random graphs — a simple
proof, Random Structures & Algorithms 43 (2013), 131–138.

[6] T. Luczak, Cycles in a random graph near the critical point, Random Structures &
Algorithms 2 (1991), 421–440.

the electronic journal of combinatorics 29(3) (2022), #P3.64 7

	Introduction
	Two-step Analysis
	The Straightforward Analysis
	Estimating qm1(U,T)

	Proof of Theorem 1

