On the Performance of the Depth First Search Algorithm in Supercritical Random Graphs

Sahar Diskin [∗] Michael Krivelevich †

Submitted: Dec 1, 2021; Accepted: Sep 5, 2022; Published: Sep 23, 2022 ©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

We consider the performance of the Depth First Search (DFS) algorithm on the random graph $G(n, \frac{1+\epsilon}{n}), \epsilon > 0$ a small constant. Recently, Enriquez, Faraud and Ménard proved that the stack U of the DFS follows a specific scaling limit, reaching the maximal height of $(1 + o_{\epsilon}(1)) \epsilon^2 n$. Here we provide a simple analysis for the typical length of a maximum path discovered by the DFS.

1 Introduction

We consider the structure of the spanning tree of the giant component of $G(n, p)$ uncovered by the Depth First Search (DFS) algorithm, for the supercritical regime $p = \frac{1+\epsilon}{n}$ $\frac{+\epsilon}{n}$.

As for the notation of the sets in the DFS algorithm, we follow the conventions similar to [\[5\]](#page-6-0): We denote by S the set of vertices whose exploration is complete; by T the set of vertices not yet visited, and by U the set of vertices which are currently being explored, kept in a stack. At any moment $0 \n\leq m \leq \binom{n}{2}$ $_{2}^{n}$) in the DFS, we denote by $S(m)$, $T(m)$ and $U(m)$ the sets S, T and U (respectively) at m.

The algorithm starts with $S = U = \emptyset$ and $T = V(G)$, and ends when $U \cup T = \emptyset$. At each step, if U is nonempty, the algorithm queries T for neighbours of the last vertex in U. The algorithm is fed X_i , $0 \leq i \leq \binom{n}{2}$ n_2 , i.i.d Bernoulli(p) random variables, each corresponding to a positive (with probability p) or negative (with probability $1 - p$) answer to such a query. If U is nonempty and the last vertex in U has no more queries to ask, then we move the last vertex of U to S. If $U = \emptyset$, we move the next vertex from T into U. Formally, after completing the discovery of all the connected components, we query all the remaining pairs of vertices that have not been queried by the DFS.

[∗]School of Mathematical Sciences, Tel Aviv University, Tel Aviv 6997801, Israel. Email: sahardiskin@mail.tau.ac.il.

[†]School of Mathematical Sciences, Tel Aviv University, Tel Aviv 6997801, Israel. Email: krivelev@tauex.tau.ac.il. Research supported in part by USA-Israel BSF grant 2018267 and by ISF grant 1261/17.

Enriquez, Faraud and Ménard provided in $[2]$ an analysis of the performance of DFS: tracking the stack U, they showed it follows a specific scaling limit, reaching the maximal height of $(1 + o_{\epsilon}(1)) \epsilon^2 n$. Here we provide a simpler, and perhaps more telling argument for the typical maximal length of a path found by DFS.

Our result is as follows:

Theorem 1 Let $\epsilon > 0$ be a small enough constant, and let $p = \frac{1+\epsilon}{n}$ $\frac{+ \epsilon}{n}$. Run the DFS algorithm on $G(n, p)$. Then, whp, a longest path in the obtained spanning forest is of length $\epsilon^2 n + O(\epsilon^3)n$.

We should note that while the precise length of a longest path in $G(n, p)$ is an open problem, it is known that a longest path is **whp** at least of length $\frac{4e^2}{3}$ $\frac{1}{3}e^2$ *n* and at most $\frac{7e^2}{4}$ $\frac{\epsilon^2}{4}n$ (see [\[4\]](#page-6-2), [\[6\]](#page-6-3)). Hence, while the DFS finds a path of the correct magnitude $(\Theta(\epsilon^2)n)$ as was shown already in [\[5\]](#page-6-0), the longest path found by the algorithm is significantly shorter than a longest path in the graph.

Furthermore, while we treat ϵ as a constant, our statements and proof hold for any $\epsilon = \epsilon(n)$ that tends to 0 with $n \to \infty$, as long as $\epsilon(n) \gg n^{-1/3+o(1)}$ (see the comment following the proof of Lemma 2.3), covering a substantial part of the barely-supercritical regime as well.

2 Two-step Analysis

We define the excess of a connected graph $G = (V, E)$ to be $|E(G)| - |V(G)| + 1$. We define the excess of a graph to be the sum of the excesses of its connected components.

We require the following well-known facts regarding $G(n, p)$ (see, for example, [\[3\]](#page-6-4)):

Theorem 2.1 Let $\epsilon > 0$ be a small enough constant. Then, whp:

- **1.** In $G(n, \frac{1+\epsilon}{n})$ there is a unique giant component, L_1 , whose size is asymptotic to $\Theta(\epsilon)n$. All the other components are of size $O(\ln n/\epsilon^2)$.
- **2.** The excess of $G(n, \frac{1+\epsilon}{n})$ is at most $6\epsilon^3 n$.
- **3.** In $G(n, \frac{1-\epsilon}{n})$, all the components are of size $O(\ln n/\epsilon^2)$.

When $p = \frac{1+\epsilon}{n}$ $\frac{1+\epsilon}{n}$, we call $G(n, p)$ a supercritical random graph. When $p = \frac{1-\epsilon}{n}$ we call $G(n, p)$ a subcritical random graph.

We also require the following simple lemma:

Lemma 2.2 Let $\epsilon > 0$ be a small enough constant, and let $p = \frac{1+\epsilon}{n}$ $\frac{+ \epsilon}{n}$. Then, **whp**, by the moment $m = n \ln^2 n$ we are already in the midst of discovering the giant component.

Proof. By Theorem 2.1, the largest component is **whp** of size $\Theta(\epsilon)n$, and all the other components are of size $O\left(\frac{\ln n}{\epsilon^2}\right)$ $\frac{n n}{\epsilon^2}$). As long as we are prior to the discovery of the giant component, every time U empties, the new vertex about to enter U has probability at least $\Theta(\epsilon)$ to belong to the giant component. Every time a vertex that does not belong to the giant enters U, U empties after at most $O(n^{\frac{\ln n}{\epsilon^2}})$ $\frac{n n}{\epsilon^2}$ queries, corresponding to at most $O\left(\frac{\ln n}{\epsilon^2}\right)$ $\frac{n n}{\epsilon^2}$) positive answers. Therefore, the probability that after $n \ln^2 n$ rounds we are $n \ln^2 n$ ne midst of discovering the giant component is at most $(1 - \Theta(\epsilon))^{O(n \frac{\ln n}{\epsilon^2})}$ still not in the midst of discovering the giant component is at most $(1 - \Theta(\epsilon))$ $(1 - \Theta(\epsilon))^{\Omega(\epsilon^2) \ln n} = o(1).$ \Box

We will focus on the stack of the DFS, U, and its development throughout the DFS run.

2.1 The Straightforward Analysis

In hindsight, we know that U reaches its maximal height around the moment $\frac{\epsilon n^2}{1+\epsilon}$. However, around this moment issues with critically begin to occur. We thus define two moments which will be useful as points of reference for us:

$$
m_1 := \frac{(\epsilon - \epsilon^2) n^2}{1 + \epsilon}, \qquad m_2 := \frac{(\epsilon - \epsilon^2 + \epsilon^3) n^2}{1 + \epsilon}.
$$
 (1)

The following straightforward lemma gives a bound on the height of U at the moment m_1 , depending only on the number of queries between U and T, which we will analyse afterwards:

Lemma 2.3 Let $\epsilon > 0$ be a small enough constant and let $p = \frac{1+\epsilon}{n}$ $\frac{+ \epsilon}{n}$. Let m_1 be as defined in (1). Run the DFS algorithm on $G(n, p)$. Then, at the moment m_1 we have whp:

$$
|U(m_1)| = \frac{\epsilon^2 n}{2} + \frac{q_{m_1}(U, T)}{n} + O(\epsilon^3)n,
$$

where $q_{m_1}(U, T)$ is the number of queries between the vertices of $U(m_1)$ and $T(m_1)$ by moment m_1 .

Proof. We consider the different types of queries that occurred by moment m_1 :

1. $q_{m_1}(S,T)$ is the number of queries between the vertices in $S(m_1)$ and $T(m_1)$ by the moment m_1 . By properties of the DFS,

$$
q_{m_1}(S,T) = |S(m_1)||T(m_1)|.
$$

2. $q_{m_1}(S \cup U)$ is the number of queries inside $S(m_1) \cup U(m_1)$ by the moment m_1 . By Theorem 2.1, the excess of the graph is **whp** at most $6\epsilon^3 n$. Hence, we have that whp:

$$
{|S(m_1)| + |U(m_1)| \choose 2} - 6\epsilon^3 n^2 \leqslant q_{m_1}(S \cup U) \leqslant {|S(m_1)| + |U(m_1)| \choose 2}.
$$

Indeed, there are $\binom{|S(m_1)|+|U(m_1)|}{2}$ $\mathcal{L}_2^{|U(m_1)|}$ possible queries inside $S(m_1) \cup U(m_1)$. In order to obtain the full description of the graph, we will need to ask all these queries. Should there be more than $6\epsilon^3 n^2$ queries remaining after the DFS run, there would be whp (by a standard Chernoff-type bound, see, for example, Theorem A.1.11 of [\[1\]](#page-6-5)) at least $6\epsilon^3 n$ additional edges, contradicting Theorem 2.1.

3. $q_{m_1}(U,T)$ is the number of queries between the vertices in $U(m_1)$ and $T(m_1)$ by the moment m_1 .

These types of queries account for all the queries by moment m_1 . We thus have that:

$$
m_1 = \frac{(\epsilon - \epsilon^2)n^2}{1 + \epsilon} = q_{m_1}(S, T) + q_{m_1}(S \cup U) + q_{m_1}(U, T),
$$

and

$$
\left| (q_{m_1}(S,T) + q_{m_1}(S \cup U)) - \left(|T(m_1)| |S(m_1)| + \frac{(|S(m_1)| + |U(m_1)|)^2}{2} \right) \right| \leq 6\epsilon^3 n^2.
$$

By Lemma 2.2, by the moment $n \ln^2 n$ we are already in the midst of discovering the largest component. As such, by the moment m_1 , U emptied whp at most $2 \ln^2 n$ times (every time U emptied we must have had at least $(1 - \Theta(\epsilon))n$ queries, whp). Therefore, by properties of the DFS run and by Lemma 2.2 we have that whp,

$$
\left| |S(m_1)| + |U(m_1)| - \sum_{i=1}^{m_1} X_i \right| \leq 2 \ln^2 n,
$$

and $|T(m_1)| = n - |S(m_1)| - |U(m_1)|$. Using a standard Chernoff-type bound together with the union bound, we obtain that with exponentially high probability:

$$
\left|\sum_{i=1}^{m_1} X_i - (\epsilon - \epsilon^2)n\right| \leq \epsilon^3 n.
$$

Hence whp,

$$
|S(m_1)| + |U(m_1)| = (\epsilon - \epsilon^2)n + O(\epsilon^3)n,
$$

and thus whp,

$$
\frac{(\epsilon - \epsilon^2)n^2}{1 + \epsilon} = |T(m_1)||S(m_1)| + { |S(m_1) + |U(m_1)| \choose 2} + q_{m_1}(U, T) + O(\epsilon^3)n
$$

= $(n - (\epsilon - \epsilon^2)n) ((\epsilon - \epsilon^2)n - |U(m_1)|) + \frac{\epsilon^2 n^2}{2} + q_{m_1}(U, T) + O(\epsilon^3)n^2$
= $\epsilon n^2 - \frac{3\epsilon^2 n^2}{2} - n|U(m_1)| + q_{m_1}(U, T) + O(\epsilon^3)n^2$,

where the last equality follows since $U(m_1)$ spans a path, and whp a longest path is of length at most $2\epsilon^2 n$ (see [\[6\]](#page-6-3)). Multiplying both sides of the inequality by $\frac{1+\epsilon}{n}$, we obtain that whp:

$$
\epsilon n - \epsilon^2 n = (1 + \epsilon) \left(\epsilon n - \frac{3\epsilon^2 n}{2} - |U(m_1)| + \frac{q_{m_1}(U, T)}{n} + O(\epsilon^3)n \right)
$$

$$
= \epsilon n - \frac{\epsilon^2 n}{2} - |U(m_1)| + \frac{q_{m_1}(U, T)}{n} + O(\epsilon^3)n,
$$

THE ELECTRONIC JOURNAL OF COMBINATORICS $29(3)$ (2022), $\#P3.64$ 4

for small enough ϵ . Rearranging, we derive that **whp**:

$$
|U(m_1)| = \frac{\epsilon^2 n}{2} + \frac{q_{m_1}(U, T)}{n} + O(\epsilon^3)n,
$$

as required.

We remark that with slight adjustment in the proof of Lemma 2.2, we have that **whp** by the moment $\frac{n \ln^2 n}{\epsilon}$ we are already in the midst of discovering the largest component. Then, with a more careful treatment of the error terms, the proof of Lemma 2.3 follows through for any $\epsilon \gg n^{-1/3+o(1)}$ (and subsequently, so do the proofs of the following lemmas and Theorem 1).

An immediate corollary of Lemma 2.3 is that the DFS uncovers whp a path of size at least $\frac{\epsilon^2 n}{2} - O(\epsilon^3)n$. In order to obtain tight bounds, we will need to analyse the quantity $q_{m_1}(U,T)$.

2.2 Estimating $q_{m_1}(U,T)$

We now want to obtain a good estimate for $q_{m_1}(U, T)$. For that, we first observe that $G[T(m)]$ behaves like a random graph. Specifically, for $m \leq m_1$, $G[T(m)]$ behaves like a supercritical random graph, having a unique giant component with all other components of size at most logarithmic in n; for $m \geq m_2$, $G[T(m)]$ behaves like a subcritical random graph, with all components of size at most logarithmic in n. For $m_1 < m < m_2$, $G[T(m)]$ might behave like a critical random graph, however, these two moments are close enough so this does not affect the size of U significantly. We now state and prove this formally:

Lemma 2.4 Let $\epsilon > 0$ be a small enough constant. Let $p = \frac{1+\epsilon}{n}$ $\frac{+ \epsilon}{n}$, and let m_1, m_2 be as defined in (1). Run the DFS on $G(n, p)$. Then, whp, for all $m \leq m_1$, $G[T(m)]$ behaves like a supercritical random graph, and for all $m \geq m_2$, $G[T(m)]$ behaves like a subcritical random graph.

Proof. First we note that since at any moment m the vertices in $T(m)$ have not been queried against each other, $G[T(m)]$ is distributed like $G(|T(m)|, \frac{1+\epsilon}{n})$ $\frac{+ \epsilon}{n}$ random graph. Now, let $f(\epsilon), g(\epsilon)$ be positive constants depending on ϵ . Then, $G[T(m)]$ is supercritical if $|T(m)|p \geq 1 + f(\epsilon)$, and subcritical if $|T(m)|p \leq 1 - g(\epsilon)$. Recall that $|T(m)| =$ $n - |S(m)| - |U(m)|$, and that by Lemma 2.2 and by a Chernoff-type bound, whp

$$
\left| |S(m) + |U(m)| - \sum_{i=1}^{m} X_i \right| \leq \ln^2 n.
$$

Substituting $m = m_1$, we have **whp** that:

$$
|T(m_1)|p \geqslant \left(n - (\epsilon - \epsilon^2)n - 4\sqrt{n \ln n}\right) \frac{1 + \epsilon}{n}
$$

$$
\geqslant 1 + \epsilon^3 - 5\sqrt{\frac{\ln n}{n}}.
$$

THE ELECTRONIC JOURNAL OF COMBINATORICS $29(3)$ (2022) , $\#P3.64$ 5

 \sqcup

Similarly, substituting $m = m_2$ we get whp that

$$
|T(m_2)|p \leqslant \left(n - (\epsilon - \epsilon^2 + \epsilon^3)n + 3\sqrt{n \ln n}\right) \frac{1 + \epsilon}{n}
$$

$$
\leqslant 1 - \epsilon^4 + 4\sqrt{\frac{\ln n}{n}}.
$$

All that is left is to note that, by properties of the DFS, for any two moments $m \leq m'$ we have that $T(m') \subseteq T(m)$ and thus $|T(m')| \leq |T(m)|$. \Box

We are now ready to provide a good estimate for $q_{m_1}(U, T)$:

Lemma 2.5 Let $\epsilon > 0$ be a small enough constant. Let $p = \frac{1+\epsilon}{n}$ $\frac{+ \epsilon}{n}$, and let m_1 be as defined in (1). Run the DFS on $G(n, p)$. Then, whp,

$$
\frac{|U(m_1)|}{2} - 8\epsilon^3 n \leqslant \frac{q_{m_1}(U,T)}{n} \leqslant \frac{(1+\epsilon)|U(m_1)|}{2}.
$$

Proof. At any moment $m \leq m_1$, by Lemma 2.4 $G[T(m)]$ behaves like a supercritical random graph. As such, by Theorem 2.1, whp it has a unique giant component of size linear in n , with all other components of size at most logarithmic in n .

Consider a vertex that entered U at some moment $m \leq m_1$. If it belonged to the giant component of $G[T(m-1)]$, then we will explore all of the giant component of $G[T(m-1)]$, whose size is linear in n , before it will move out of U. If it did not belong to the giant component of $G[T(m-1)]$, then we will explore a component of size logarithmic in n, before removing it from U. As such, all but the last $\ln^2 n$ vertices of $U(m_1)$ entered U from a giant component (indeed, the last $\ln^2 n$ vertices of $U(m_1)$ form a path, and a path of length $\ln^2 n$ belongs to the giant component), and we can focus on these vertices.

Consider such a moment $m \leq m_1$ where a vertex belonging to the giant component of $G[T(m-1)]$ entered U, and denote the last vertex in $U(m)$ by v. Noting that these giant components are nested, and since by Lemma 2.4 whp $G[T(m_1)]$ has a giant component, we have that whp this holds for all $m \leq m_1$. Hence, whp $G[T(m)]$ also has a giant component, and since v belonged to the giant component of $G[T(m-1)]$, it must have at least one neighbour in the giant component of $G[T(m)]$. Let $q(v, m)$ be the random variable representing the number of queries the vertex v in U had against the vertices in $T(m)$, before the next vertex belonging to the giant of $G[T(m)]$ enters U.

For the upper bound, observe that $q(v, m)$ is stochastically dominated by the random variable $Uni(1, n)$, since we know that there is at least one neighbour of v in the giant of $G[T(m)]$, and there are at most n vertices in $T(m)$. Therefore, $q_{m_1}(U, T)$ is stochastically dominated by the sum of $|U(m_1)|$ *i.i.d* random variables distributed according to Uni(1, n), together with at most $n \ln^2 n$ additional queries accounting for the last $\ln^2 n$ vertices in $U(m_1)$. By the Law of Large Numbers, we have that:

$$
P\left[\frac{q_{m_1}(U,T)}{n} \geqslant \frac{(1+\epsilon)|U(m_1)|}{2}\right] = o(1),
$$

THE ELECTRONIC JOURNAL OF COMBINATORICS $29(3)$ (2022), $\#P3.64$ 6

since $|U(m_1)| \geqslant \frac{\epsilon^2 n}{2}$ $\frac{2}{2}$.

For the lower bound, observe that any additional neighbours that v may have in the giant component of $G[T(m)]$, besides the one guaranteed by construction, contribute to the excess of the giant component. Indeed, the edges between v and these additional neighbours will not be queried during the DFS run, since the entire giant component of $G[T(m)]$ will be explored before we return to v in U. By Theorem 2.1, the excess of the giant component is **whp** at most $6e^3n$. Furthermore, while it is possible that some vertices moved from T to U (and later on to S) between the moment m and the moment where we found the first neighbour in the giant, we still have that for all $m \leq m_1$ whp $|T(m)| \geq |T(m_1)| \geq (1-2\epsilon)n$. Thus $q_{m_1}(U,T)$ stochastically dominates the sum of $|U(m_1)| - 6\epsilon^3 n - \ln^2 n$ random variables distributed according to $Uni(1, (1 - 2\epsilon)n)$. Since $|U(m_1)| \geqslant \frac{\epsilon^2 n}{2}$ $\frac{2n}{2}$, by the Law of Large numbers we obtain the required lower bound whp. \Box

3 Proof of Theorem 1

By Lemma 2.3 and Lemma 2.5, whp at the moment m_1 as defined in (1),

$$
|U(m_1)| = \frac{\epsilon^2 n}{2} + \frac{q_{m_1}(U, T)}{n} + O(\epsilon^3)n
$$

= $\frac{\epsilon^2 n}{2} + \frac{|U(m_1)|}{2} + O(\epsilon^3)n$.

Rearranging, we obtain that **whp** $|U(m_1)| = \epsilon^2 n + O(\epsilon^3)n$. This immediately proves the lower bound. For the upper bound, observe that by Lemma 2.4, between m_1 and m_2 (as defined in (1)) we have at most $O(\epsilon^3)n^2$ queries, corresponding to at most $O(\epsilon^3)n$ additional vertices to U , whp. Afterwards, by Lemma 2.4, whp the DFS enters the subcritical phase, and by Theorem 2.1 **whp** all the components in $G[T]$ are of size logarithmic in n, at most. As such, |U| could increase by at most $\ln^2 n$, before decreasing back again. \Box

References

- [1] N. Alon and J. H. Spencer, The probabilistic method, 4th Ed., Wiley, New York, 2016.
- [2] N. Enriquez, G. Faraud and L. Ménard, *Limiting shape of the depth first search tree* in an Erdős-Rényi graph, Random Structures & Algorithms 56 (2020), 501–516.
- [3] A. Frieze and M. Karonski, **Introduction to random graphs**, Cambridge University Press, Cambridge, 2016.
- [4] G. Kemkes and N. Wormald, An improved upper bound on the length of the longest cycle of a supercritical random graph, SIAM J. Discrete Math. 27 (2013), 342–362.
- [5] M. Krivelevich and B. Sudakov, *The phase transition in random graphs — a simple* proof, Random Structures & Algorithms 43 (2013), 131–138.
- [6] T. Luczak, Cycles in a random graph near the critical point, Random Structures & Algorithms 2 (1991), 421–440.