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Abstract

We introduce a new family of simple graphs, so called, growing graphs. We
investigate ways to modify a given simple graph G combinatorially to obtain a
growing graph. One may obtain infinitely many growing graphs from a single simple
graph. We show that a growing graph obtained from any given simple graph is
Cohen–Macaulay and every Cohen–Macaulay chordal graph is a growing graph. We
also prove that under certain conditions, a graph is growing if and only if its clique
complex is grafted and give several equivalent conditions in this case. Our work is
inspired by and generalizes a result of Villarreal on the use of whiskers and the work
of Faridi on grafting of simplicial complexes.

Mathematics Subject Classifications: 13C14, 13F55, 05E40

1 Introduction

Throughout, G(V (G), E(G)) denotes a simple graph, which is a graph without any loops
or multiple edges. We fix here the vertex set V (G) = {1, 2, . . . , n}, and simply write G
not specifying its vertex and edge sets. We identify each vertex i with the variable xi and
consider the ideal

I(G) = (xixj : {i, j} ∈ E(G)) ⊂ S = K[x1, . . . , xn].

The ideal I(G) is usually referred to as the edge ideal of G. A graph G is called Cohen–
Macaulay over the field K if S/I(G) is Cohen–Macaulay. Using the Stanley–Reisner
correspondence, one can associate a simplicial complex ∆G to G, whose faces are subsets
of V (G); namely independent sets of G. In this case, the Stanley–Reisner ideal of ∆G
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coincides with the edge ideal of G, i.e. I∆G
= I(G). Classifying all Cohen–Macaulay

graphs is notoriously intractable, and thus it is natural to study some special classes of
graphs. Of particular interest are the classes of trees, bipartite graphs and chordal graphs.

For instance, Villarreal [22] gave classification of all Cohen–Macaulay trees. Herzog and
Hibi [16] classified all Cohen–Macaulay bipartite graphs later Herzog, Hibi and Zheng
[18] did for all Cohen–Macaulay chordal graphs. The classification and construction of
Cohen–Macaulay graphs is one of the central problems and enjoys rich literature, for
example [3, 9, 10, 11, 15, 20, 21, 22] and [24].
Our paper complements this work, asking: Given an arbitrary simple graph G, how
can one modify G to obtain a Cohen–Macaulay graph? A primary inspiration for this
paper is Villarreal’s theorem from [22]. He showed that if G is a graph, and H is the
graph formed by adding a whisker to every vertex of G, then H is Cohen–Macaulay.
Cook and Nagel [9] extended this work and introduced fully clique–whiskering. They
proved that G′ obtained by fully clique–whiskering is Cohen–Macaulay. Francisco and
Ha [15] investigated whiskering for obtaining families of sequentially Cohen–Macaulay
graphs. Faridi [12] further generalized it for simplicial complexes and introduced grafting

of simplicial complexes. She proved that the facet ideal of a grafted simplicial complex is
Cohen–Macaulay, see also [12, Section 7].

In this paper, we introduce a construction of growing graphs see Section 3. Inter-
estingly, the celebrated constructions mentioned in [9], [19] and [22] are particular cases
of our construction. Moreover, corresponding to any simple graph G and a given clique
partition of the vertex set of G, one may obtain infinitely many Cohen–Macaulay graphs
by using our construction. At the end of this section, we give a complete characteriza-
tion of all Cohen–Macaulay chordal graphs by adding one more equivalent condition to a
well known characterization of Cohen–Macaulay chordal graphs due to Herzog, Hibi and
Zheng [18].
In the final section, we discuss Cohen–Macaulay modifications, which are discussed in
[1],[2], [4], [5] and [6]. Here we link the concept of growing graphs[Definition 3.1] to the
grafted simpicial complexes[Definition 4.7], defined by Sara Faridi in [12].

2 Preliminaries

In this section, we give a rather quick background of basic terminology and recall some
important results useful to apprehend the proceeding sections.
Given a subset W of V (G), we define the induced subgraph of G on W to be the subgraph
GW on W consisting of those edges {i, j} ∈ E(G) with {i, j} ⊂ W .

Definition 2.1. A chord of a cycle C is an edge {i, j} of G such that i and j are vertices
of C with {i, j} 6∈ E(C). A graph is said to be chordal graph if each of its cycles of length
> 3 has a chord. In particular a tree, which is a graph with no cycle, is a chordal graph.

A subset C ∈ V (G) is called a vertex cover of G if C ∩ E 6= ∅ for all E ∈ E(G).
A vertex cover C is minimal if no proper subset of C is a vertex cover of G and if all
minimal vertex covers of G have same cardinality, then we say that G is unmixed. All
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Cohen–Macaulay graphs are unmixed but not vice versa.
A simplicial complex ∆ on the vertex set V = {v1, . . . , vn} is a collection of subsets of V
such that {vi} ∈ ∆ for all i and, F ∈ ∆ implies that all subsets of F are also in ∆. The
elements of ∆ are called faces and the maximal faces under inclusion are called facets of ∆.
We denote by F(∆) the set of facets of ∆. The dimension of a face F is dimF = |F | − 1,
where |F | denotes the cardinality of F . The dimension of ∆, dim(∆), is defined as:

dim(∆) = max{dimF : F ∈ ∆}.

The pure d-skeleton of a simplicial complex ∆ is the subcomplex of ∆ generated be all
faces of dimension d and is denoted by ∆d. A notable process of associating a simplicial
complex with a given graph is the following.

Definition 2.2. The clique complex ∆(G) of a finite graph G on V (G) is a simplicial
complex whose faces are the cliques of G, where a subset C of V (G) is called a clique of
G if the induced subgraph GC is complete.

The following result characterizes all Cohen–Macaulay chordal graphs.

Theorem 2.3. [18, Theorem 2.1] Let K be a field and G be a chordal graph on the vertex
set [n]. Let F1, . . . , Fm be the facets of ∆(G) which admit a free vertex (belonging to only
one facet). Then the following are equivalent:

1. G is Cohen–Macaulay;

2. G is Cohen–Macaulay over K;

3. G is unmixed;

4. [n] is the disjoint union of F1, . . . , Fm.

Given a simplicial complex ∆ on the vertex set [n]. For F ⊆ {v1, . . . , vn} let

xF =
∏

vi∈F

xi

The non-face ideal or the Stanley–Reisner ideal of ∆, denoted by I∆, is an ideal of
S = K[x1, . . . , xn] generated by square–free monomials xF , where F 6∈ ∆.

The facet ideal of ∆ is the ideal I(∆) in S minimally generated by the square–free
monomials xF with F ∈ F(∆). Thus if ∆ = 〈F1, . . . , Fq〉, then

I(∆) = (xF1
, . . . , xFq

).

Here, we recall some terminologies from [12]. Let ∆ be a simplicial complex on [n]
with facets F1, . . . , Fq. A vertex cover for ∆ is a subset A of [n], with the property that
Fi ∩ A 6= ∅ for each facet Fi. A minimal vertex cover of ∆ is a vertex cover such that
no proper subset of A is a vertex cover. A simplicial complex ∆ is unmixed if all of its
minimal vertex covers have the same cardinality.
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Theorem 2.4. [14, Corollary 1.12] Let ∆ be a simplicial complex on [n]. If the facet ideal
I(∆) is Cohen–Macaulay, then ∆ is unmixed.

There are simple examples which show that the converse is not true in general. Suppose
that ∆ is a simplicial complex. A facet F of ∆ is called a leaf if either F is the only facet
of ∆, or there exits a facet G ∈ F(∆) \ {F}, such that

F ∩ F ′ ⊆ F ∩G

for every F ′ ∈ F(∆) \ {F}. The set of all such G is denoted by U∆(F ) and called the
universal set of F in ∆. If G ∈ U∆(F ) and F ∩G 6= ∅, then G is called a joint of F .

A vertex of a simplicial complex ∆ is free if it belongs to exactly one facet of ∆. Note
that every leaf has at least one free vertex. Suppose that ∆ is a connected simplicial
complex. ∆ is called a simplicial tree if all simplicial complexes Γ with F(Γ) ⊂ F(∆)
have a leaf. Such Γ is known as a subcomplex of ∆. It is also known that a simplicial
tree has at least two leaves, see [12, Lemma 4.1]. A nice property of simplicial trees is
recorded as follows.

Theorem 2.5. [12, Corollary 8.3] Let ∆ be a simplicial tree over a set of vertices x1, . . . , xn,
and let K be a field. Then the quotient ring K[x1, . . . , xn]/I(∆) is Cohen–Macaulay if
and only if ∆ is unmixed.

Before moving forward, we need to recall few more notions from [24]. A clutter C on
a vertex set V (C) is a collection of subsets of V (C) such that e1 6⊂ e2 for any two distinct
members e1, e2 ∈ C. The members of C are called circuits of C. A subset A ⊂ V (C), is
called independent set of C if it contains no circuit. The independence complex of C is
denoted and defined as

I(C) = {A ⊂ V (C) : A is an independent set of C}

Clutters can be linked with simplicial complexes via independence complex of C. Let C
be a clutter and v ∈ V (C), then

C \ {v} = {e : e is a circuit of C with v 6∈ e}

is called the deletion of C and

C/{v} = Min{e \ {v} : e is a circuit in C}

is called the contraction of C. Note that both C \{v} and C/{v} are clutters on the vertex
set V (C) \ {v}. A clutter D obtained from C after repeated deletion and/or contraction
is called a minor of C. It can easily be seen that for any two distinct vertices v and u in
V (C), we have (C \ v) \ u = (C \ u) \ v, (C/v)/u = (C/u)/v and (C \ v)/u = (C/u) \ v.
Let C be a clutter. A vertex v of C is simplicial if for every two distinct circuits e1 and e2
of C that contain v, there exists a third circuit e3 such that e3 ⊂ (e1 ∪ e2) \ {v}. A clutter
C is chordal if every minor of C has a simplicial vertex. It is obvious that every minor of
a chordal clutter is again chordal.
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Examples 2.6. [24] Following are some examples of chordal clutters:

1. If G is a graph, then G\v is (up to singleton circuits) the induced subgraph G/N [v],
where N [v] = N(v) ∪ {v} and N(v) denotes the set of adjacent vertices of v in G.
Hence every chordal graph is also a chordal clutter.

2. The clutter with circuits {1, 2, 3}, {1, 4, 5}, {2, 3, 4, 5}, {2, 3, 6}, {4, 5, 6} has a sim-
plicial vertex 1, and is chordal; but is not a chordal graph.

Here, we define an important class of simplicial complexes, called shellable simplicial
complexes.

Definition 2.7. A simplicial complex is said to be pure if all facets are of equal dimension.
Let ∆ be a d–dimensional pure simplicial complex. An ordering F1, F2, . . . Fr of the facets
of ∆ is a shelling, if the complex 〈F1, . . . , Fi−1〉 ∩ Fi is pure of dimension d − 1 for all
1 < i 6 r. A simplicial complex admitting a shelling is called shellable simplicial complex.

To say F1, F2, . . . , Fr is a shelling order of ∆; it is equivalent to saying that for all Fi

and all Fj < Fi, there exists x ∈ Fi \ Fj and Fk < Fi such that Fi \ Fk = {x}.
The shellablity of simplicial complexes is one of the most important combinatorial prop-
erty due to the following result.

Theorem 2.8. [17, Theorem 8.2.6] Let ∆ be pure shellable simplicial complex over ground
set [n]. Then the Stanley–Reisner ring S/I∆ is Cohen–Macaulay over any field.

3 Main Construction

In this section, we illustrate our construction of growing graphs. The focus of this section
is on the Cohen–Macaulayness of growing graphs, and subsequently recover the Villarreal’s
theorem on Cohen–Macaulayness. The following definition is the foundation stone.

Definition 3.1. Let G be a simple graph on the vertex set [n] and A1, . . . , Ar be a partition
of [n] into disjoint subsets such that Ai is a clique in G(Ai can be empty set). For each
i = 1, . . . , r, let Bi = {yi,1, . . . , yi,si} be a non-empty set. Define the graph GB1,...,Br

A1,...,Ar
as

follows:
GB1,...,Br

A1,...,Ar
= G ∪

(

r
∪
i=1

{F ⊂ Ai ∪ Bi : |F | = 2}
)

. (1)

where Bi∩Bj = ∅ for all i 6= j. We call the graph GB1,...,Br

A1,...,Ar
, the growing graph associated

to G with respect to B1, . . . , Br.

Remark 3.2. We shall call [n] = A1 ∪ . . . ∪ Ar a clique partition of [n]. Corresponding to
each partition of the vertex set, we have infinitely many choices for Bi’s thus there are
infinitely many growing graphs associated to any given graph. If some Ai = ∅, then the
resultant growing graph will be disconnected.

Let G be a graph and G′ = GB1,...,Br

A1,...,Ar
be the growing graph associated to G with respect

to B1, . . . , Br. Let ∆ and ∆′ be the independence complexes of G and G′ respectively.
Let

S = K[{xi : i = 1, . . . , n} ∪ {yi,j : i = 1, . . . , r, j = 1, . . . , si}]
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be the polynomial ring. Let us define the ordering on the variables:

x1 > · · · > xn > y1,1 > · · · > y1,s1 > · · · > yr,1 > · · · > yr,sr (2)

As the facets of ∆′ are maximal independent sets in G′, it is easy to see that the induced
subgraph of G′ on Ai ∪Bi is a complete graph. Thus in an independent set, we can select
at most one element from Ai ∪ Bi for all i. In other words, if T be a facet of ∆′, then
|T ∩ (Ai ∪Bi)| = 1 for all i. Let F = T ∩ [n], then F will be an independent set in G and
hence a face of ∆. Let us consider B = ∪r

i=1Bi and F ′ = T ∩ B, then T = F ∪ F ′ and
F ∩ F ′ = ∅. It is easy to see that F ′ contains exactly one yj,kj for a given 1 6 kj 6 sj,
where Aj ∩ F = ∅ holds. This observation is recorded in the following result.

Proposition 3.3. The independence complex ∆′ of the growing graph G′ is pure. Every
facet of ∆′ is of the form F ∪ F ′, where F is a face of ∆ and

F ′ =
⋃

j:Aj∩F=∅

{yj,kj : for exactly one 1 6 kj 6 sj}.

Here, we explain this fact through the following example.

Example 3.4. Consider the graph G with vertex set V (G) = {1, 2, 3, 4} and edge set
E(G) = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}}. Consider the vertex partition as V (G) =
{1} ∪ {2} ∪ {3} ∪ {4} and take B1 = {5, 6}, B2 = {7}, B3 = {8}, B4 = {9, 10, 11} then
G′ = GB1,...,B4

A1,...,A4
is displayed as follows.

1

3

2

4•
•

•
•

G

1
3

2

4
5

6

7

8
9

10

11•
•

•
•

•

•

•

•
•

•
•

•

G′

The following Table-A illustrates all facets of ∆′ correspondence to respective faces of
∆.

Table 1: A
Faces of ∆ Corresponding facets of ∆′

∅ {5, 7, 8, 9}, {5, 7, 8, 10}, {5, 7, 8, 11}, {6, 7, 8, 9}, {6, 7, 8, 10}, {6, 7, 8, 11}
{1} {1, 7, 8, 9}, {1, 7, 8, 10}, {1, 7, 8, 11}
{2} {2, 5, 8, 9}, {2, 5, 8, 10}, {2, 5, 8, 11}, {2, 6, 8, 9}, {2, 6, 8, 10}, {2, 6, 8, 11}
{3} {3, 5, 7, 9}, {3, 5, 7, 10}, {3, 5, 7, 11}, {3, 6, 7, 9}, {3, 6, 7, 10}, {3, 6, 7, 11}
{4} {4, 5, 7, 8}, {4, 6, 7, 8}
{1, 4} {1, 4, 7, 8}

Let us consider another partition of vertex set as V (G) = {1, 3} ∪ {2} ∪ {4} and B1 =
{5}, B2 = {6}, B3 = {7, 8, 9}, then G′ = GB1,...,B3

A1,...,A3
is shown as follows.
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1

3

2

4

5

6

7

8

9•
•

•
•

•

•
•

•
•

•

G′

In this case, the illustrative Table-B is given.

Table 2: B
Faces of ∆ Corresponding facets of ∆′

∅ {5, 6, 7}, {5, 6, 8}, {5, 6, 9}
{1} {1} ∪ {6, 7}, {1} ∪ {6, 8}, {1} ∪ {6, 9}
{2} {2} ∪ {5, 7}, {2} ∪ {5, 8}, {2} ∪ {5, 9}
{3} {3} ∪ {6, 7}, {3} ∪ {6, 8}, {3} ∪ {6, 9}
{4} {4} ∪ {5, 6}
{1, 4} {1, 4} ∪ {6}

Yet, another interesting case with the partition of vertex set V (G) = {1, 2, 3} ∪ {4}
with B1 = {5}, B2 = {6, 7}. In this case, G′ = GB1,...,B2

A1,...,A2
is drawn as follows.

1

3

2

4
5 6

7
•

•

•
•

•
•

•

•

G′

The corresponding Table-C of facets is presented as follows.

Table 3: C
Faces of ∆ Corresponding facets of ∆′

∅ {5, 6}, {5, 7}
{1} {1} ∪ {6}, {1} ∪ {7}
{2} {2} ∪ {6}, {2} ∪ {7}
{3} {3} ∪ {6}, {3} ∪ {7}
{4} {4} ∪ {5}
{1, 4} {1, 4} ∪ ∅

From this example, it can be noted that there are
∏

j:Aj∩F=∅
|sj| choices for F

′, thus

corresponding to each face F of ∆, there is a block of facets of ∆′. Also note that all new
graphs G′ are obtained from G. It is important to mention that none of them can be
recovered from G by using techniques given in [22, 9, 19, 12].

the electronic journal of combinatorics 29(3) (2022), #P3.65 7



Theorem 3.5. Let G be a graph on the vertex set [n] and A1, . . . , Ar be a partition of
[n] into disjoint subsets such that Ai is a clique in G. Let Bi = {yi,1, . . . , yi,si} and

G′ = GB1,...,Br

A1,...,Ar
be a growing graph associated to G with respect to B1, . . . , Br. Let ∆

′ be
the independence complex of G′ and S = K[{xi : i = 1, . . . , n} ∪ {yi,j : i = 1, . . . , r, j =
1, . . . , si}] be the polynomial ring. Then, ∆′ is pure shellable of dimension r−1 and hence
the ring S/I (G′) is Cohen–Macaulay of dimension r.

Proof. Proposition 3.3 guarantees that the independence complex ∆′ of G′ is pure and
has dimension r − 1, thus it is sufficient to show that ∆′ is shellable. We prove the fact
by presenting an order of the facets of ∆′ that appears as a shelling on ∆′. Our claim is
based on the following ordering:

Order the faces of ∆ in terms of increasing dimensions. If two faces have
the same dimension, then order them by the ordering of variables defined in
equation (2). Then, associated to each face F of ∆, consider the block of
facets of ∆′ associated to F , ordered as in (2).

From above discussion(see Example 3.4), we know that corresponding to every face of ∆,
there is a block of facets of ∆′. Assume S and T are two distinct facets of ∆′ with S < T ;
here arises two cases.
Case:1. When S and T belongs to different blocks corresponding to different faces of ∆:

We can write S = F ∪ F ′ and T = G ∪G′ where F,G are different faces of ∆, where

F ′ =
⋃

j:Aj∩F=∅

{yj,kj : for exactly one 1 6 kj 6 sj}

and
G′ =

⋃

j:Aj∩G=∅

{yj,pj : for exactly one 1 6 pj 6 sj}.

As F 6= G, we must have some xt ∈ G \ F . Let G1 = G \ {xt}, then G1 will also be a
face of ∆. As G1 ⊂ G so {j : Aj ∩G = ∅} ⊂ {j : Aj ∩G1 = ∅} thus

G′ ⊂ G′
1 :=

⋃

j:Aj∩G1=∅

{yj,pj : for exactly one 1 6 pj 6 sj}.

In fact, if xt ∈ Ap then G′
1 = G′ ∪ {yp,kp}, for exactly one 1 6 kp 6 sp. Let us take

T1 = G1 ∪G′
1, then T1 < T with T \ T1 = {xt}.

Case:2. When S and T belongs to same block corresponding to a face F of ∆:

In this case, S = F ∪ F ′ and T = F ∪ F ′′. As S 6= T , we have F ′ 6= F ′′ and T \ S 6= ∅.
Let l be the least number, such that yl,kl ∈ F ′′ \ F ′, thus yl,kl ∈ F ′′ and yl,kl /∈ F ′ which
further implies the existence of a yl,k′

l
∈ F ′ for some 1 6 k′

l 6= kl 6 sl with yl,k′
l
< yl,kl as

S < T .
If yl,kl is the only vertex in F ′′ \ F ′, take T1 := S < T with T \ T1 = {yl,kl} and we

are done, otherwise suppose ym,km ∈ F ′′ \ F ′. We have ordered F ′ and F ′′ as defined in
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(2) and as we have assumed l to be least such number, thus the first l − 1 vertices (w.r.t
ordering (2)) in F ′ and F ′′ will be the same. Thus F ′ and F ′′ will be of the form,

F ′ = {. . . , yl,k′
l
, . . . , ym,k′m

, . . .}

F ′′ = {. . . , yl,kl , . . . , ym,km , . . .}

where ym,k′m
6= ym,km . Let us consider,

F ′′′ = {. . . , yl,k′
l
, . . . , ym,km , . . .}

and suppose T1 = F ∪ F ′′′, then T1 will be a facet of ∆′ by Proposition 3.3 with T1 < T .
Note that ym,km /∈ F ′′ \ F ′′′ and yl,kl ∈ F ′′ \ F ′′′, thus ym,km /∈ T \ T1 and yl,kl ∈ T \ T1.
If yl,kl is the only element in T \ T1, we are done, otherwise repeat the same process.
This process will eventually terminate in finitely many steps yielding a Ti < T such that
T \ Ti = {yl,kl}, as required.

Here, we give a descriptive definition of a growing graph.

Definition 3.6. A graph G is said to be growing if there exists some graph H such that G
is a growing graph associated to H.

The following result shows that the whiskering of a graph, given by Villarreal in [22]
is a particular case of our construction.

Corollary 3.7. [22] Suppose G is a graph and let G′ be the graph obtained by adding a
whisker at every vertex v ∈ G. Then the ideal I(G′) is Cohen–Macaulay.

Proof. Suppose V (G) = {v1, . . . , vn} and consider the trivial clique partition of V (G) into
singleton sets as, V (G) = {v1} ∪ . . . ∪ {vn}. If we take Bi = {yi} for all 1 6 i 6 n, then
G′ = GB1,...,Bn

A1,...,An
, thus ∆′ is pure and I(G′) is Cohen–Macaulay by Theorem 3.5.

R. Woodroof [24] defined the concept of clique-starring( or clique-whiskering) in the
Proposition 22. It means to add a new vertex w and connecting it with all vertices of some
clique W of G, resulting graph is denoted by GW . D. Cook and U. Nagel [9] generalized
the the concept of clique-whiskering, and defined the term fully clique-whiskering.

Recall from [9] that a clique vertex-partition π of a graph G = (V,E) is a partition
π = {W1, . . . ,Wt} of V such that each subgraph induced onWi is a nonempty clique. Fully
clique-whiskering by a clique vertex-partition π = {W1, . . . ,Wt} is G clique-whiskered at
every clique of π; it produces the graph

Gπ = (V ∪ {w1, . . . , wt}, E ∪ {vwi|v ∈ Wi})

The fully clique-whiskering is also a particular case of our construction.

Corollary 3.8. [9, Corollary 3.5] Let π = {W1, . . . ,Wt} be a clique vertex-partition of G.
Then I(Gπ) is Cohen–Macaulay.
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Proof. If π = {W1, . . . ,Wt} be a clique vertex-partition of G. Let us take Bi = {wi},
singleton sets for all i. Then Gπ = HB1,...,Bt

W1,...,Wt
is a particular growing graph associated to

G and hence Cohen–Macaulay by Theorem 3.5.

Adding a whisker to each vertex is the same as saying that attaching the complete
graph K2 to each vertex. Hibi et al.[19] further generalized the construction given by
Cook and Nagel[9].

Corollary 3.9. [19, Theorem 1.1] Let G be a finite simple graph on a vertex set V =
{x1, . . . , xn}. Let k1, . . . , kn > 2 be integers. Then the graph G′ obtained from G by
attaching the complete graph Kki to xi for i = 1, . . . , n is Cohen–Macaulay.

Proof. Consider the trivial partition V (G) = {x1}∪. . . ,∪{xn} and takeBi = {y1, . . . , yki−1},
then the resulting growing graph is exactly G′.

Herzog et al. [18] characterized Cohen–Macaulay chordal graphs as recorded earlier
in Theorem 2.3. It can easily be observed [Corollary 3.10] that every Cohen–Macaulay
chordal graph is in fact a growing graph associated to some graph. Thus, it characterizes
all Cohen–Macaulay chordal graphs. By a free vertex in a simplicial complex, we mean a
vertex that belongs to exactly one facet of the simplicial complex.

Corollary 3.10. Let K be a field and G be a chordal graph on the vertex set [n]. Let
F1, . . . , Fm be the facets of ∆(G) that admit a free vertex. Then the following are equiv-
alent:

1. G is Cohen–Macaulay;

2. G is Cohen–Macaulay over K;

3. G is unmixed;

4. [n] is the disjoint union of F1, . . . , Fm.

5. G is a growing graph.

Proof. (1) to (4) are equivalent by Theorem 2.3.
(4) ⇒ (5) : As,

[n] = F1 ∪ . . . ∪ Fm

where Fi’s are cliques of ∆(G) containing free vertices. Let Ai and Bi denote the non-free
and free vertices of Fi respectively. Let A = ∪r

i=1Ai and H := GA be the induced graph.
Then G = HB1,...,Bm

A1,...,Am
.

(5) ⇒ (1) : Follows from Theorem 3.5.

In particular, one may directly recover the following result.

Corollary 3.11. If G is a tree then the following are equivalent:

1. G is Cohen–Macaulay.
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2. G is unmixed.

3. G is a growing graph.

Remark 3.12. In case of small graphs, it is easier to check whether a given graph is growing
or not. It is pertinent to mention that there exist Cohen–Macaulay graphs that are not
growing graphs. For example, 5−cycle is not growing graph but Cohen–Macaulay.

4 A Classification

Let I be a squarefree Cohen–Macaulay monomial ideal in S = K[x1, . . . , xn] for a field K.
We denote the unique minimal system of monomial generators of I by G(I). Let G(I) =
{u1, . . . , um}. We call a monomial ideal J a modification of I, if G(J) = {v1, . . . , vm}
and supp(vi) = supp(ui) for all i, where supp(u) = {i| xi divides u}. A monomial ideal
J is called a trivial modification of I, if there exist nonnegative integers a1, . . . , an such
that J is obtained from I by the substitution xi 7→ xai

i for i = 1, . . . , n. If J is a trivial
modification of I, then J is Cohen–Macaulay, since J = ϕ(I)S where ϕ S → S is the flat
K-algebra homomorphism with ϕ(xi) = xai

i for all i.
Here arises a natural question: Under what conditions, squarefree Cohen–Macaulay mono-
mial ideals does there exist at least one nontrivial Cohen–Macaulay modification, or do
exist infinitely many nontrivial Cohen–Macaulay modifications? The answer to this ques-
tion has been given for several classes of ideal in the following papers [1], [2], [4], [5], [6].
In this section, we discuss the conditions for which the facet ideal of the chordal simplicial
complex [Definition 4.3] admits non trivial modifications.

Along the way, we modify the simplicial complex ∆ in such a way that the new
simplicial complex ∆F shares some properties with original ∆. Following definition is
necessary for our construction.

Definition 4.1. Let ∆ =< F1, . . . , Fi−1, Fi, Fi+1 . . . , Ft > be a simplicial complex on the
vertex set [n]. We define the modification of ∆ by Fi, denoted by ∆Fi

with the vertex set
[n+ 1] as

∆Fi
=< F1, . . . , Fi−1, F

′
i , Fi+1, . . . , Ft >,

where, F ′
i = Fi ∪ {n+ 1}.

Following example explains our construction.

Example 4.2. If ∆ =< {1, 2, 3}, {2, 4}, {3, 4} > is the simplicial complex on the vertex set
[4]. Then ∆F =< {1, 2, 3}, {2, 4}, {3, 4, 5} > is modification of ∆ by the facet F = {3, 4}.

1

3

2

4

∆

1

3

2

4

5

∆F
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Definition 4.3. A simplicial complex ∆ on [n] is said to be chordal if F(∆) is a chordal
clutter.

Lemma 4.4. Let G be a chordal graph, then ∆(G) is a chordal simplicial complex.

Proof. A vertex v in G is simplicial if its neighbors form a complete subgraph, which
means that v is simplicial in G if and only if v is free in the clique complex ∆(G). By [24]
[Theorem 4.1], we know that a graph G is chordal if and only if every induced subgraph
of G has a simplicial vertex which in turn is equivalent to say that every minor of ∆(G)
has a simplicial vertex. Hence the clique complex of a chordal graph is chordal simplicial
complex, as required.

With this terminology, we can state the following results,

Theorem 4.5. [2, Corollary 3.7] If ∆ =< F1, . . . , Ft >, t > 2 is a chordal simplicial complex
on [n]. Then, the following are equivalent:

1. I(∆) is Cohen–Macaulay.

2. ∆ is unmixed.

3. I(∆) has a nontrivial Cohen–Macaulay modification.

4. I(∆) has infinitely many nontrivial Cohen–Macaulay modifications.

5. I(∆F ) is Cohen–Macualy, where F is a facet of ∆ containing a simplicial vertex.

Similarly, we can define the modification of G by assuming it as a 1-dimensional
simplicial complex.

Corollary 4.6. [2, Corollary 3.8] Let K be a field and G be a chordal graph on the vertex
set [n]. Let F1, . . . , Fm be the facets of ∆(G) which admit a free vertex. Then the following
are equivalent:

1. G is Cohen–Macaulay;

2. G is Cohen–Macaulay over K;

3. G is unmixed;

4. [n] is the disjoint union of F1, . . . , Fm.

5. I(G) has a nontrivial Cohen–Macaulay modification.

6. I(G) has infinitely many nontrivial Cohen–Macaulay modifications.

7. I(Ge) is Cohen–Macualy, where e is an edge of G containing a simplicial vertex.

Let us now discuss an important notion defined by S. Faridi in [12],
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Definition 4.7. A simplicial complex ∆ is said to be a grafting of the simplicial complex
∆′ =< G1, . . . , Gs > with the simplices F1, . . . , Fr (or we say that ∆ is grafted) if

∆ =< F1, . . . , Fr > ∪ < G1, . . . , Gs >

with the following properties:

1. V (∆′) ⊆ V (F1) ∪ . . . ∪ V (Fr);

2. F1, . . . , Fr are all the leaves of ∆;

3. {G1, . . . , Gs} ∩ {F1, . . . , Fr} = ∅;

4. For i 6= j, Fi ∩ Fj = ∅;

5. If Gi is a joint of ∆, then ∆\ < Gi > is also grafted.

A well known property of grafted simplicial complexes is the following,

Theorem 4.8. [12, Theorem 8.2] Let ∆ be a grafted simplicial complex over a set of vertices
labled x1, . . . , xn, and let K be a field. Then K[x1, . . . , xn]/I(∆) is Cohen–Macaulay.

One can say even more for the case of simplicial trees:

Theorem 4.9. [8, Theorem 6.7] If ∆ is a simplicial tree, the following are equivalent:

1. ∆ is unmixed;

2. ∆ is grafted;

3. I(∆) is Cohen–Macaulay.

The following definition is compulsory for our construction,

Definition 4.10. A facet F of a simplicial complex ∆ is called a reducible leaf if

{F ∩Gi : Gi is a facet of ∆}

is totally ordered with respect to set inclusion.

The following lemma is crucial for our construction,

Lemma 4.11. [8, Lemma 6.8] A simplicial complex ∆ is grafted if and only if (1) for each
vertex v, there exists a unique leaf F such that v ∈ F , and (2) all leaves of ∆ are reducible.

The main aim of this section is to interlink the two concepts; grafting of simplicial
complexes and growing graphs. The first result towards this direction is the following
immediate observation,

Lemma 4.12. If ∆ is grafted, then ∆1 is a growing graph.
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Proof. Let ∆ =< F1, . . . , Fr > ∪ < G1, . . . , Gr > is a grafted simplicial complex, where
Fi are leaves for all i. Let Ai and Bi denotes the set of non-free and free vertices of
the facet Fi for all i, respectively. Consider ∆′ =< G1, . . . , Gr > and take H = ∆′1.
Obviously V (H) = A1 ∪ . . . ∪ Ar is a clique partition and ∆1 = HB1,...,Br

A1,...,Ar
is the growing

graph associated to H, as required.

It is also worth mentioning that in graphs(i.e. 1-dimensional simplicial complexes),
there exist growing graphs which are not grafted, so in some sense it is generalization to
grafting. For example if G is a graph with V (G) = {1, 2, 3, 4, 5} and

E(G) = {{1, 2}, {2, 3}, {3, 4}, {3, 5}, {4, 5}}

•• •
•

•21 3

4

5

Then G is growing graph which is not grafted.
The converse of the Lemma 4.12 is not generally true. The following example illustrate

this,

Example 4.13. Consider the graph G with V (G) = {1, 2, 3, 4, 5, 6} and

E(G) = {{1, 2}, {2, 3}, {3, 4}, {1, 4}, {1, 5}, {2, 5}, {3, 6}, {4, 6}}

5

1 4

2 3

6 5 6

1 4

2 3

•
•

• •

•
•

∆(G)

•
•

• •

•
•

G

Then G is a growing graph but its clique complex ∆(G) is not grafted because it has no
leaves.

Now the question is, under what conditions this converse holds? For the answer we
need some preparation,

Definition 4.14. Let G be a graph and v ∈ G. Let NG(v) denotes the set of all neighbors
(vertices adjacent to v) of v in G and NG[v] = NG(v)∪ {v}. A vertex v is called reducible

if the collection,
{NG[v] ∩ Ci : Ci is a maximal clique of G}

is totally ordered with respect to set inclusion.

Example 4.15. Consider the graph G with V (G) = {1, 2, 3, 4, 5, 6, 7, 8, 9} and

E(G) = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {2, 5}, {3, 5}, {3, 6}, {4, 5}, {5, 6}, {4, 7}, {5, 8}, {6, 9}}
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•

• •

• • •

• • •

1

2 3

4
5

6

7 8 9

Note that the vertices 7, 8 and 9 are reducible but the vertex 1 is not because the collection
{{2}, {3}, {2, 3}} is not totally ordered.

The following Lemma is important to answer the above question,

Lemma 4.16. Let G = HB1,...,Br

A1,...,Ar
be a growing graph then Fi = Ai ∪ Bi are all the leaves

of ∆(G).

Proof. By definition, we have a clique partition of the vertex set of H as V (H) =
A1 ∪ . . . ∪ Ar. Define Fi = Ai ∪ Bi, then Fi ∩ Fj = ∅ for all i 6= j because Ai ∩ Aj = ∅
and Bi ∩ Bj = ∅ for all i 6= j. By definition of growing graph, Fi will be maximal
cliques in G and hence facets of ∆(G) = ∆. It is also clear that

⋃

i Fi = V (G), hence
Fi’s make a partition of G which guarantees that each vertex v ∈ ∆ belongs to a unique Fi.

As Fi = Ai ∪Bi and Ai is a maximal clique or part of a maximal clique in H, say Gi.
Then Fi ∩ Gi = Ai while Fi ∩ Gj ⊆ Ai for all j 6= i, which shows that Fi is a leaf of ∆.
If T is a facet of ∆ with T 6= Fi for any i, then V (T ) ⊂ V (H) = A1 ∪ . . . ∪ Ar. For any
v ∈ V (T ) we have v ∈ Ak for some 1 6 k 6 r which further implies v ∈ Fk and hence v
is not free. We can conclude that T cannot be a leaf because it has no free vertices.

Here we have the answer to our above posed question,

Proposition 4.17. If G is a growing graph and all simplicial vertices in G are reducible,
then ∆(G) is grafted.

Proof. Let G = HB1,...,Br

A1,...,Ar
be a growing graph. By Lemma 4.16 and Lemma 4.11, it is

enough to show that all Fi’s are reducible leaves. Let v be a simplicial vertex in G then
its neighbors form a complete subgraph, which means that v is simplicial in G if and only
if v is free in the clique complex ∆(G) and v ∈ Fi for some i. Consider

{NG[v] ∩ Ci = Fi ∩ Ci for any maximal clique Ci ∈ G}.

As v is reducible, this collection is totally ordered, which further implies that Fi is re-
ducible leaf of ∆. Hence ∆ is grafted, as required.

We are now in a position to prove the main result of this section,
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Theorem 4.18. Let K be any field and G be a chordal graph on the vertex set [n] and all
simplicial vertices in G are reducible. Let F1, . . . , Fm be the facets of ∆(G) which admit
a free vertex. Then the following are equivalent:

1. G is Cohen–Macaulay;

2. G is Cohen–Macaulay over K;

3. G is unmixed;

4. [n] is the disjoint union of F1, . . . , Fm;

5. I(G) has a nontrivial Cohen–Macaulay modification;

6. I(G) has infinitely many nontrivial Cohen–Macaulay modifications;

7. I(Ge) is Cohen–Macaulay, where e is an edge of G containing a simplicial vertex;

8. G is a growing graph;

9. ∆(G) is grafted;

Proof. Corollary 3.10 and Corollary 4.6 shows that the statements (1) through (8) are
equivalent. (8) implies (9) is followed by the Proposition 4.17, while (9) implies (8) follows
from Lemma 4.12.

If the clique complex of a chordal graph becomes a simplicial tree, we can add several
more equivalent conditions in the statement of Theorem 4.18,

Corollary 4.19. Let K be a field and G be a chordal graph on the vertex set [n] such that
all simplicial vertices are reducible and ∆(G) is a simplicial tree. Let F1, . . . , Fm be the
facets of ∆(G) which admit a free vertex. Then the following are equivalent:

1. G is Cohen–Macaulay;

2. G is Cohen–Macaulay over K;

3. G is unmixed;

4. [n] is the disjoint union of F1, . . . , Fm;

5. I(G) has a nontrivial Cohen–Macaulay modification;

6. I(G) has infinitely many nontrivial Cohen–Macaulay modifications;

7. I(Ge) is Cohen–Macaulay, where e is an edge of G containing a simplicial vertex;

8. G is a growing graph;

9. ∆(G) is grafted;
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10. I(∆(G)) is Cohen–Macaulay;

11. I(∆(G)) is Cohen–Macaulay over K;

12. ∆(G) is unmixed;

13. I(∆(G)) has a nontrivial Cohen–Macaulay modification;

14. I(∆(G)) has infinitely many nontrivial Cohen–Macaulay modifications;

15. I(∆(GF )) is Cohen–Macaulay, where F is an edge of ∆(G) containing a simplicial
vertex.

Proof. Conditions (1) through (9) are equivalent by Theorem 4.18. By Lemma 4.4, the
simplicial complex ∆ is chordal, hence (10) through (15) are equivalent by Theorem 4.5.
As ∆(G) is simplicial tree, by Theorem 4.9, (9) through (12) are also equivalent, which
completes the proof.
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