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Abstract

We show that any finite affinely independent set can be isometrically embedded
into a regular polygonal torus, that is, a finite product of regular polygons. As
a consequence, with a straightforward application of Kř́ıž’s theorem, we get an
alternative proof of the fact that all finite affinely independent sets are Ramsey, a
result which was originally proved by Frankl and Rödl.

Mathematics Subject Classifications: Primary 05D10, 05C55 ; Secondary
52C99

1 Introduction

Let us start by recalling some basic concepts and classical results of Euclidean Ramsey
theory which form the context of the work presented in this note. A finite set X ⊂ Rn

is Ramsey if for every r ∈ N there exists N = N(X, r) ∈ N such that for any r-coloring
of RN there exists a monochromatic isometric copy X ′ ⊂ RN of X. Ramsey sets where
first introduced and studied by Erdős, Graham, Montgomery, Rothschild, Spencer, and
Straus in [3]. There, among others, they proved that Cartesian products of Ramsey sets
are Ramsey and that every Ramsey set is spherical, that is, it lies on the surface of some
sphere. It is a famous open conjecture due to Graham [8] that the converse also holds,
that is, every spherical set is Ramsey.

Two of the most significant results in Euclidean Ramsey theory appeared almost si-
multaneously around the dawn of 90s. Frankl and Rödl in [6] proved that every simplex,
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that is, any finite set of affinely independent points, is Ramsey. One year later, Kř́ıž in
[10] proved that any finite set with a transitive1 solvable group of isometries is Ramsey.
In particular, all regular polygons are Ramsey.

Frankl and Rödl in [6], actually showed that all simplices are exponentially Ramsey,
that is, for any simplex X, there exists ε = ε(X) > 0, such that, every coloring of Rn with
fewer than (1 + ε)n colors contains a monochromatic copy of X (for further results on
the Ramsey properties of simplices see [13] and [7]). On the other hand, although Kř́ıž’s
theorem doesn’t provide much quantitative information, it seems to be closely connected
with the problem of characterizing the Ramsey sets.

Let us mention here the more recent conjecture of Leader, Russell and Walters [12]
that Ramsey sets are, up to isometry, exactly the subsets of the finite transitive sets (their
conjecture differs from Graham’s since this class of sets is strictly contained in that of
spherical sets [11], [12], [2]). The starting point of their conjecture was the observation that
all known Ramsey sets embed2 into some transitive set. In the simple case of triangles
(or even for some kinds of quadrilaterals, such as the isosceles trapezoids), there are
elementary geometric constructions demonstrating that they can be embedded into a
three dimensional (twisted) prism with a transitive solvable group of isometries (see for
example [9], [12] for more details).

It was a natural question for us whether this fact has a higher dimensional analogue,
namely, whether all simplices embed into finite sets with a transitive solvable group of
isometries. In this note, we answer this question positively in the simplest possible way,
by using the following generalization of prisms.

Definition 1. Let (Ti)
n
i=1 be a finite sequence of regular polygons in R2. The product

T =
n∏

i=1

Ti = {(ti)ni=1 : ti ∈ Ti ∀i = 1, . . . , n} ⊆ R2n will be called regular polygonal torus.

We may view the regular polygonal tori as discrete versions of the so called Clifford
tori, i.e. products of finitely many circles. Notice that regular polygonal tori have an
abelian transitive group of isometries. Moreover, using some elements from Linear Alge-
bra, for example the fact that commuting unitary transformations admit a simultaneous
diagonalization, it follows that every finite set with a transitive abelian group of isometries
is actually a subset of a regular polygonal torus.

Our main result is the following.

Theorem 2. Every simplex embeds into a regular polygonal torus.

The above theorem provides an alternative proof that simplices are Ramsey via Kř́ıž’s
theorem, and thus, it creates a link between these two fundamental results. Indeed, by
Kř́ıž’s theorem, every regular polygonal torus is Ramsey, and since by their definition
Ramsey sets are closed under subsets, every set which embeds into a regular polygonal
torus is Ramsey.

1For X ⊆ Rn, a group G of isometries of X is called transitive if for every x, x′ ∈ X there exists g ∈ G
such that gx = x′. Sets with a transitive group of isometries will be also called transitive.

2Throughout this note, we say that a set X ⊂ Rn embeds into a set Y ⊂ Rm, if there exists f : X → Y ,
such that ‖f(x)− f(x′)‖ = ‖x− x′‖, for every x, x′ ∈ X (where ‖ · ‖ denotes the usual Euclidean norm).
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2 Notation

In order to make the statements more precise, we first set up some notation. Let N be
the set of positive integers. For a finite set X, by |X| we will denote its cardinality. For
n ∈ N, we set [n] = {1, 2, . . . , n}. The n-dimensional Euclidean space is the vector space
Rn equipped with the usual Euclidean norm ‖ · ‖.

For m > 2 and r > 0 by Tm,r ⊂ R2 we generally denote (the set of vertices of) a
regular m-gon of circumradius r. Hence, a regular polygonal torus T is a set of the form
T =

∏
i∈[n] Tmi,ri , where (mi)i∈[n] ∈ Nn and (ri)i∈[n] ∈ Rn

+. If mi = m for all i ∈ [n], i.e.

T =
∏

i∈[n] Tm,ri then T will be called m-regular. If in addition ri = r for all i ∈ [n], then

the regular polygonal torus will be denoted as T = T n
m,r and it will be called (m, r)-regular.

3 The proof of Theorem 2

The proof of Theorem 2 makes use of a result due to Matoušek and Rödl in [13] and
shares some common features with the original proof of Frankl and Rödl in [6] that all
simplices are Ramsey. The arguments in [6] rely on techniques from extremal set theory,
including some deep results there such as those found in the work [5] of the same authors.
Here the proof of the fact that all simplices are Ramsey comes as a corollary of Kř́ıž’s
theorem and as a result although it provides worse numerical bounds it is much simpler.

An outline of our proof is as follows. Let us denote by T the class of all subsets of
regular polygonal tori. The first step is to show that T contains (up to isometry) all
regular simplices, as well as small perturbations of them. The second step is to show that
T is “dense”, in the sense that it contains almost isometric copies of every finite set. In
the third step we show that every regular expansion (see Definition 9) of any finite set is
contained in T . This actually completes the proof, since by Schoenberg’s theorem [14],
every simplex is of this form.

3.1 Almost regular simplices embed into regular polygonal tori

We start with the following easy lemma, which guaranties that every regular simplex can
be embedded into a regular polygonal torus.

Lemma 3. Let ∆ = {xi}i∈[n] be a regular simplex. Then for every m > 2 there exists
r > 0 such that ∆ embeds into the (m, r)-regular polygonal torus.

Proof. Let m > 2 and ∆ = {xi}i∈[n] be a regular simplex with side length α. We may

choose r > 0 such that the regular m-gon Tm,r has side length α/
√

2. Let p and p′ be two
adjacent vertices of Tm,r. For every xi ∈ ∆ let x̃i = (x̃ij)j∈[n] ∈ T n

m,r where

x̃ij =

{
p if j = i

p′ otherwise

It is straightforward to see that ‖x̃i − x̃i′‖2 = 2‖p − p′‖2 = α2 for every i 6= i′. Hence,

∆̃ = {x̃i}i∈[n] ⊂ T n
m,r is isometric to ∆.
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The next step is to generalize the above fact by showing that small perturbations of
regular simplices also embed into some regular polygonal torus. In what follows, given a
matrix A = (αij)i,j∈[n] and a subset Z = {zi}i∈[n] of some Euclidean space, we say that A
is realized from Z if ‖zi − zj‖ = αij for every i, j ∈ [n].

The following lemma is a reformulation of a recent result due to Frankl, Pach, Reiher
and Rödl (Lemma 4.9 in [4]).

Lemma 4. Let A = (αij)i,j∈[n] be a n × n real symmetric matrix such that αii = 0 for
every i ∈ [n] and αij > 0 for every i, j ∈ [n] with i 6= j. Let αmax = maxi,j αij and suppose
that ∑

16i<j6n

(α2
max − α2

ij) < α2
max. (1)

Then there exists a family {∆l}l∈[`] of regular simplices, where ` 6
(
n
2

)
, such that A is

realized from an affinely independent subset of the product
∏

l∈[`] ∆l.

In order to keep this note self contained we quote below the proof given in [4].

Proof. Let A = (αij)i,j∈[n] and let αmax = maxi,j αij. We set

b =

√
α2
max −

∑
16i<j6n

(α2
max − α2

ij) and bij =
√
α2
max − α2

ij for 1 6 i < j 6 n.

Let ∆ ⊂ Rn−1 be a regular simplex with n vertices and side length b. For 1 6 i < j 6 n
such that bij > 0 let ∆ij ⊂ Rn−2 be a regular simplex with n− 1 vertices and side length
bij. We define

X = ∆×
∏
i<j
bij>0

∆ij.

Let π : X → ∆ and πij : X → ∆ij be the canonical projections. It is not hard to see that
we can choose Z = {zi}ni=1 ⊂ X such that π(Z) = ∆, πij(Z) = ∆ij and πij(zi) = πij(zj)
for every zi, zj ∈ Z with i < j and bij > 0. Notice that for every s, t ∈ [n] the following
holds,

‖zs − zt‖2 = b2 +

( ∑
16i<j6n

b2ij

)
− b2st = α2

st.

Finally, since affine dependence of Z implies affine dependence of π(Z) = ∆, the set
Z must be affinely independent.

In what follows, a matrix which satisfies the requirements of Lemma 4 will be called
almost regular, while every subset of some Euclidean space that realizes an almost regular
matrix will be called almost regular simplex.

The next proposition is the extension of Lemma 3 in the case of almost regular sim-
plices.
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Proposition 5. Let Z = {zi}i∈[n] be an almost regular simplex. Then for every m > 2
there exists an m-regular polygonal torus T such that Z embeds into T .

Proof. Let m > 2. By Lemma 4 there exists a family {∆l}l∈[`] of regular simplices,
where ` 6

(
n
2

)
, such that Z embeds into

∏
l∈[`] ∆l. For every l ∈ [`] let nl = |∆l|. By

Lemma 3 for every l ∈ [`] there exists rl > 0 such that ∆l embeds into an (m, rl)-regular
polygonal torus of the form T nl

m,rl
. Hence, Z embeds into the m-regular polygonal torus

T =
∏

l∈[`] T
nl
m,rl

.

3.2 Every finite set almost embeds into a regular polygonal torus

We start with the following definition.

Definition 6. Let δ > 0, X ⊂ Rk and T ⊂ R`. We say that f : X → T is a δ-embedding
of X into T , if f is an injection and∣∣‖f(x)− f(x′)‖2 − ‖x− x′‖2

∣∣ < δ

for every x, x′ ∈ X.

The next lemma formalizes the intuitively obvious fact that every line segment can be
approximated with arbitrary accuracy by a large enough circle.

Lemma 7. Let δ > 0 and X ⊂ R with |X| > 2. Let n0 ∈ N be such that

n−10 6 |x− x′| 6 n0 for every x, x′ ∈ X with x 6= x′. (2)

Then for every n > 2πn3
0δ
−1 the set X is δ-embeddable into a regular polygon Tm,r with

m = n3 and r =
n0n

2π
.

Proof. Without loss of generality, we may assume that X ⊂ [0, n0]. Let n > 2πn3
0δ
−1 and

for every x ∈ X let j(x) be the unique non negative integer satisfying

j(x)

n2
6

x

n0

<
j(x) + 1

n2
.

By (2) the correspondence x→ j(x) is a well defined injection from X into {0, 1, . . . , n2}.

For every x ∈ X we set y(x) =
j(x)n0

n2
. Notice that y(x) ∈ [0, n0] and 0 6 x − y(x) <

n0n
−2. Hence, ∣∣∣ |y(x)− y(x′)|2 − |x− x′|2

∣∣∣ < 2n2
0

n2
<
δ

2
, (3)

for every x, x′ ∈ X.

Let

(
r,

2πj

m

)
, j = 0, 1, . . . ,m − 1 be a representation of vertices of Tm,r in polar

coordinates. Let m = n3, r = n0n/2π and let f : X → Tm,r defined by

f(x) =

(
r,

2πj(x)

m

)
=

(
r,
y(x)

r

)
.
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Then f is an injection of X into Tm,r. To finish the proof it remains to show that f is a
δ-embedding. For every x, x′ ∈ X with x 6= x′ we have that

‖f(x)− f(x′)‖ = 2r sin

(
|y(x)− y(x′)|

2r

)
.

Noticing that
∣∣sin2 t− t2

∣∣ 6 |t3| and setting t =
|y(x)− y(x′)|

2r
we get that

∣∣∣‖f(x)− f(x′)‖2 − |y(x)− y(x′)|2
∣∣∣ 6 πn2

0

n
<
δ

2
(4)

By (3) and (4) the proof is completed.

Proposition 8. For every δ > 0 and every finite set X ⊂ Rk there exists m ∈ N and
r > 0 such that X is δ-embeddable into an (m, r)-regular polygonal torus T k

m,r.

Proof. Let X ⊂ Rk and δ > 0. Let πi : Rk → R, i ∈ [k] be the canonical projections. By
Lemma 7, we may choose a common pair (m, r) ∈ N×R such that for every i ∈ [k] there
exists a δ/k-embedding fi : πi(X)→ Tm,r. It is easy to see that the mapping f : X → R2k

defined by f(x) = (f1 (π1(x)) , . . . , fk (πk(x))) is a δ-embedding of X into T k
m,r.

3.3 Regular expansions of finite sets embed into a regular polygonal torus

We will need the following definition.

Definition 9. Let X = {xi}i∈[n] ⊂ Rk and Y = {yi}i∈[n] ⊂ Rd. We say that Y is a regular
expansion of X = {xi}i∈[n], if there exists α > 0 such that

‖yi − yj‖2 = ‖xi − xj‖2 + α2

for every i, j ∈ [n] with i 6= j.

It is easy to see that a set Y = {yi}i∈[n] is a regular expansion of X = {xi}i∈[n], if and
only if, there exists a regular simplex ∆ = {zi}i∈[n] such that the set Y is isometric to
the set Y ′ = {(xi, zi)}i∈[n] ⊂ X ×∆. In particular, since Y ′ is affinely independent, every
regular expansion of a finite set X is a simplex. It was a crucial point of the proof in [6]
that this property characterizes all simplices in Euclidean spaces.

Lemma 10. Every simplex Y is a regular expansion of some other simplex X.

Lemma 10 is an immediate consequence (see [6] for details) of Schoenberg’s [14] char-
acterization of the finite metric spaces which embed into Euclidean spaces (for more
information on this significant theorem the reader may refer to [1] and [15]).

In view of Lemma 10, the next proposition completes the proof of Theorem 2.

Proposition 11. Let X = {xi}i∈[n] ⊂ Rk. Then every regular expansion of X embeds
into an m-regular polygonal torus T for some m ∈ N.
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Proof. Let α > 0, X = {xi}i∈[n] ⊂ Rk, and Y = {yi}i∈[n] ⊂ Rd be such that ‖yi − yj‖2 =
‖xi − xj‖2 + α2 for every i, j ∈ [n] with i 6= j. We set δ = α2/n2. By Proposition
8, we can find m ∈ N and r > 0 such that X is δ-embeddable into an (m, r)-regular
polygonal torus T k

m,r, that is, there exists an injective function f : X → T k
m,r such that

|‖xi − xj‖2 − ‖f(xi)− f(xj)‖2| < δ for every i, j ∈ [n].
We set δi,j = ‖xi − xj‖2 − ‖f(xi)− f(xj)‖2 and we define the matrix A = (αij)i,j∈[n],

where αii = 0 and αij =
√
δij + α2 if i 6= j. It is easy to check that A is an almost regular

matrix. Hence, by Lemma 4, the matrix A is realized from an almost regular simplex
Z = {zi}i∈[n]. By Proposition 5, there exists an m-regular polygonal torus T0 and an
isometric embedding h : Z → T0. We set Y ′ = {y′i}i∈[n], where y′i = (f(xi), h(zi)) for
every i ∈ [n]. Notice that Y ′ is a subset of the m-regular polygonal torus T = T k

m,r × T0.
Moreover, for every i, j ∈ [n] we have that

‖yi − yj‖2 = ‖xi − xj‖2 + α2

= ‖f(xi)− f(xj)‖2 + δij + α2

= ‖f(xi)− f(xj)‖2 + α2
ij

= ‖f(xi)− f(xj)‖2 + ‖h(zi)− h(zj)‖2 = ‖y′i − y′j‖2.

Therefore, Y embeds into the m-regular polygonal torus T and the proof is completed.
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