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Abstract

We call a multigraph (k, d)-edge colourable if its edge set can be partitioned into
k subgraphs of maximum degree at most d and denote as χ′d(G) the minimum k
such that G is (k, d)-edge colourable. We prove that for every odd integer d, every
multigraphG with maximum degree ∆ is (d3∆−1

3d−1 e, d)-edge colourable and this bound
is attained for all values of ∆ and d. An easy consequence of Vizing’s Theorem is
that, for every (simple) graph G, χ′d(G) ∈ {d∆

d e, d
∆+1
d e}. We characterize the values

of d and ∆ for which it is NP-complete to compute χ′d(G). These results generalize
classic results on the chromatic index of a graph by Shannon, Holyer, Leven and
Galil and extend a result of Amini, Esperet and van den Heuvel.

Mathematics Subject Classifications: 05C15, 05C70

1 Introduction

Graphs in this paper are finite, undirected, and without loops, but may have multiple
edges. A graph is simple if it has no parallel edges. Let G be a graph. We denote by
∆(G) the maximum degree of G. An edge colouring of G with defect d is a colouring
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of its edges so that each vertex is incident with at most d edges of the same colour.
We say that G is k-edge colourable with defect d, or simply (k, d)-edge colourable, if G
admits an edge colouring with defect d using (at most) k colours. In other words, the
edge set can be partitioned into at most k subgraphs of maximum degree at most d. The
d-defective chromatic index of G is the minimum k such that G is (k, d)-edge colourable
and is denoted by χ

′

d(G). So χ′1(G) is the usual chromatic index.
This notion is called frugal edge colouring in [2] and improper edge colouring in [6].

We follow the vocabulary of the analogous concept of defective vertex colouring, a now
well established notion. See [16] for a nice dynamic survey on defective vertex colouring.

Our first result is the following.

Theorem 1. Let d,∆ > 1 and let G a graph with maximum degree ∆. If d is even, then
χ′d(G) = d∆

d
e, and if d is odd, then χ′d(G) 6 d3∆−1

3d−1
e, and this bound is tight for all ∆ and

d.

The case d = 1 corresponds to the classic result of Shannon [14] on chromatic index

stating that for every graph G, χ′1(G) 6 b3∆(G)
2
c (observe that d3∆−1

2
e = b3∆

2
c for all

∆). When d is even, the result is almost trivial in our context (see Theorem 9), and was
already known in the more general context of list colouring [6, 2]. When d is odd, a proof
that χ′d(G) 6 d 3∆

3d−1
e in the context of list colouring is announced in [2], but seems to

contain a flaw and actually holds only in the case where ∆ is divisible by 3k − 1. See
Section 5 for more on the list colouring context.

Vizing’s celebrated theorem on edge colouring [15] states that for every simple graph
G, χ′1(G) ∈ {∆(G),∆(G) + 1}, and Holyer [8], and Leven and Galil [11] proved that
deciding if χ′1(G) = ∆(G) is NP-complete even restricted to d-regular simple graphs as
soon as d > 3. We generalize both results by proving that for every simple graph G,
χ′d(G) ∈ {d∆

d
e, d∆+1

d
e} (which is easily implied by Vizing’s Theorem) and we characterize

the values of ∆ and d for which the problem is NP-complete. More precisely, we prove
that, for given ∆ and d, the problem of determining χ′d(G) for a ∆-regular simple graph is
NP-complete if and only if d is odd and ∆ = kd for some integer k > 3. See Theorems 17
and 19.

We give some definitions and preliminary results in Section 2. We prove the general-
ization of Shannon’s Theorem in Section 3 and the proof of the generalization of Vizing’s
Theorem in Section 4. Finally, in Section 5, we conjecture a generalisation of of Theorem 1
for list colouring and a generalisation of the Goldberg-Seymour Conjecture.

2 Definitions and preliminaries

Let G be a graph. The order (resp. size) of G is its number of vertices (resp. edges).
It is regular if there is an integer k such that every vertex of G has degree k. In this
case we can also say it is k-regular. We say that G is k-edge-connected if it remains
connected whenever (strictly) fewer than k edges are removed. If u, v ∈ V (G), we denote
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as G + uv the graph (V (G), E(G) ∪ {uv}) (recall that in this paper graphs can have
multiple edges, so if there is already an edge between u and v, another one is added).
Similarly, G− uv = (V (G), E(G) \ {uv}).

The following gives a trivial lower bound on the d-defective chromatic index that turns
out to be tight whenever d is even (see Theorem 9).

Lemma 2. For every graph G, χ′d(G) > d∆(G)
d
e.

Proof. At least d∆(G)
d
e colours are needed to colour the edges incident to a vertex of degree

∆(G).

Lemma 3. Let k, d,∆ be integers. If every (∆+1)-regular graph is (k, d)-edge colourable,
then every ∆-regular graph is also (k, d)-edge colourable.

Proof. Let G be a ∆-regular graph. Take two disjoint copies G′ and G′′ of G and add
an edge between each vertex v ∈ V (G′) and its copy in G′′. The obtained graph H is
(∆ + 1)-regular and contains G as a subgraph, so χ′d(G) 6 χ′d(H) 6 k.

Factors in graphs

A k-factor of G is a k-regular spanning subgraph of G. We sometimes consider a k-factor
F as its edge set E(F ). We recall this theorem from Petersen [12], one of the very first
fundamental results in graph theory:

Theorem 4. [12] Let ∆ be an even integer. A ∆-regular graph admits a k-factor for
every even integer k 6 ∆.

An Euler tour of a graph G is a closed walk in G that traverses every edge of G
exactly once. It is a well-known fact that a graph admits an Euler tour if and only if
it is connected and all its vertices have even degree. The next two lemmas use this fact
to prove the existence of factors. This idea was already used by Petersen to prove his
theorem.

Lemma 5. Let G be a connected 2k-regular graph with an even number of edges. Then
the edges of G can be partitioned into two k-factors.

Proof. We number the edges e1, e2, . . . , e2t of G along an Euler tour C and we let A =
{e1, e3, . . . , e2t−1} and B = {e2, e4, . . . , e2t}. Since consecutive edges of C are numbered
with different parities and its first and last edges have distinct parities, A and B are both
k-regular.

Lemma 6. Let G be a connected 2k-regular graph with an odd number of edges, and let
e ∈ E(G). There exist two graphs GA = (V,A) and GB = (V,B) such that E(G) =
A ∪B ∪ {e}, ∆(GA) 6 k and ∆(GB) 6 k.

Proof. The proof is the same as for the previous Lemma, except that we do not assign
the last edge of the Euler tour, and we choose e to be this last edge.
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The next theorem roughly says that, in a ∆-regular graph, one can find a k-factor as
soon as k is even and is relatively small compared to ∆. It was first proved in [9]. See
also Theorem 3.10 (v) in [1]. The version stated here is a simplified version of the original
theorem.

Theorem 7. [9] Let ∆ be an odd integer and G a 2-edge connected ∆-regular graph. Let
e ∈ E(G). Let k be an even integer with k 6 2∆

3
. Then G has a k-factor containing e.

Shannon graphs

Given an integer k, the Shannon graph Sh(k) is the graph made of three vertices connected
by bk

2
c, bk

2
c and dk

2
e edges respectively. See Figure 1. Observe that

• ∆(Sh(k)) = k,

• when k is even, Sh(k) is k-regular and has 3k
2

edges and,

• when k is odd, Sh(k) has two vertices of degree k and one vertex of degree k − 1
and has 3k−1

2
edges.

bk
2
c bk

2
c

dk
2
e

Figure 1: The Shannon graph Sh(k).

Lemma 8. Let k, d > 1 with d odd. Then χ′d(Sh(k)) = d3k−1
3d−1
e.

Proof. Consider an ordering (ei)16i6|E(Sh(k))| of the edges of Sh(k) such that for any 1 6
i 6 |E(Sh(k))| − 2, ei, ei+1 and ei+2 form a triangle. Such an ordering can be obtained
by setting e1 to be any edge with both extremities of degree k and then setting, for
i = 2, . . . , |E(Sh(k))| − 1, ei+1 to be any unnumbered edge coming right after ei in
clockwise order. The following statement is easily proven using induction: For every odd
integer ` such that 1 6 ` 6 2|E(Sh(k)|−1

3
, every contiguous subsequence of (ei)16i6|E(Sh(k))|

of length 3`−1
2

induces a graph of maximum degree `.
Thus, colouring the first 3d−1

2
edges of (ei)16i6|E(Sh(k))| in one colour, the following

3d−1
2

in a second colour and so on, yields a colouring with at most d |E(Sh(k))|
3d−1

2

e colours

such that each colour class induces a subgraph with maximum degree at most d, and
each colour class except at most one has 3d−1

2
edges. Since every subgraph of Sh(k) with

maximum degree d (recall that d is odd) has at most 3d−1
2

edges, this colouring is an
optimal d-defective edge colouring and thus:

χ′d(Sh(k)) =
⌈ |E(Sh(k))|

3d−1
2

⌉
=

{
d 3k

3d−1
e = d3k−1

3d−1
e if k is even,

d3k−1
3d−1
e if k is odd.
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3 Generalization of Shannon’s Theorem

The goal of this section is to prove Theorem 1. In view of Lemma 2, for even d, it suffices
to prove the upper bound χ′d(G) 6 d∆

d
e. Moreover, for both even and odd d, it is enough

to prove the result for ∆-regular graphs. Indeed, if G is not ∆-regular, then we can build
a ∆-regular graph G′ containing G as a subgraph as follows: take two copies of G, and for
each vertex v of G, add ∆−d(v) edges between the two copies of v. Then χ′d(G) 6 χ′d(G

′).
So it suffices to prove the following two results. The case where d is even was already
known, but we give the proof anyway for completeness.

Theorem 9. [6, 2] Let d,∆ > 1 with d even. For every ∆-regular graph G, χ
′

d(G) = d∆
d
e.

Proof. If ∆ is even, thenG has a min{d,∆}-factor by Theorem 4, and it follows inductively

that χ′d(G) 6 d∆(G)
d
e. If ∆ is odd, then ∆ + 1 is even and (by the previous sentence)

every (∆ + 1)-regular graph is (k, d)-edge colourable, where k = d∆+1
d
e = d∆

d
e; hence

χ′d(G) 6 d∆
d
e by Lemma 3. Equality holds in both cases by Lemma 2.

Theorem 10. Let d,∆ > 1 with d odd. For every ∆-regular graph G, χ′d(G) 6 d3∆−1
3d−1
e.

Proof. If d = 1, then the result follows from the classic result of Shannon, and so we
may assume that d > 3. By Lemma 3, it is enough to prove it for values of ∆ such that
d3∆−1

3d−1
e < d3(∆+1)−1

3d−1
e, that is, for ∆ ∈ {(i + 1)d − d i

3
e | i > 0} = {d, 2d − 1, 3d − 1, 4d −

1, 5d− 1, 6d− 2, . . . }. We call such integers special. In particular, we have ∆ > d > 3.
Let G be a counterexample that minimizes ∆ and has minimum order. That is, ∆ is

special, G is ∆-regular, χ′d(G) = d3∆−1
3d−1
e + 1, every ∆-regular graph with fewer vertices

than G is (d3∆−1
3d−1
e, d)-edge colourable, and for every special integer ∆′ < ∆, every ∆′-

regular graph is (d3∆′−1
3d−1
e, d)-edge colourable.

Claim 11. If G has a cut edge e, then at least one connected component of G − e is
isomorphic to Sh(∆).

Proof of claim. Set e = ab and let A and B be the two connected components of G −
e containing a and b respectively. Assume for contradiction that neither A nor B is
isomorphic to Sh(∆). Vertices of A have degree ∆ in A except for a, which has degree
∆− 1; hence, ∆ is odd. If |V (A)| = 1, then a has degree 1, a contradiction with the fact
that ∆ > 3. If |V (A)| = 3, then A is isomorphic to Sh(∆), a contradiction. We can thus
assume |V (A)| > 5.

Let GA be the graph obtained from G by replacing A by Sh(∆) as in Figure 2. GA is
∆-regular (because ∆ is odd) and has strictly fewer vertices than G. Hence, by minimality
of G, GA admits an edge colouring cA with defect d using at most d3∆−1

3d−1
e colours. We

define symmetrically GB and cB. We may assume, by properly permuting colours in GB,
that cB(e) = cA(e). We can now obtain an edge colouring of G with defect d using at
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most d3∆−1
3d−1
e colours by assigning colour cA(e) to e, colour cA(e′) to any edge e′ in B, and

colour cB(e′) to any edge e′ in A, a contradiction.

a
b∆

2
c

b∆
2
c

d∆
2
e B

b
e

Figure 2: The graph GA.

Observe that, if a ∆-regular graph has a cut edge, then ∆ must be odd. Moreover,
if ∆ is odd, then for every (3∆−1

3d−1
, d) edge colouring of Sh(∆), there is a colour c such

that the (unique) vertex of Sh(∆) with degree ∆− 1 is incident with at most d− 1 edges
coloured with c. This simple observation is used in the proof of the following claim.

Claim 12. G has at most one cut edge.

Proof of claim. Suppose for contradiction that G has two cut edges uv and u′v′. By
Claim 11, we may assume that G is made of two disjoint copies of Sh(∆) plus a graph A
as in Figure 3. Note that u = u′ is possible.

Assume first that u 6= u′. Then A + uu′ is ∆-regular and has strictly fewer vertices
than G. So, by minimality of G, A+ uu′ admits a (d3∆−1

3d−1
e, d)-edge colouring cA. We can

extend this colouring to G by giving colour cA(uu′) to uv and u′v′ and then extending
this colouring to the two copies of Sh(∆) without any new colour (this is possible by the
observation stated right before the claim). This leads to a (d3∆−1

3d−1
e, d)-edge colouring of

G, a contradiction.

v
b∆

2
c

b∆
2
c

d∆
2
e A

u v′
b∆

2
c

b∆
2
c

d∆
2
e

u′

Figure 3: The graph G when u 6= u′.

Assume now that u = u′. We consider the graph G′ obtained by replacing the two
copies of Sh(∆) by four new vertices w, x, y, z as in Figure 4. It is easy to check that G′

is ∆-regular and since G′ has two vertices less then G, it is (d3∆−1
3d−1
e, d)-edge colourable.

This gives us a (d3∆−1
3d−1
e, d)-edge colouring of A that can easily be extended to the two

copies of Sh(∆) without any new colour (this is again possible by the observation stated
right before the claim), leading to a (d3∆−1

3d−1
e, d)-edge colouring of G, a contradiction.

Claim 13. G has a k-factor for every even integer k 6 2∆
3
.
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v

b∆
2
c

b∆
2
c

d∆
2
e

A
u

v′ b∆
2
c

b∆
2
c

d∆
2
e

u
A

w

x

y

z

b∆
2
c-1

b∆
2
c-1

b∆
2
c

b∆
2
c

Figure 4: On the left: the graph G when u = u′, on the right: the graph G′.

Proof of claim. Let k 6 2∆
3

be an even integer. If ∆ is even, the result holds by Theorem 4.
So we may assume that ∆ is odd. If G is 2-edge connected, then we are done by Theorem 7.
So assume G has a cut edge uv. Let A,B be the two connected components of G \ uv
with u ∈ V (A) and v ∈ V (B). By Claim 12, G has no other cut edges and thus A and B
are both 2-edge-connected. By Claim 11, either A or B is isomorphic to Sh(∆). Without
loss of generality, we suppose that it is B. Let w and x be the two other vertices of B.
Let y be a neighbour of u in A. Consider G′ = G + uv + yw − uy − vw (see Figure 5).
It is easy to check that G′ is ∆-regular and 2-edge-connected (recall that ∆ > 3 and thus
b∆

2
c > 1). Applying Theorem 7 on G′ with e = wy, G′ has a k-factor F containing the

edge wy. There exists an integer s 6 k−1 such that F contains s edges wx, and k−s−1
edges wv. So F must contain k − s edges vx and thus F contains exactly one edge uv.
Hence, F − uv − yw + uy + vw is a k-factor of G.

v

x

w

b∆
2 c

b∆
2 c

d∆
2 eA

uy v

x

w

b∆
2 c

b∆
2 c−1

d∆
2 eA

uy

Figure 5: The graphs G and G′.

We are now ready to prove the theorem. We distinguish cases with respect to the
value of ∆ and the corresponding value of d3∆−1

3d−1
e. Recall that ∆ is a special integer, that

is ∆ ∈ {(i+ 1)d− d i
3
e | i > 0} = {d, 2d− 1, 3d− 1, 4d− 1, 5d− 2, 6d− 2, . . . }.

Case 1: d3∆−1
3d−1
e = 1, ∆ = d. The result holds trivially.

Case 2: d3∆−1
3d−1
e = 2, ∆ = 2d−1. Since d is odd, d−1 is even, and d−1 < 4d−2

3
= 2∆

3
.

So, by Claim 13, G has a (d − 1)-factor, say F . Now, G − F is d-regular, and thus
χ′d(G) 6 2. This proves case 2.

Case 3: d3∆−1
3d−1
e = 3, ∆ = 3d−1. Since d is odd, ∆ is even. By Theorem 4, G has a 2d-

factor F . By applying Lemma 5 on connected components of even size of F and Lemma 6
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on connected components of odd size, we can extract two graphs GA and GB along with a
matching M such that E(F ) = E(GA) ∪ E(GB) ∪M , ∆(GA) 6 d and ∆(GB) 6 d. Now,
E(G) can be partitioned into E(GA), E(GB) and E(G) \ (E(F ) \M). Since the graph
induced by E(G) \ (E(F ) \M) has maximum degree at most 3d − 1 − 2d + 1 = d, each
of these sets induce a graph with maximum degree at most d. This proves case 3.

Case 4: d3∆−1
3d−1
e = 4, ∆ = 4d − 1. Since d > 3, we have 2d < 8d−2

3
= 2∆

3
. So,

by Claim 13, G has a 2d-factor, say A, and B = G − A is a (2d − 1)-factor of G. By
applying Lemma 5 on connected components of A of even size and Lemma 6 on connected
components of A of odd size, we get a partition of E(A) into three sets A1, A2 and M
such that ∆(A1) 6 d, ∆(A2) 6 d and M is a matching.

It is now enough to prove that χ′d(B ∪M) 6 2. Let C be a connected component of
B ∪M . If every vertex of C is incident with an edge of M , then C has an even number of
vertices and is 2d-regular, so its number of edges is d times its number of vertices, which
is even, and thus χ′d(C) = 2 by Lemma 5. Assume now that there exists a vertex of C
that is not incident with an edge of M . Take two copies of C, and add an edge between
the copies of each vertex of C not incident with an edge of M . The obtained graph has
an even number of vertices and is 2d-regular, so it is (2, d)-edge colourable by Lemma 5
and thus so is C. So each connected component of B ∪M is (2, d)-edge colourable, and
thus so is B ∪M . This proves case 4.

Case 5: d3∆−1
3d−1
e > 5, ∆ > 5d− 2. Note that 3d− 1 is even since d is odd. Also, since

d > 3, 3d− 1 = 9d−3
3

< 10d−4
3

6 2∆
3

. So, by Claim 13, G has a (3d− 1)-factor, say F . By
Case 3, F is (3, d)-edge colourable. As G−F is (∆−(3d−1))-regular, and as ∆−(3d−1)
is less than at least one special integer less than ∆, it follows from minimality of ∆ that

χ′d(G− F ) 6 d3(∆− (3d− 1))− 1

3d− 1
e,

and thus

χ′d(G) 6 3 + d3(∆− (3d− 1))− 1

3d− 1
e = d3∆− 9d+ 3− 1 + 9d− 3

3d− 1
e = d3∆− 1

3d− 1
e.

This proves case 5 and the theorem.

4 Simple graphs: Vizing’s Theorem and NP-completeness

In this section, we will only consider simple graphs. Vizing [15] proved the following
theorem:

Theorem 14 (Vizing’s Theorem, [15]). For every simple graph G with maximum degree
∆, χ′1(G) ∈ {∆,∆ + 1}.

While there are only 2 possibilities, deciding between them was proven to be NP-
complete even for regular simple graphs.
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Theorem 15 ( Holyer [8], Leven and Galil [11]). For every ∆ > 3, it is NP-complete to
decide if a ∆-regular simple graph G is ∆-edge colourable.

Vizing’s theorem easily implies its following generalization to d-defective edge colour-
ing.

Corollary 16. For every d > 1 and every simple graph G with maximum degree ∆,
χ′d(G) ∈ {d∆

d
e, d∆+1

d
e}.

Proof. The lower bound holds by Lemma 2. For the upper bound, consider an edge colour-
ing of G with ∆(G)+1 colours (it exists by Vizing’s Theorem) and let M1, . . . ,M∆(G)+1 be
the classes of colours. By assigning colour 1 to M1∪· · ·∪Md, colour 2 to Md+1∪· · ·∪M2d,
etc, we obtain a (d∆+1

d
e, d) edge colouring of G.

We point out that Vizing [15] also proved that for every (not necessarily simple)
graph G with maximum degree ∆ and edge multiplicity µ, χ′1(G) 6 ∆+µ where the edge
multiplicity is the maximum number of edges between two vertices. This directly implies
that χ′d(G) 6 d∆+µ

d
e.

In the following cases one can distinguish between the two possibilities in Corollary 16.

Theorem 17. Let d,∆ > 1 and let G be a simple graph with maximum degree ∆. Then :

(a) χ′d(G) = d∆
d
e if (i) d does not divide ∆, or (ii) d is even, or (iii) ∆ = d.

(b) If d is odd and ∆ = 2d, then χ′d(G) = d∆
d
e = 2 if and only if every 2d-regular con-

nected component of G has an even number of vertices; otherwise χ′d(G) = d∆+1
d
e =

3.

Proof. In (a), (i) follows from Corollary 16, since if d does not divide ∆, then d∆
d
e = d∆+1

d
e,

(ii) is contained in Theorem 1 (even if G is not simple), and (iii) is obvious.
To prove (b), note first that a 2d-regular component C of G with n vertices has dn

edges, and d is odd; so the order and size of C are either both even or both odd.
Suppose first that every 2d-regular component has even order and size. Take two

disjoint copies of G and, for each vertex v of G, add 2d − d(v) edges between the two
copies of v. The resulting (not necessarily simple) graph G′ is 2d-regular, and each of its
connected components has even order and size (as the components of G of odd order were
not 2d-regular, they are included in components of even order in G′). Now, by Lemma 3,
χ′d(G) 6 χ′d(G

′) = 2, and so χ′d(G) = 2.
Assume now that G has a 2d-regular component C of odd order and size. Since d

is odd, C does not admit a d-factor, and so C cannot be (2, d)-edge coloured. So, by
Corollary 16, χ′d(G) = d2d+1

d
e = 3.

We now prove a generalization of Theorem 15 in the context of defective edge colouring.
Before that, we need the following construction.

For all integers k, d > 1, we construct a simple graph Gkd,d such that G is kd-regular
and χ′d(G) = k. We can set Gd,d = Kd+1. Inductively, having defined Gkd,d, let G(k+1)d,d
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be the simple graph obtained by taking two disjoint copies of Gkd,d and adding the edges
of any d-regular bipartite simple graph between these two copies1. The obtained simple
graph is clearly (k+1)d-regular, and we can (k+1, d)-edge colour it by taking a (k, d)-edge
colouring for the two copies of Gkd,d and add a new colour for the added edges, and finally
by Lemma 2 it does not admit a (k, d)-edge colouring. Hence χ′d(G(k+1)d,d) = k + 1.

Now assume d is odd and let H be obtained from Gkd,d by subdividing one edge ab
with a new vertex v of degree 2.

Lemma 18. H has a (k, d)-edge colouring, and in every such colouring the edges av and
bv have the same colour.

Proof. Let |V (Gkd,d)| = n. Let us first prove that n is even. Since Gkd,d is kd-regular, in
a (k, d)-edge colouring of Gkd,d, each vertex must be incident with exactly d edges of each
colour. So every colour occurs on exactly dn

2
edges. Hence, dn

2
is an integer, and since d

is odd, n is even.
Clearly H is (k, d)-edge colourable since Gkd,d is. Every vertex of H except v has

degree kd, so in a (k, d)-edge colouring of H, every vertex is incident with exactly d edges
of each colour. Assume for contradiction that v is incident with edges of two different
colours, and let c be one of these colours. In H\{v}, c occurs on d(n−1)+(d−1)

2
= dn−1

2
edges,

and thus on dn+1
2

edges of H. But since n is even, dn+1
2

is not an integer, a contradiction.
Thus av and bv must have the same colour.

In the proof of the following theorem, we will use many copies of H, all with the same
values of k and d. We will use subscripts consistently: if Hu,i is a copy of H, then it will
contain a vertex vu,i of degree 2 with neighbours au,i and bu,i.

Note that the pairs d,∆ in the following theorem are precisely those that are not
covered by Theorem 17.

Theorem 19. Let d be an odd integer and ∆ = kd for some integer k > 3. Then it is
NP-complete to decide if a ∆-regular simple graph is (k, d)-edge colourable.

Proof. The problem is clearly in NP. The case d = 1 is Theorem 15, and so we may
assume that d > 3. We perform a reduction from the case d = 1. Let G be a k-regular
simple graph.

We construct a simple graph G′ containing G as follows: starting with G, for each
vertex u of G add k(d−1)

2
disjoint copies Hu,i of H for i = 1, 2, . . . , k(d−1)

2
and identify each

vertex vu,i with u. The graph G′ is clearly simple and kd-regular. We will prove that
χ′1(G) = k if and only if χ′d(G

′) = k, and this will prove the theorem.
Suppose first that χ′1(G) = k. Starting with a (k, 1)-edge colouring of G, we extend

it to G′ as follows: for each vertex u ∈ V (G) and colour c ∈ {1, 2, . . . , k}, give colour c to

all edges vau,i and vbu,i with (c−1)(d−1)
2

+ 1 6 i 6 c(d−1)
2

, and extend this to a (k, d)-edge
colouring of Hu,i, which is possible by Lemma 18. Now, for each colour c ∈ {1, 2, . . . , k},

1For example, naming u1, . . . , un and v1, . . . , vn the vertices of the two copies of Gkd,d, add the edges
uivi, uivi+1, . . . , uivi+d for i = 1, . . . , n, subscripts being taken modulo n. It gives a d-regular bipartite
simple graph as soon as n > d.
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u is incident to d edges coloured c: d − 1 edges in E(G′) \ E(G) and one edge of G. So
we have constructed a (k, d)-edge colouring of G′. Hence χ′d(G

′) = k.
Suppose now that χ′d(G

′) = k, and fix a (k, d)-edge colouring of G′. By Lemma 18,
for each vertex u ∈ V (G) and colour c ∈ {1, 2, . . . , k}, u is incident to an even number
of edges in E(G′) \ E(G) with colour c, and so (since d is odd) u must be incident to an
odd number of edges of G with colour c. Since there are k colours and G is k-regular, u
must be adjacent to exactly one edge of each colour, and so the (k, d)-edge colouring of
G′ contains a (k, 1)-edge colouring of G. Hence χ1(G) = k. This completes the proof.

5 Further work

Recall that graphs in this paper are allowed to have multiple edges.

List colouring

The d-defective list chromatic index of a graph G, denoted by ch′d(G), is defined as the
minimum k such that, for any choice of list of k integers given to each edge, there is an
edge colouring with defect d such that each edge receives a colour from its list. So ch′1(G)
is the usual list chromatic index.

Borodin et al. [3] proved that Shannon bound holds for the list chromatic index, that

is, for every graph G, ch′1(G) 6 d3∆(G)
2
e. It is then natural to ask if Theorem 1 extends to

defective list edge colouring. As mention in the introduction, when d is even, it is proved
in [6] (and a simpler proof is given in [2]) that for every graph G, ch′d(G) = d∆(G)

d
e. When

d is odd, a proof that ch′d(G) 6 d 3∆
3d−1
e is announced in [2] but seems to have a flaw and

actually holds only in the case where ∆ is divisible by 3k − 1.

Conjecture 20. For every odd integer d and for every graph G, ch′d(G) 6 d3∆−1
3d−1
e

We finally mention the following stronger conjecture that corresponds to the infamous
list edge colouring conjecture for d = 1 and is proved for bipartite graph in [6].

Conjecture 21. [7] For every graph G and every integer d, ch′d(G) = χ′d(G).

The Goldberg-Seymour Conjecture

Let d > 1 and G a graph. Observe that in any edge colouring of G with defect d, and
for any X ⊆ V (G), each colour class contains at most bd|X|

2
c edges, which leads to the

following lower bound on the d-defective edge chromatic number of any graph G:

χ′d(G) 6 Γd(G) = max
{⌈ |E(G[X])|

bd|X|
2
c

⌉
| X ⊆ V (G), |X| > 2

}
.

The following was known as the Goldberg-Seymour Conjecture [5, 13] for almost 50 years.
Recently, Chen, Jing and Zang [4] announced a proof (the paper is still under revision).
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Theorem 22 (Golberg-Seymour [5, 13]). For every graph G,

χ′1(G) 6 max{Γ1(G),∆(G) + 1}.

We think that the following generalization could hold.

Conjecture 23. Every graph G satisfies χ′d(G) 6 max{Γd(G), d∆(G)+1
d
e}.

An easy proof of the conjecture could start as follows. Let G be a counter-example to
Conjecture 23, that is χ′d(G) > max{Γd(G), d∆(G)+1

d
e} for some d > 3. By Theorem 22,

χ′1(G) 6 max{Γ1(G),∆(G)+1}. As χ′d(G) 6 dχ
′
1(G)

d
e, if χ′1(G) 6 ∆(G)+1, then χ′d(G) 6

∆(G)+1
d

, a contradiction. So may assume that ∆(G) + 1 < χ′1(G) = Γ1(G). This implies

that χ′d(G) 6 dΓ1(G)
d
e. So it is enough to prove that dΓ1(G)

d
e 6 max{Γd(G), d∆(G)+1

d
e}.

Unfortunately this last inequality does not hold, for example on the following simple
example. Consider the graph G made of three vertices connected by respectively 7, 7 and
2 edges. So ∆(G) + 1 = 15, Γ1(G) = max{2

1
, 7

1
, 16

1
} = 16 and χ′1(G) = 16. Moreover,

Γ3(G) = max{2
3
, 7

3
, 16

4
} = 4. Hence,

6 =
⌈Γ1(G)

3

⌉
> max

{
Γ3(G),

⌈∆(G) + 1

3

⌉}
= max

{
4,
⌈15

3

⌉}
= 5.

The degree Ramsey number of stars

In this subsection, we briefly describe the link between the degree Ramsey number of
stars and defective edge colouring. We are thankfull to Ross Kang for bringing this to
our attention.

Let H, G be simple graphs. Let H →s G means that every colouring of E(H) with
s colours produces a monochromatic copy of H. The degree Ramsey number of a simple
graph G is R∆(G; s) = min{∆(H) : H →s G}. Observe that H →s K1,d+1 means that
χ′d(H) > s+ 1. Hence, R∆(K1,d+1; s) = min{∆(H) : χ′d(H) > s+ 1}.

It can be proved (with a little brain gymnastic) that the following result of Kinnersley,
Milans and West is equivalent to corollary 16.

Theorem 24. [10] If s > 2, then R∆(K1,d+1; s) =

{
s · d if d is odd,
s · d+ 1 if d is even.

It could be of interest to look at the degree Ramsey number of (multi)graphs.
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