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Abstract

The Lopsided Lovász Local Lemma (LLLL) is a cornerstone probabilistic tool
for showing that it is possible to avoid a collection of “bad” events as long as their
probabilities and interdependencies are sufficiently small. The strongest possible
criterion in these terms is due to Shearer (1985), although it is technically difficult
to apply to constructions in combinatorics.

The original formulation of the LLLL was non-constructive; a seminal algorithm
of Moser & Tardos (2010) gave an efficient algorithm for nearly all its applications,
including to k-SAT instances where each variable appears in a bounded number of
clauses. Harris (2015) later gave an alternate criterion for this algorithm to converge;
unlike the LLL criterion or its variants, this criterion depends in a fundamental way
on the decomposition of bad-events into variables.

In this note, we show that the criterion given by Harris can be stronger in some
cases even than Shearer’s criterion. We construct k-SAT formulas with bounded
variable occurrence, and show that the criterion of Harris is satisfied while the
criterion of Shearer is violated. In fact, there is an exponentially growing gap
between the bounds provable from any form of the LLLL and from the bound
shown by Harris.

Mathematics Subject Classifications: 60C05

1 Introduction

The Lovász Local Lemma (LLL) is a general probabilistic principle for showing that, in
a probability space Ω with a finite set B of “bad” events which are not too interdepen-
dent and are not too likely, then there is a positive probability no events in B occur.
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Since its introduction in [3], it has become a cornerstone of the probabilistic method of
combinatorics.

There have been numerous extensions of the LLL since its original formulation. One
important generalization known as the Lopsided Lovász Local Lemma (LLLL) [4] observes
that it is not necessary for bad-events to be fully independent. If the bad-events are
positively correlated in a certain sense, then for the purposes of the LLL this is just as
good as independence. This type of correlation, which we discuss shortly, is known as
lopsidependency.

In order to explain the LLL formally, we need to introduce a number of definitions.
For any collection of events S ⊆ B, we define S =

⋂
B∈S B; we refer to this event as

avoiding S. A dependency graph is a graph G on vertex set B such that for any B ∈ B
and any set S ⊆ B − {B} −NG(B) (where NG(B) denotes the neighborhood of B in G),
we have

Pr(B | S) = Pr(B). (1)

That is, each bad-event B ∈ B is independent of all other events in B, except possibly
those which are neighbors of B in the dependency graph. A lopsidependency graph is a
graph G on vertex set B, satisfying the relaxed condition that for any B ∈ B and set
S ⊆ B − {B} −NG(B),

Pr(B | S) ⩽ Pr(B). (2)

A probability space Ω and collection of bad-events B does not have a unique depen-
dency graph or lopsidependency graph. Rather, we suppose that we are given Ω,B and
some chosen graph G which is a (lopsi-)dependency graph for them.

For such a graph G with vertex set V = B, we say a set S ⊆ V is stable if no elements
of S are adjacent in G. For real numbers pv, indexed by the vertices v ∈ V , we define the
stable set polynomial of G with respect to base set S ⊆ V , denoted Q(G,S, p⃗), by

Q(G,S, p⃗) =
∑

stable sets T
S⊆T⊆V

(−1)|T |−|S|
∏
v∈T

pv

With these definitions, we state a few formulations of the LLLL.

Theorem 1. Suppose G is a lopsidependency graph for Ω, B. If any of the following
conditions are satisfied, then Pr(B) > 0.

1. (Symmetric LLLL) If G has maximum degree d and every B ∈ B has Pr(B) ⩽ p
and

ep(d+ 1) ⩽ 1

2. (Asymmetric LLLL) If there is a function x : B → (0, 1) satisfying

∀B ∈ B Pr(B) ⩽ x(B)
∏

A∈NG(B)

(1− x(A))
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3. (Cluster-expansion criterion [2]) If there is a function µ : B → [0,∞) satisfying

∀B ∈ B µ(B) ⩾ Pr(B)
(
µ(B) +

∑
Y⊆NG(B)
Y stable

∏
A∈Y

µ(A)
)

The symmetric LLLL uses only a few crude parameters of the problem instance —
namely, the maximum probability of a bad-event and the maximum degree of the lop-
sidependency graph. The other variants use progressively more information and take
advantage of refined dependency structure. See also [14] for another criterion in this vein.
In [20], Shearer derived the most powerful possible criterion in these terms.

Theorem 2 (Shearer’s criterion [20]). Let G be a graph on vertex set V = {1, . . . , n} and
let p1, . . . , pn ∈ [0, 1].

1. Suppose that Q(G, ∅, p⃗) > 0 and Q(G,S, p⃗) ⩾ 0 for all S ⊆ V . Then for any
probability space Ω, and any events B1, . . . , Bn ⊆ Ω in that space such that Pr(Bi) =
pi for i = 1, . . . , n and such that G is a lopsidependency graph for B = {B1, . . . , Bn},
we have Pr(B) ⩾ Q(G, ∅, p⃗) > 0.

In this case, we say that Shearer’s criterion is satisfied by G, p⃗.

2. Suppose that either Q(G, ∅, p⃗) ⩽ 0 or there is some stable set S ⊆ V with Q(G,S, p⃗) <
0. Then there is some probability space Ω and events B1, . . . , Bn ⊆ Ω such that
PrΩ(Bi) = pi for i = 1, . . . , n and such that G is a dependency graph for B =
{B1, . . . , Bn} and Pr(B) = 0.

In this case, we say that Shearer’s criterion is violated by G, p⃗.

Having bad-events with probability 0 or 1 is not so interesting, and Theorem 2 can be
simplified when we disallow these cases.

Theorem 3 ([8], Lemma 5.27). Suppose that p1, . . . , pn ∈ (0, 1). Shearer’s criterion is
satisfied by G, p if and only if Q(G,S, p⃗) > 0 for all stable sets S.

Thus, Shearer’s criterion exactly characterizes which probability and lopsidependency
structure of the bad-events guarantees a positive probability of avoiding B. From a the-
oretical point of view, alternate bounds such as Theorem 1 are all weaker than, and
are implied by, Shearer’s criterion. However, Shearer’s criterion is technically difficult to
apply to constructions in combinatorics.

1.1 The variable-assignment LLLL

The LLLL has been applied to diverse probability spaces such as random permutations
[16], Hamiltonian cycles [1], and perfect matchings [17]. However, by far the most common
form of the LLL and LLLL concerns what we refer to as the variable-assignment setting.
Here, the probability space Ω has m independent discrete random variables X1, . . . , Xm,
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and the bad-events can be taken to be “monomial events”; that is, each B ∈ B can be
written in the form

(Xi1 = j1) ∧ (Xi2 = j2) ∧ · · · ∧ (Xik = jk)

For such a monomial event, we define var(B) = {i1, . . . , ik}. We say that two events
B,B′ disagree on variable i if B demands Xi = j and B′ demands Xi = j′ for j ̸= j′.

Definition 4. The canonical dependency graph G has an edge (B,B′) iff var(B) ∩
var(B′) ̸= ∅. The canonical lopsidependency graph G has edge (B,B′) iff B disagrees
with B′ on any variable i ∈ var(B) ∩ var(B′).

It is immediate that the canonical dependency graph is, indeed, a dependency graph
for Ω,B. The fact that the canonical lopsidependency graph is a lopsidependency graph
follows from the FKG inequality. Most applications of the LLL use only the canonical
dependency graph; some noteworthy applications of the canonical lopsidependency graph
include monochromatic hypergraph coloring [18] and boolean satisfiability [6]. We will
discuss the latter in much more detail later.

In [13], Kolipaka & Szegedy noted that the Shearer criterion is not tight for the
variable-assignment LLL setting. Namely, they found an explicit dependency graph and
vector of probabilities where the Shearer criterion is violated yet any variable-assignment
realization must have a satisfying assignment. Later work [11] provided a more systematic
description of which dependency graphs were satisfiable in the variable-assignment setting.

1.2 The Moser-Tardos algorithm

The LLLL ensures that Pr(B) > 0, and this is usually sufficient for combinatorics where
the main goal is to show existence results. However, typically Pr(B) is exponentially
small, and hence the LLLL does not give efficient algorithms for constructing such a
configuration. In [19], Moser & Tardos introduced a remarkably simple algorithm for the
variable-assignment LLLL setting:

Algorithm 1 The Moser-Tardos (MT) algorithm

1: Draw each variable independently from the distribution Ω.
2: while there is a true bad-event on X do
3: Choose a true bad-event B arbitrarily.
4: Resample var(B) according to the distribution Ω.

They showed that when the asymmetric LLLL criterion is satisfied with respect to the
canonical lopsidependency graph, then this algorithm terminates in expected polynomial
time with a configuration avoiding B. Later work [13] showed that this algorithm termi-
nates quickly whenever the Shearer criterion is satisfied. Thus, at least for the variable-
assignment LLLL setting, this gives an efficient algorithm for nearly every construction
based on the LLLL.

In [7], Harris gave a different type of criterion for the Moser-Tardos algorithm. Unlike
the symmetric LLLL or other similar criteria, this cannot be stated solely in terms of the
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dependency graph and the probabilities of the bad-events. We summarize it here (in a
slightly simplified form).

Definition 5 (Orderability). Given B ∈ B, we say that a set of bad-events Y ⊆ B is
orderable to B, if there is an ordering Y = {B1, . . . , Bs}, such that, for each i = 1, . . . , s,
there is a variable zi ∈ var(B) ∩ var(Bi) where B disagrees with Bi on zi but B does not
disagree with B1, . . . , Bi−1 on zi.

Theorem 6 ([7]). Suppose there is µ : B → [0,∞) satisfying the condition

∀B ∈ B µ(B) ⩾ Pr(B)
(
µ(B) +

∑
Y orderable

to B

∏
A∈Y

µ(A)
)

Then the Moser-Tardos algorithm terminates with probability 1.

Theorem 6 is superficially similar to the cluster-expansion criterion. It is strictly
stronger than the asymmeric LLLL and certain simplified forms of the cluster-expansion
criterion. However, its relation to the Shearer criterion is not clear. It is quite plausible,
along the lines of [13, 9], that it truly takes advantage of extra information in the vari-
able assignment LLLL. On the other hand it is quite plausible that Theorem 6 is more
along the lines of [14], namely, it provides a more accurate and computationally efficient
approximation to Shearer’s criterion.

In this paper, we will construct a problem instance for which Theorem 6 is satisfied, yet
Shearer’s criterion is violated. Thus, it is impossible to deduce the fact that Pr(B) > 0
based only on the probabilities and interdependency structure of the bad-events; it is
necessary to take into account the decomposition of the bad-events into variables (as is
provided by Theorem 6). In other words, Theorem 6 can be stronger than Shearer’s
criterion.

We emphasize that Shearer’s criterion concerns arbitrary probability spaces; one can-
not hope to provide a stronger criterion than Shearer’s for the level of generality to which
the latter applies. The strength of Theorem 6 comes from its less general setting (the
variable assignment LLLL), which is nevertheless encompasses many applications in com-
binatorics.

We also remark on other related criteria for the variable-assignment LLL setting. For
instance, [9, 10] derive certain convergence conditions in terms of the bipartite graph
H on vertex sets {1, . . . ,m} and B and an edge on (i, B) when i ∈ var(B), and [11]
derives conditions in terms of the probabilities that certain neighboring bad-events hold
simultaneously.

2 Satisfiability with bounded variable occurrence

Consider boolean k-satisfiability instances, where we havem boolean variablesX1, . . . , Xm

and n clauses C1, . . . , Cn of width k, each of the form

Ci ≡ li1 ∨ li2 ∨ · · · ∨ lik
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for distinct literals li1, . . . , lik (i.e. expressions of the form Xj or ¬Xj). The goal is to
produce a value for the boolean variables X1, . . . , Xm ∈ {T, F}m such that all the clauses
Ci are simultaneously true. Equivalently, we want to find a satisfying assignment of the
conjuctive-normal form (CNF) formula

Φ =
n∧

i=1

li1 ∨ li2 ∨ · · · ∨ lik

We are interested specifically in instances where each variable appears in a bounded
number of clauses. For each i = 1, . . . ,m, define R0(Φ, i) and R1(Φ, i) to be the number
of clauses which contain the literal Xi (respectively ¬Xi), and let R(Φ, i) = R0(Φ, i) +
R1(Φ, i). In [15], Kratochv́ıl, Savický, and Tuza defined the function f(k) as the largest
integer L such that whenever R(Φ, i) ⩽ L for all i, then Φ is satisfiable; they showed

f(k) ⩾ 2k

ek
. A series of later works [21, 12, 5, 6] showed a variety of upper and lower

bounds of f(k). In particular, [6] showed⌊ 2k+1

e(k + 1)

⌋
⩽ f(k) ⩽ (1 +O(k−1/2))

2k+1

ek
,

The lower bound comes from the variable-assignment LLLL. Here, the probability
space Ω is defined by setting each variable Xi = T with a certain probability pi given by

pi = 1/2 + x
R1(Φ, i)−R0(Φ, i)

R(Φ, i)

for some carefully chosen parameter x ⩾ 0. Then, for each clause Ci, there is a corre-
sponding bad-event Bi that Ci is false, namely Bi has the form

(Xi1 = ji1) ∧ · · · ∧ (Xik = jik)

where ji1, . . . , jik ∈ {T, F}. Using Theorem 6 in place of the LLLL, and using a slightly
different value for the probabilities pi, Harris [7] showed a stronger bound

f(k) ⩾
2k+1(1− 1/k)k

k − 1
− 2

k
(3)

With these constructions, we thus know the asymptotic bound

f(k) ∼ 2k+1

ek
;

nevertheless, there are two main reasons to determine f(k) as precisely as possible. First,
since f(k) grows exponentially in k, the asymptotic value is not as relevant for practical
applications. Second, [15] showed a sudden gap in the computational complexity of k-SAT:
for problem instances where variables may appear in f(k) + 1 clauses, it is NP-complete
to determine satisfiability. On the other hand, problems instances where they appear in
at most f(k) clauses are always satisfiable and the problem is computationally vacuous.
Thus, tiny gaps in the value of f(k) can lead to huge gaps in computational hardness.
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2.1 Restricting the number of occurrences of each literal

Our goal is to demonstrate that the bound in Eq. (3) cannot be shown from the Shearer
criterion. If the probability space Ω is allowed to vary in a problem-specific way, then
any satisfiable formula can trivially satisfy the LLL: namely, Ω puts probability mass 1
on some satisfying assignment. Thus, in order to separate the LLL and Theorem 6, we
must restrict Ω to be problem-independent.

In both the constructions of [6] and [7], the probabilities pi depend solely on the
imbalance between R0(Φ, i) and R1(Φ, i). They use slightly different formulas; however,
in both constructions, the extremal case is when R0(Φ, i) = R1(Φ, i), in which case pi is
set to 1/2.

Accordingly, let us define f ′(k) to be the largest integer L such that wheneverR0(Φ, i) ⩽
L and R1(Φ, i) ⩽ L for all i, then the formula Φ is satisfiable. Clearly f ′(k) ⩾ f(k)/2.
This function is also studied in [5], with slightly different terminology, in terms of a
combinatorial object called a (k, d)-tree.

Definition 7 ([6]).1 A (k, d)-tree is a binary tree T where every leaf has depth at least k,
and every node u of T has at most d descendant leaves within distance k of u.

We quote the following two results from [5] and [6]:

Theorem 8.

• [5, Lemma 2] If there exists a (k − 1, d)-tree, then there is an unsatisfiable k-CNF
formula where every literal occurs in at most d clauses.

• [6, Theorem 1.3] For any k ⩾ 1, there exists a (k, d) tree with d = (2/e+O(k−1/2))2k/k

This immediately gives the following result:

Theorem 9. f ′(k) ⩽ (1 +O(k−1/2))2
k

ek

Let us use the LLL and Theorem 6 to show more precise lower bounds on f ′(k). We
will fix a problem-independent probability space Ω to set each Xi to be T with probability
pi = 1/2. For each clause Ci, we have a bad-event Bi with probability Pr(Bi) = p = 2−k.

Theorem 10 (Follows easily from the symmetric LLLL). f ′(k) ⩾ ⌊2k

ek
− 1/k⌋

Proof. Consider some bad-event, without loss of generality

B ≡ (X1 = T ) ∧ · · · ∧ (Xk = T )

The neighbors of B in the canonical lopsidependency graph G are bad-events involving
Xi = F for some i = 1, . . . , k; as each literal occurs at most L times, there are at most
d = kL such bad-events. The symmetric LLLL criterion ep(d + 1) ⩽ 1 then holds if

L ⩽ 2k

ek
− 1/k.

1The definitions of (k, d)-trees are slightly shifted in the two papers; the object referred to as a (k, d)-
tree in [6] is referred to as a (k− 1, d)-tree in [5]. To put things on a consistent footing, we have adopted
the terminology of [6].
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Theorem 11 (From Theorem 6). Suppose that

R0(Φ, i), R1(Φ, i) ⩽
(2k − 1)(1− 1/k)k−1

k

for all i. Then the Moser-Tardos algorithm finds a satisfying assignment of Φ in expected
polynomial time. In particular,

f ′(k) ⩾
⌊(2k − 1)(1− 1/k)k−1

k

⌋
Proof. We will set µ(B) = α for all B ∈ B, where α ⩾ 0 is some parameter to be
determined. Consider some bad-event, without loss of generality

B ≡ (X1 = T ) ∧ · · · ∧ (Xk = T )

It is difficult to list all orderable sets of neighbors of B according to Definition 5.
However, to apply Theorem 6, we only need to provide an upper bound on the sum over
such orderable sets (possibly including some additional neighbor-sets Y as well). Any
such orderable set will have, for each j = 1, . . . , k, a choice of zero or one bad-events Aj

which first disagree with B on variable Xj. (That is, in Definition 5, we have Bi = Aj

where zi = Xj). Thus, we have an upper bound:

∑
Y orderable

to B

∏
A∈Y

µ(A) ⩽
k∏

j=1

(1 +R1(Φ, j)α) ⩽ (1 + Lα)k

So a sufficient criterion to satisfy Theorem 6 is

α ⩾ 2−k(α + (1 + Lα)k) (4)

We choose α to maximize α−2−k(α+(1+Lα)k); simple calculus gives α =

(
2k−1
kL

) 1
k−1−1

L
,

which is non-negative for L ⩽ 2k−1
k

. With this choice of α, the condition (4) is satisfied
for

L ⩽
(2k − 1)(1− 1/k)k−1

k

Thus, if L ⩽ (2k−1)(1−1/k)k−1

k
and L ⩽ 2k−1

k
, then Theorem 6 is satisfied. The second

condition L ⩽ 2k−1
k

can be easily seen to be redundant, leading to the given bounds.

In either case, we have f ′(k) ∼ 2k/(ek) ∼ f(k)/2. Let us define FLLL(k) = ⌊2k

ek
− 1/k⌋

and FMT(k) = ⌊ (2k−1)(1−1/k)k−1

k
⌋ to be the bounds on f ′(k) which are provable respectively

from the symmetric LLLL (Theorem 10) and from the criterion of Theorem 11. We
observe that

FMT(k)− FLLL(k) ⩾
2k

2ek2
− 1

So the gap between the LLL and Theorem 6 appears to be growing exponentially in
k. (The relative difference between the formulas approaches zero, however).
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3 Constructing the extremal formula Φ

Let us fix integers L, k. We will construct a k-SAT instance Φ with R0(Φ, i), R1(Φ, i) ⩽
L, in which the Shearer criterion is violated for the canonical lopsidependency graph
corresponding to the natural space Ω where Pr(Xi = T ) = 1/2, and all variables Xi are
independent, and with the natural collection of bad-events corresponding to the clauses.
However, L ⩽ FMT(k); thus Theorem 6 ensures that Φ is satisfiable.

To begin the construction, start with Φ0 containing no clauses (i.e. Φ0 is the tautol-
ogy). At stage i of the process, we modify Φi−1 to produce a new formula Φi by adding
L−1 clauses in which i appears positively and L−1 clauses in which i appears negatively.
All other variables in these clauses are completely new, not appearing in any clause of
Φi−1; they all appear positively in the 2L− 2 new clauses, and each of the new variables
(other than variable i) appears in exactly one new clause.

Note that Pr(B) = p = 2−k for all bad-events. Furthermore, since each variable i has
exactly one positive occurence added in some iteration Φi′ for i

′ ̸= i, we have

R0(Φj, i) ⩽ L R1(Φj, i) ⩽ L− 1

for all i, j.
Define Gℓ be the canonical lopsidependency graph corresponding to the bad-events

for the formula Φℓ. Although these graphs are complex, they contain a relatively simple
and regular family of subgraphs Hj. We will show that Shearer’s criterion is violated for
these subgraphs; as shown in [20], this implies that Shearer’s criterion is violated for the
overall graph Gℓ.

The graph family Hj will consist of many copies of KL−1,L−1, the complete bipartite
graph with L − 1 vertices on each side. Each graph Hj has a special copy of KL−1,L−1,
called the root of Hj. We define these graphs recursively. First, H0 is the empty graph.
To form Hj+1, we start by taking a new copy of KL−1,L−1 designated as the root of Hj+1.
For each vertex v in this root, we add k−1 separate new copies of Hj, along with an edge
connecting v to all the vertices in the right-half of the root of the corresponding Hj.

For example, H1 consists of a single copy of KL−1,L−1. See Figure 1.

Root of H_{j+1}

(k-1) copies of H_j…

v

Figure 1: Construction of Hj+1 from Hj. We have only shown here two copies of Hj

corresponding to a single vertex v in the root of Hj+1. There are k − 1 copies of Hj for
each vertex in the root of Hj+1 (a total of 2(L− 1)(k − 1) copies of Hj).

the electronic journal of combinatorics 29(4) (2022), #P4.10 9



Proposition 12. Any graph Hj appears as a subgraph of Gℓ for some ℓ sufficiently large.

Proof. Define Ai to be the collection of clauses in Φi but not Φi−1. We can also define
a tree structure T on the variables of Φ: variable i is a parent of variable j if variable j
appears in Φi but not Φi−1. For any variable i, let Ti denote the subtree of T rooted at i.

For any set of variables S, define Gℓ[S] to be the subgraph of Gℓ induced on the clauses
ϕ of Φℓ such that all variables in ϕ come from S. Observe that if S, S ′ are disjoint sets of
variables then Gℓ[S], Gℓ[S

′] are also vertex-disjoint graphs.
We will prove by induction on j a stronger claim: for any variable i, there is some

integer D(i, j) sufficiently large such that the induced subgraph GD(i,j)[Ti] contains a copy
of Hj, and the root of this copy of Hj corresponds to the clauses of Ai.

When j = 0 this is vacuously true. For the induction step, consider some variable i.
Let C denote the (2L − 2)(k − 1) variables which are children of i in T . By inductive
hypothesis, for each i′ ∈ C, the graph GD(i′,j−1)[Ti′ ] contains a copy of Hj−1 whose root
corresponds to Ai′ .

Let ℓ = i + maxi′∈C D(i′, j − 1); we claim that the choice D(i, j) = ℓ satisfies the
induction claim. For, in the graph Gℓ[Ti], the clauses of Ai in which i appears positively
are lopsidependent with those clauses in which i appears negatively. Thus, it has a copy of
KL−1,L−1 corresponding to Ai; we denote this copy by J . The graph Gℓ[Ti] also contains
the disjoint graphs Gℓ[Ti′ ] for each i′ ∈ C. For each such i′ ∈ C, let Ji′ denote the
corresponding copy of Hj−1 in Gℓ[Ti′ ].

Consider some clause ϕ ∈ Ai, corresponding to a vertex of J , and some variable i′ ̸= i
in this clause. The root of Ji′ corresponds to the clauses Ai′ . Note that ϕ is the only
clause of Ai in which i′ appears, and it appears positively in ϕ. Variable i′ also appears
negatively in exactly L− 1 clauses of Ai′ , which correspond to the right-half of Ji′ . Thus,
there are edges from ϕ in J to all the right-vertices in k−1 copies of Hj−1. As this is true
for every ϕ ∈ J , the resulting graph is precisely Hj. This completes the induction.

4 Computing the Shearer criterion for Hj

We now compute the Shearer criterion for the family of graphs Hj. For our intermediate
calculations, we also need to work with another closely-related family of graphs. For each
j ⩾ 0, define a graph H ′

j by taking a single vertex v along with k − 1 new copies of Hj.
We include an edge from v to all the vertices in the right-half of the roots of Hj. See
Figure 2.

(k-1) copies of H_{j}
…

v

Copies of H_{j-1}

Root of H'_{j}

Figure 2: The construction of H ′
j from Hj.
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We will make use of two computational tricks for stable set polynomials; the proofs of
these are elementary and are omitted here.

Proposition 13. If vertex set V is partitioned into connected-components as V = V1⊔V2,
then

Q(G, ∅, p⃗) = Q(G[V1], ∅, p⃗)Q(G[V2], ∅, p⃗)

Proposition 14. Suppose X ⊆ V . Then

Q(G, ∅, p⃗) =
∑

stable set U⊆X

Q(G[V −X −N(U)], ∅, p⃗)
∏
i∈U

(−pi)

We now begin the calculation.

Proposition 15. Let us define

rj = Q(H ′
j, ∅, p⃗) sj = Q(Hj, ∅, p⃗)

Then r0 = 1− p, s0 = 1, and r, s satisfy the mutual recurrence relations for j ⩾ 1:

rj = s
(k−1)
j − pr

(k−1)(L−1)
j−1 s

(k−1)2(L−1)
j−1

sj = 2r
(L−1)
j−1 s

(k−1)(L−1)
j−1 − s

(k−1)(2L−2)
j−1

Proof. The base cases are clear, since H0 is empty and H ′
0 is a single node. We first show

the bound on sj for j ⩾ 1. In any stable set U of Hj, either U contains zero vertices from
the left half of the root of Hj, or zero vertices from the right-half of the root of Hj, or
both. In the first two cases, when we remove the vertices in the left (respectively right)
half of Hj, then we are left with L− 1 copies of H ′

j−1 and (k − 1)(L− 1) copies of Hj−1.
In the third case, we are left with (k − 1)(2L − 2) copies of Hj−1. We can sum the first
two contributions and subtract the third, as it is double-counted: this gives

sj = 2r
(L−1)
j−1 s

(k−1)(L−1)
j−1 − s

(k−1)(2L−2)
j−1

Next consider the bound for rj. Let v denote the root node of H ′
j and let J1, . . . , Jk−1

be the copies of Hj to which it is connected, and let Pi denote the root of each Ji. We
apply Proposition 14 with X = {v}, and so either U = ∅ or U = {v}. For U = ∅, the
graph H ′

j[V − X − N(U)] consists of k − 1 independent copies of Hj. For U = {v},
consider the graph H ′

j[V −X −N(U)]: the vertices in the left half of Pi now yield L− 1
disconnected copies of H ′

j−1 and each vertex u in the right half of Pi now yields k − 1
disconnected copies of Hj−1. Over all k − 1 choices of i and all (k − 1)(L− 1) choices for
u in each Pi, we see that H ′

j[V − v −N(v)] consists of (k − 1)(L− 1) copies of H ′
j−1 and

(k − 1)2(L− 1) copies of Hj−1. See Figure 3.
Summing the contributions of these two terms according to Proposition 14 gives

rj = Q(H ′
j, ∅, p⃗) = s

(k−1)
j − pr

(k−1)(L−1)
j−1 s

(k−1)2(L−1)
j−1 .
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Root of H'_{j}

…
(k-1) copies of H_{j}

Copies of H_{j-1}

Figure 3: Removing the root node from H ′
j

Proposition 16. Suppose that Gℓ satisfies the Shearer condition for all ℓ ⩾ 0. Then, if
we define the function g : [0, 1] → R by

g(a) = 1− p

(2− a−(L−1))k−1
,

there is some a ∈ (2
−2

2L−2 , 1] satisfying g(a) = a.

Proof. For j ⩾ 0 define

aj =
rj

s
(k−1)
j

.

We will show a recurrence relation for aj. Using Proposition 15, we calculate for j ⩾ 1:

aj =
s
(k−1)
j − pr

(k−1)(L−1)
j−1 s

(k−1)2(L−1)
j−1

s
(k−1)
j

= 1−
pr

(k−1)(L−1)
j−1

s
(k−1)2(L−1)
j−1

·
s
(k−1)2(2L−2)
j−1

s
(k−1)
j

= 1−
pa

(k−1)(L−1)
j−1( sj

s
(k−1)(2L−2)
j−1

)k−1

Here again using Proposition 15, we get

sj

s
(k−1)(L−2)
j−1

=
2r

(L−1)
j−1 s

(k−1)(L−1)
j−1 − s

(k−1)(2L−2)
j−1

s
(k−1)(2L−2)
j−1

=
2r

(L−1)
j−1

s
(k−1)(L−1)
j−1

− 1 = 2a
(L−1)
j−1 − 1 (5)

and, substituting this into the equation for aj, this implies:

aj = 1−
pa

(k−1)(L−1)
j−1

(2a
(L−1)
j−1 − 1)k−1

= g(aj−1). (6)

We must have aj > 2
−2

2L−2 for all j ⩾ 1. For, if not, then Eq. (5) would otherwise imply
that

sj

s
(k−1)(2L−2)
j−1

⩽ 0; thus, either sj ⩽ 0 or sj−1 ⩽ 0. Thus, either Hj or Hj−1 violates the

Shearer condition, and so would some Gℓ; this contradicts our hypothesis.

Now suppose g(a) < a for all a ∈ (2−
−2

2L−2 , 1], so from Eq. (6) the sequence a1, a2, . . .

decreases monotonically. Because of the lower bound aj ⩾ 2
−2

2L−2 , it converges to some

limit point a ⩾ 2
−2

2L−2 . By continuity, this must be a fixed point, i.e. g(a) = a, as desired.
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Furthermore, since g(a) diverges to infinity at a = 2
−2

2L−2 , we must indeed have a > 2−
2

2L−2

strictly.

Otherwise, suppose that g(a) ⩾ a for some a ∈ (2−
−2

2L−2 , 1]. Observe that g(1) =

1 − p < 1. Hence, the function g(a) − a changes sign on the interval (2−
−2

2L−2 , 1]. This
implies there must be a fixed point g(a) = a on this interval.

Proposition 17. Suppose

L > 1− ln(2− t)

ln (1− 2−kt1−k)

for all t ∈ (2k/(k−1), 2). Then the Shearer condition is violated on Gℓ, for ℓ sufficiently
large.

Proof. Suppose not; by Proposition 16, the function g then has a fixed point a ∈ (2−
−2

2L−2 , 1].
So

a = 1− 2−k

(2− a−(L−1))k−1

Solving for L, we thus obtain:

L = 1−
ln
(
2− 2

k
1−k (1− a)

1
1−k

)
ln a

for t = 2k/(1−k)(1− a)1/(1−k) (7)

where here t ∈ (2k/(k−1), 2). This contradicts our hypothesis.

For any k ⩾ 1, let us define the quantity F̃Shearer(k) by:

F̃Shearer(k) =
⌊

max
t∈(2k/(k−1),2)

1− ln(2− t)

ln (1− 2−kt1−k)

⌋
In light of Proposition 17, this is an upper bound on the value of f ′(k) that can be

shown using the LLL or any variant of it. We observe that F̃Shearer(k) ⩾ FLLL(k) for all
values of k — this must be the case, since the bound FLLL was indeed derived using the
LLL and this is always weaker than Shearer’s criterion. To illustrate, we list FLLL, F̃Shearer,
and FMT for a few small values of k in Table 1.

The gap between F̃Shearer and FLLL is very small, suggesting that there is little to no
improvement possible in the bound for f ′(k) from a more advanced more of the LLL.

We next derive an asymptotic approximation to F̃Shearer.

Proposition 18. F̃Shearer =
2k

ek
+Θ(2

k

k3
)

Proof. We can show the lower bound by taking t = 1− 1/k, i.e.

F̃Shearer ⩾
⌊
1− ln(2− t)

ln(1− 2−kt1−k)

⌋
⩾ − ln(2− t)

ln(1− 2−kt1−k)
=

2k

ek
+ Ω(

2k

k3
).
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k FLLL F̃Shearer FMT

9 20 21 22

10 37 38 39

11 68 69 71

12 125 126 131

13 231 233 241

14 430 432 446

15 803 806 831

16 1506 1510 1555

17 2836 2842 2922

18 5357 5366 5511

19 10151 10165 10426

20 19287 19311 19784

Table 1: FLLL, F̃Shearer, and FMT for a few small values of k.

For the lower bound, let L = F̃Shearer(k), so that

L ⩽ 1− ln(2− t)

ln (1− 2−kt1−k)

for some t ∈ (2k/(k−1), 2). Using the bound − ln(1− x) ⩾ x for x ⩾ 0, we have:

L ⩽ 1 + tk−12k ln(2− t) (8)

Since ln(2− t) is a concave-down function of t, we have the bound

ln(2− t) ⩽ ln(2− t0) +
t0 − t

2− t0

for any chosen value t0 ∈ (0, 2). Substituting this bound into (8), and differentiating with
respect to t to maximize the resulting value, we get

L ⩽ 1 +

(
2(1− 1/k)(t0 + (2− t0) ln(2− t0))

)k

(2− t0)(k − 1)
(9)

If we set t0 = 1− 1/k in Eq. (9), then straightforward analysis gives:

L ⩽
2k

ek
+O(

2k

k3
)

On the other hand, one can easily verify that FMT(k) ⩾ 2k

ek
+ Ω(2

k

k2
); thus, there is a

large and growing gap between FMT and F̃Shearer.
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