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Abstract

We define a family of partitions called near-rectangular. We introduce and give
evidence for a conjectural identity between Littlewood-Richardson coefficients, when
one partition is near-rectangular. That is, if λ is a near-rectangular partition and µ
any partition, the irreducible decompositions of Vn(λ) ⊗ Vn(µ) and Vn(λ)

∗ ⊗ Vn(µ)
coincide up to some unknown bijection. Here, Vn(λ) denotes the irreducible GLn(C)-
representation corresponding to λ. This conjecture is proved if µ is also near-
rectangular. We also report some computational evidence for the conjecture.
Mathematics Subject Classifications: 05E15, 22E46

1 Introduction

Let Λn = {λ1 ⩾ · · · ⩾ λn ⩾ 0 : λi ∈ Z} be the set of partitions with at most n
parts. The irreducible polynomial representations of GLn(C) are parametrized by Λn.
For λ ∈ Λn, let Vn(λ) be the associated irreducible polynomial representation of GLn(C).
The Littlewood-Richardson coefficient cνλµ is the tensor product multiplicity

Vn(λ)⊗ Vn(µ) =
⊕
ν∈Λn

cνλµVn(ν).

Let Vn(λ)∗ be the GLn(C)-representation dual to Vn(λ). The tensor products Vn(λ)⊗Vn(µ)
and Vn(λ)∗⊗Vn(µ) are not generally isomorphic as GLn(C)-representations. Nevertheless,
we pose:

Problem 1. Compare Vn(λ)⊗ Vn(µ) and Vn(λ)∗ ⊗ Vn(µ) as GLn(C)-representations.
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Coquereaux and Zuber [CZ11] prove that the sums of the multiplicities of these two
representations coincide. Let det be the one-dimensional determinant representation of
GLn(C). For λ ∈ Λn, set λ∗ = λ1 − λn ⩾ λ1 − λn−1 ⩾ · · · ⩾ λ1 − λ2 ⩾ 0. Then, Vn(λ∗) is
isomorphic to Vn(λ)∗ ⊗ det⊗λ1 . Coquereaux-Zuber’s states∑

ν∈Λn

cνλµ =
∑
ν∈Λn

cνλ∗µ. (1)

Let us further compare {cνλµ : ν ∈ Λn} and {cνλ∗µ : ν ∈ Λn} as multisets. For instance,
for n = 3, λ = (5, 3) and µ = (6, 3), V3(λ)⊗ V3(µ) decomposes as

V3(7, 5, 5) + V3(7, 7, 3) + V3(8, 8, 1) + V3(9, 4, 4) + V3(9, 8) + V3(10, 7)
+V3(11, 6) + V3(11, 3, 3) + V3(11, 4, 2) + V3(11, 5, 1) + V3(6, 6, 5)
+2V3(7, 6, 4) + 2V3(8, 5, 4) + 2V3(8, 7, 2) + 2V3(9, 7, 1) + 2V3(10, 4, 3)
+2V3(10, 5, 2) + 2V3(10, 6, 1) + 3V3(8, 6, 3) + 3V3(9, 5, 3) + 3V3(9, 6, 2),

while V3(λ∗)⊗ V3(µ) decomposes as

V3(7, 7, 2) + V3(8, 4, 4) + V3(10, 3, 3) + V3(8, 8) + V3(9, 7) + V3(10, 6)
+V3(11, 3, 2) + V3(11, 4, 1) + V3(6, 5, 5) + V3(6, 6, 4) + 2V3(7, 5, 4)
+2V3(7, 6, 3) + 2V3(8, 7, 1) + 2V3(9, 4, 3) + 2V3(9, 6, 1) + 2V3(10, 4, 2)
+2V3(10, 5, 1) + 3V3(8, 5, 3) + 3V3(8, 6, 2) + 3V3(9, 5, 2) + V3(11, 5).

Notice the multiplicities in the two expansions are the same: 11 occurrences of “1”, 7
occurrences of “2” and 3 occurrences of “3” in both cases. Is this always true? In fact, in
[CZ14], Coquereaux and Zuber give an affirmative answer for GL3(C). Using a computer,
we are able to compute explicitly, for n = 3, the function

(Λ2
n)× N −→ N

(λ, µ, c) 7−→ Nbn(c
•
λµ > c) := #{ν ∈ Λn : cνλµ > c}.

Using these calculations, we obtain a new proof of Coquereaux-Zuber’s result [CZ14]. In
Section 5 we prove:

Proposition 1. The function

Nb3(c
•
λµ > c) : Λ3 × Λ3 × N −→ N

(λ, µ, c) 7−→ #{ν ∈ Λn : cνλµ > c}

is piecewise polynomial of degree 2 with respect to a fan with 7 maximal cones. Moreover,

Nb3(c
•
λµ > c) = Nb3(c

•
λ∗µ > c). (2)

This piecewise polynomiality roughly means that the cone generated by Λ3 × Λ3 × N
decomposes into 7 cones, such that on the integer points of each the function Nb3(c

•
λµ > c)

is polynomial. See Section 2 for a precise definition of a piecewise quasi-polynomial
function.

We now suggest a generalization to GLn(C) for any n. Define a partition λ ∈ Λn

to be near-rectangular if λ = λ1λ
n−2
2 λn for some integers λ1 ⩾ λ2 ⩾ λn; that is, if

λ2 = · · · = λn−1.
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Conjecture 2. Let λ and µ in Λn. If λ is near-rectangular then

∀c ∈ N #{ν ∈ Λn : cνλµ = c} = #{ν ∈ Λn : cνλ∗µ = c}.

Equivalently, we conjecture that, if λ is near-rectangular, there is a bijection φ :
Λn−→Λn, depending on λ and µ, such that

∀ν ∈ Λn cνλµ = c
φ(ν)
λ∗µ .

Since any partition of length at most 3 is near-rectangular, both the result of [CZ14]
and the last assertion of Proposition 1 are equivalent to

Corollary 3. Conjecture 2 holds for n = 3.

We have verified Conjecture 2 on millions of examples for GL4(C), GL5(C), GL6(C),
and GL10(C): see Section 9.2 for details. In addition, in Section 9.2 we offer an example
showing that the assumption on λ cannot be dispensed with.

In literature, one finds numerous properties relating different Littlewood-Richardson
coefficients. For example, there are symmetries (see [BR20] and references therein), sta-
bilities (see [BOR15]), and reductions (see [CM11]). Moreover, there are various combina-
torial models for the Littlewood-Richardson coefficients (see [Ful97, Lit95, Zel81, KT99,
Vak06, Cos09]). As far as we can tell, none of these results are especially useful in at-
tacking Conjecture 2. In addition, we remark in Section 5 that even for n = 3 the map
(λ, µ, ν)−→(λ∗, µ, φ(ν)) cannot be linear. This observation makes Conjecture 2 even more
surprising.

A partition λ of length l parametrizes representations Vn(λ) of GLn(C) for any n ⩾ l. It
is a classical result (see e.g. [Ful97]) of stability that cνλµ does not depend on n. Our second
result is a similar stability result, but for near-rectangular partitions of arbitrarily large
length. Indeed, fix two near-rectangular partitions λ = λ1 λ

n−2
2 λn and µ = µ1 µ

n−2
2 µn. We

prove that the decomposition of Vn(λ) ⊗ Vn(µ) does not depend on n ⩾ 4, but only on
the six integers λ1, λ2, λn, µ1, µ2 and µn:

Proposition 4. Let n ⩾ 4. Let λ = λ1 λ
n−2
2 and µ = µ1 µ

n−2
2 be two near-rectangular

partitions.1 Let ν be a partition with at most n parts. Then, cνλµ = 0 unless ν = ν1 ν2 (λ2+
µ2)

n−4 νn−1νn, for four integers ν1, ν2, νn−1 and νn such that ν1 ⩾ ν2 ⩾ λ2 + µ2 ⩾ νn−1 ⩾
νn. In this case, set

M = max(0, λ2 + µ1 − ν1,−µ2 + νn)

and
m = min(λ1 + µ1 − ν1, λ2 + µ1 − ν2,−λ2 − µ2 + νn−1 + νn,−µ2 + νn−1).

Then
cνλµ =

{
m−M + 1 if m ⩾M,
0 otherwise.

In particular, this value does not depend on n ⩾ 4.
1Nothing is lost with the hypothesis λn = µn = 0 since Vn(λ1λ

n−2
2 λn) ≃ detλn ⊗Vn((λ1 − λn)(λ2 −

λn)
n−2).
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Proposition 4 positively answers [PW22, Question 2] by giving a much stronger result.
It also makes is possible to check a particular case of Conjecture 2. Indeed, with the
help of a computer, we computed Nb4(c

•
λµ > c) for λ and µ near-rectangular. Let Λnr

n =

{λ1λn−2
2 λn : λ1 ⩾ λ2 ⩾ λn} be the set of near-rectangular partitions of length at most n.

Proposition 5. The function

Nb4(c
•
λµ > c) : Λnr

4 × Λnr
4 × N −→ N

(λ, µ, c) 7−→ #{ν ∈ Λn : cνλµ > c}

is piecewise polynomial of degree 3 with respect to a fan with 36 maximal cones. Moreover,

Nb4(c
•
λµ > c) = Nb4(c

•
λ∗µ > c). (3)

The 36 polynomial functions and cones are given in Section 7.3. As a consequence of
Propositions 4 and 5, we obtain

Corollary 6. Let n ⩾ 4. Conjecture 2 holds for GLn(C), whenever µ is near-rectangular.

A weaker version of Conjecture 2 is

Conjecture 7. If λ ∈ Λn is near-rectangular then

#{ν ∈ Λn : cνλµ ̸= 0} = #{ν ∈ Λn : cνλ∗µ ̸= 0}.

Equivalently, we wonder whether, for λ ∈ Λnr
n ,

∀µ ∈ Λn Nbn(c
•
λµ > 0) = Nbn(c

•
λ∗µ > 0).

For n = 4 and λ near-rectangular, we computed Nb4(c
•
λµ > 0) and checked Conjecture 7.

Here we report on this computation as follows (see Section 7.4 for details).

Proposition 8. The function

Nb4(c
•
λµ > 0) : Λnr

4 × Λ4 −→ N
(λ, µ) 7−→ #{ν ∈ Λn : cνλµ > 0}

is piecewise quasi-polynomial of degree 3 with respect to a fan with 205 maximal cones.
The only congruence condition occurring is the parity of λ1 + |µ| where, for any partition
ν = (ν1 ⩾ · · · ⩾ νn), |ν| = ν1 + · · ·+ νn. Moreover,

Nb4(c
•
λµ > 0) = Nb4(c

•
λ∗µ > 0). (4)

This symmetry, along with the complete duality (λ, µ) 7−→ (λ∗, µ∗), gives an action of
(Z/2Z)2 on Λnr

4 ×Λ4. Then this group acts on the 205 pairs (cone, quasi-polynomial) with
83 orbits.
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Remark 9. After a version of this work was posted on ArXiv, Darij Grinberg offered a
solution to our main conjecture in [Gri21]. Therein he defines a piecewise linear involution
φ from Zn to Zn satisfying

∀ν ∈ Λn cνλµ = c
φ(ν)
λ∗µ

if λ is near-rectangular, thus proving our conjecture. An amazing fact is that this bijection
does not necessarily map a partition to a partition: if φ(ν) is not a partition then cνλµ
simply vanishes, allowing φ to work.

2 Piecewise quasi-polynomial functions

Let d be a positive integer. Let N be a free abelian group of rank d; set NQ = N ⊗Z Q.
We denote by M the dual lattice of N , and by MQ the dual vector space of NQ.

A closed half-space in NQ is defined by an inequality m ⩾ 0 where m is a non-zero
element of MQ. A (polyhedral convex) cone σ in NQ is the intersection of finitely many
closed half- spaces. A face of σ is an intersection σ ∩ (m = 0), for m ∈ M such that the
half-space (m ⩾ 0) contains σ. A fan in NQ is a finite set Σ of cones, such that:

1. if σ ∈ Σ and τ is a face of σ, then τ ∈ Σ;

2. if σ, τ ∈ Σ then σ ∩ τ is a face of σ.

The support |Σ| of the fan Σ is the union of its cones.
Let σ be a cone. A function g : σ ∩N−→R is said to be polynomial if there exists a

polynomial function p in Sym(MQ) such that g(t) = p(t), for any t ∈ σ ∩N . A function
g : σ∩N−→R is said to be quasi-polynomial if there exist a d-dimensional lattice Λ ⊂ N ,
a set {λi} of coset representatives of N/Λ, and polynomial functions pi in Sym(MQ) such
that g(t) = pi(t), for any t ∈ (λi + Λ) ∩ σ. The finite quotient group N/Λ is called the
congruence condition.

A function g : σ ∩ N−→R is said to be piecewise polynomial (resp. piecewise quasi-
polynomial) if there exists a fan Σ such that |Σ| = σ and the restriction of g on the ineger
points of any maximal dimensional cone in Σ is polynomial (resp. quasi-polynomial).
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Observe that if there exists a smaller cone σ′ ⊂ σ on g is piecewise polynomial and
vanishes outside σ′, then it is also piecewise polynomial on σ. Indeed, the complement of
σ′ in σ can be subdivided in subcones such that g is zero on each.

3 Generalities on the function Nbn(c
•
λµ > c)

Recall that, for λ, µ ∈ Λn and c ∈ N, we set

Nbn(c
•
λµ > c) = #{ν ∈ Λn : cνλµ > c}.

Let 1n ∈ Λn denote the partition with n parts equal to 1. Then, Vn(1n) = det is the
one dimensional representation of GLn(C) given by the determinant. Set Λ0

n = {λ ∈ Λn :
λn = 0}. For λ ∈ Λn, set λ̄ = λ− λnn ∈ Λ0

n, the partition obtained by substracting λn to
each part of λ. Then Vn(λ) = Vn(λ̄)⊗ det⊗λn , which gives

cνλµ = c
ν−(λn+µn)n

λ̄µ̄
, and hence Nbn(c

•
λµ > c) = Nbn(c

•
λ̄µ̄ > c). (5)

Since Vn(λ)⊗ Vn(µ) ≃ Vn(µ)⊗ Vn(λ) ≃ (Vn(λ
∗)⊗ Vn(µ

∗))∗ ⊗ det⊗(λ1+µ1), the function
Nbn(c

•
λµ > c) satisfies

Nbn(c
•
λµ > c) = Nbn(c

•
µλ > c) = Nbn(c

•
λ∗µ∗ > c) = Nbn(c

•
µ∗λ∗ > c). (6)

Set
Hornn = {(λ, µ, ν) ∈ (Λn)

3 : cνλµ ̸= 0}.

By a result from Brion and Knop (see [É92]), Hornn is a finitely generated semigroup.
Knutson-Tao’s saturation Theorem [KT99] shows that Hornn is the set of integer points in
a convex cone, the Horn cone. This cone is polyhedral and the minimal list of inequalities
defining it is known (see e.g. [Ful00, Bel01, KTW04]). These inequalities contain the
dominance inequalities and the Weyl inequalities

νi+j−1 ⩽ λi + µj whenever i+ j − 1 ⩽ n. (7)

The remaining inequalities are all of the form∑
k∈K

νk ⩽
∑
i∈I

λi +
∑
j∈J

µj, (8)

for some triples (I, J,K) of subsets of {1, . . . , n} of the same cardinality.

Proposition 10. Fix n ⩾ 0. The function

Nbn(c
•
λµ > 0) : Λn × Λn −→ N

(λ, µ) 7−→ #{ν ∈ Λn : cνλµ > 0}.

is piecewise quasi-polynomial.
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Figure 1: Hives with boundary conditions

Proof. We have

Nbn(c
•
λµ > 0) = #

(
Hornn ∩ ({(λ, µ)} × Λn)

)
. (9)

Consider the Horn cone HornQ
n ⊂ Q3n generated by Hornn. By the discussion above,

HornQ
n is defined by the Horn inequalities (8). Knutson-Tao’s saturation Theorem [KT99]

asserts that Hornn is precisely the set of integer points (that is, belonging to (Λn)
3) in

HornQ
n . Now, equality (9) describes Nbn(c

•
λµ > 0) as the number of integer points in the

affine section of the Horn cone obtained by fixing (λ, µ).
Since each inequality (8) depends linearly on (λ, µ), Proposition 10 then follows from

the general theory of multivariate Ehrhart polynomial functions (see e.g. [BBDL+19,
Theorem 1.1] or [Stu95]).

4 The hive model

For later use, we shortly review the hive model that expresses the Littlewood-Richardson
coefficients as the number of integer points in polyhedra.

Fix an integer n ⩾ 2, and an equilateral triangle Tn of side length n. Subdivide Tn
in n2 equilateral triangles of side length 1 (called unitary triangles) as on Figure 1. We
then have (n+1)(n+2)

2
bullet vertices (called simply vertices), and 3n(n+1)

2
sides of length 1

(called edges).
Label the vertices of Tn with real numbers. Note that each interior edge is the diagonal

of a unique rhombus as illustrated in Figure 2. For each such rhombus, consider the
following so-called rhombus inequality (using the notation of Figure 2):

b+ c ⩾ a+ d. (10)

A hive is defined to be such a labeling that satisfies Inequality (10) for each one of the
3n(n−1)

2
rhombi. Furthermore, a hive is integral if all its labels are integers.
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β

α γ

δ

Figure 2: Rhombi

For λ, µ, ν ∈ Λn such that |ν| = |λ|+ |µ|, we can define a labeling of the boundary of
Tn as in the left of Figure 1.

Theorem 11. (see [KT99, Appendix]) Let λ, µ and ν in Λn such that |ν| = |λ| + |µ|.
Then, cνλµ is the number of integral hives whose boundary is labeled by λ, µ, ν.

Alternatively, one can define a hive as a labeling of the 3n(n+1)
2

edges such that the
edge labels (using the notation as in Figure 2) satisfy

β ⩾ δ, or equivalently α ⩾ γ, (11)

for each one of the 3n(n−1)
2

rhombi in Tn.
The correspondence between the two definitions of hive is obtained by labeling each

edge with the difference between the labels on its vertices, with the orientation illustrated
on the right of Figure 1. In other words, to get the label of an edge, one subtracts the
label of its leftmost vertice from the label of its rightmost one. Moreover, as shown in
Figure 1, the entries of the three partitions are the labels of the edges on the boundary
of Tn.

5 The case of GL3(C)

It is known that the function (Λn)
3−→N, (λ, µ, ν) 7−→ cνλµ is piecewise polynomial

(see [Ras04]) of degree n2−3n+2
2

. For n = 3, we have a more precise statement:

Proposition 12. Let λ = (λ1, λ2, 0), µ = (µ1, µ2, 0), and ν = (ν1, ν2, ν3) in Λ3 be such
that |ν| = |λ|+ |µ|. Then cνλµ is the number of integer points in the interval

I = [max(µ1 − λ2, µ2, ν1 − λ1, µ1 − ν3, ν2 − λ2, µ1 + µ2 − ν2),min(µ1, ν1 − λ2, µ1 + µ2 − ν3)] .

Proposition 12 is well known and can easily be checked using the hive model. Indeed,
once λ, µ and ν are fixed, a hive only depends on the label x of the unique central vertex
of T3. By definition, x has to satisfy 9 rhombus inequalities, and hence it has to belong to
an interval I ′. It is straightforward to verify that I can be obtained from I ′ via translation
by λ1 + λ2.
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Let c be any nonnegative integer. By Proposition 12,

cνλµ > c ⇐⇒ φ− ψ ⩾ c

for all linear forms φ and ψ appearing inside the min and max function respectively in
the definition of I. Namely, cνλµ > c if and only if

λ1 − λ2 − c ⩾ 0, λ2 − c ⩾ 0,
µ1 − µ2 − c ⩾ 0, µ2 − c ⩾ 0,
ν1 − ν2 − c ⩾ 0, ν2 − ν3 − c ⩾ 0,
λ1 + µ1 − ν1 − c ⩾ 0, λ1 + µ1 − ν2 − ν3 − c ⩾ 0,
λ1 + µ2 − ν2 − c ⩾ 0, λ1 + λ2 + µ1 − ν1 − ν3 − c ⩾ 0,
λ1 − ν3 − c ⩾ 0, λ1 + λ2 + µ2 − ν2 − ν3 − c ⩾ 0,
λ2 + µ1 − ν2 − c ⩾ 0, λ1 + µ1 + µ2 − ν1 − ν3 − c ⩾ 0,
µ1 − ν3 − c ⩾ 0, λ2 + µ1 + µ2 − ν2 − ν3 − c ⩾ 0,
λ2 + µ2 − ν3 − c ⩾ 0, λ1 + λ2 + µ1 + µ2 − ν1 − ν2 − c ⩾ 0,

(12)

and
|ν| = |λ|+ |µ|. (13)

Note that, for c = 0, we recover the 6 inequalities saying that λ, µ and ν are dominant,
the 6 Weyl inequalities (7) and the 6 others inequalities (8) of the Horn cone (see e.g.
[Ful00]).

Let us now compute the function mapping (λ, µ, c) to Nb3(c
•
λµ > c), the number of

solutions of the system (12) whose unknowns are the 3 entries of ν. Our method is
restating this problem in the langage of vector partition functions as in [Stu95].

Start with the 18 × 8 matrix H whose rows are given by the coefficients of the 18
inequalities (12). Set

Λ = {(λ1, λ2, µ1, µ2, ν1, ν2, ν3, c) ∈ Z8 : |ν| = |λ|+ |µ|}

and
Λ+ = {(λ1, λ2, µ1, µ2, ν1, ν2, ν3, c) ∈ Λ : λ, µ, ν dominant and c ⩾ 0}.

Let H̃orn3 denote the set of points in Λ+ that satisfy the inequalities (12).
To get nonnegative variables, let us consider the following change of coordinates

a1 = λ1 − λ2 − c, b1 = µ1 − µ2 − c, c1 = ν1 − ν2 − c,
a2 = λ2 − c, b2 = µ2 − c, c2 = ν2 − c.

Then, H̃orn3 identifies with H̃orn
′
3 = {X ∈ N7 |AX ⩾ 0}, where
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A =



−1 −2 −1 −2 1 3 −3
1 1 1 1 −1 −1 1
1 1 0 1 0 −1 1
0 −1 −1 −2 1 2 −2
0 1 1 1 0 −1 1

−1 −2 0 −1 1 2 −2
−1 −1 −1 −1 1 2 −2
0 −1 0 −1 1 1 −1
0 0 0 −1 0 1 −1
0 0 −1 −1 1 1 −1
0 −1 0 0 0 1 −1

−1 −1 0 0 1 1 −1
1 2 1 2 −1 −2 2



.

Set Ã = (A| − I13) in such a way that

H̃orn
′
3 ≃ {(X, Y ) ∈ N7 × N13 |AX = Y }

≃ {X ∈ N20 | ÃX = 0}.

We now consider the affine section of H̃orn
′
3 obtained by fixing λ and µ, as in Identity (9).

Thus, up to our changes of variables, the function (λ, µ, c) 7→ Nb3(c
•
λµ > c) is the map

N5 −→ N
Y 7−→ #{X ∈ N15 : B̃X = −CY },

where B̃ = (B | − I13), B is the matrix formed by columns 5 and 6 of the matrix A, and
C is the matrix formed by the other columns of A.

Note that B̃ is not unimodular: the least common multiple of the maximal minors
is not 1, but 6. There are 83 such nonzero minors. As a result, [Stu95] implies that
(λ, µ, c) 7→ Nb3(c

•
λµ > c) is piecewise quasi-polynomial with respect to a fan whose the

maximal cones are obtained by intersecting some of 83 explicit simplicial cones. We used
[VSB+07], an implementation of Barvinok algorithm [Bar94], to compute this function.
Surprisingly, we got only polynomial functions and only 7 maximal cones. In fact, the
program produced 36 cones that turned out can be glued to give the 7 described in
Proposition 13.

Proposition 13. Let us write the partitions λ, µ in terms of fundamental weights: λ =
k1ϖ1 + k2ϖ2 = (k1 + k2)k2 and µ = l1ϖ1 + l2ϖ2 = (l1 + l2)l2. Then, Nb3(c

•
λµ > c) = 0

unless
c ⩽ min(k1, k2, l1, l2). (14)

Moreover, the set of (c, k1, k2, l1, l2) ∈ N5 satisfying (14) decomposes into 7 cones
C1, . . . , C7 on which Nb3(c

•
λµ > c) is given by polynomial functions P1, . . . , P7 respec-

tively. Five of these seven pairs (Ci, Pi) are kept unchanged by swapping k1 and k2. The
two others are swapped by this operation.

In particular, Conjecture 2 holds for GL3(C).
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Proof. In the basis of fundamental weights, we are interested in the function

ψ : N5 −→ N
(k1, k2, l1, l2, c) 7−→ #{ν ∈ Λ3 | cνk1ϖ1+k2ϖ2,l1ϖ1+l2ϖ2

> c} .

Notice that swapping k1 and k2 corresponds to replacing λ by λ∗. Define now the following
seven polynomial functions in (k1, k2, l1, l2, c):

P1 = 2 c2−c(k1 + k2 + l1 + l2 + 2)− 1

2
(k1+k2−l1−l2)2+k1k2+l1l2+

1

2
(k1+k2+l1+l2)+1,

P2 = 3c2 − 3c(k1 + k2 + 1) +
1

2
(k1 + k2)

2 + k1k2 +
3

2
(k1 + k2) + 1,

P3 = 3c2 − 3c(l1 + l2 + 1) +
1

2
(l1 + l2)

2 + l1l2 +
3

2
(l1 + l2) + 1,

P4 =
5

2
c2 − c

(
2 k1 + 2 k2 + l1 +

5

2

)
+ k1k2 + (k1 + k2)(l1 + 1)− l1

2
(l1 − 1) + 1,

P5 =
5

2
c2 − c

(
2 k1 + 2 k2 + l2 +

5

2

)
+ k1k2 + (k1 + k2)(l2 + 1)− l2

2
(l2 − 1) + 1,

P6 =
5

2
c2 − c

(
k1 + 2l1 + 2l2 +

5

2

)
+ l1l2 + (l1 + l2)(k1 + 1)− k1

2
(k1 − 1) + 1,

P7 =
5

2
c2 − c

(
k2 + 2l1 + 2l2 +

5

2

)
+ l1l2 + (l1 + l2)(k2 + 1)− k2

2
(k2 − 1) + 1.

Notice that P1, . . . , P5 are symmetric in k1, k2, whereas P6 and P7 are interchanged
when swapping k1 and k2. Moreover, notice that under the involution corresponding to
swapping λ and µ, – i.e. swapping (k1, k2) and (l1, l2) –, P3, P6, P7 are the images of
P2, P4, P5 respectively. Now in the case where k1, k2, l1, l2 ⩾ c ⩾ 0, the function ψ is given
by the following piecewise polynomial function:

Cones of polynomiality Polynomial giving ψ
C1 : k1 + k2 ⩾ max(l1, l2) + c, l1 + l2 ⩾ max(k1, k2) + c P1

C2 : k1 + k2 ⩽ min(l1, l2) + c P2

C3 : l1 + l2 ⩽ min(k1, k2) + c P3

C4 : l1 + c ⩽ k1 + k2 ⩽ l2 + c P4

C5 : l2 + c ⩽ k1 + k2 ⩽ l1 + c P5

C6 : k1 + c ⩽ l1 + l2 ⩽ k2 + c P6

C7 : k2 + c ⩽ l1 + l2 ⩽ k1 + c P7

One can then see that the cones C1 to C5 are stable when swapping k1 and k2 whereas
the cones C6 and C7 are swapped when k1 and k2 are. Thus, for all k1, k2, l1, l2, c ⩾ 0,

ψ(k1, k2, l1, l2, c) = ψ(k2, k1, l1, l2, c).

This completes the proof of Proposition 13.
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Remark 14. The last part of Proposition 13 asserts that there exists a bijection (Λ0
3)

2 ×
Λ3−→(Λ0

3)
2 × Λ3, (λ, µ, ν) 7−→ (λ∗, µ, ν̃) such that

cνλµ = cν̃λ∗µ.

One could hope for such a bijection to be linear. Unfortunately, it cannot.

One can check as follows. Identify (Λ0
3)

2 × Λ3 as a subset of Z7 canonically. Assume
that φ is the restriction of some linear map φ̃ on Z7. Endow Z7 with its standart basis.
The matrix of φ̃ is 

0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
ν1 ν2 ν3 ν4 ν5 ν6 ν7


for some ν1, . . . , ν7 in Z3. Since φ̃(1, 0, 0, 0, 1, 0, 0) = (1, 1, 0, 0, ν1 + ν5) has to correspond
to some nonzero Littlewood-Richardson coefficient, we have ν1 + ν5 = (1, 1, 0). Similarly,
φ̃(0, 0, 1, 1, 1, 1, 0) has to be (0, 0, 1, 1, 1, 1, 0), and ν3 + ν4 + ν5 + ν6 = (1, 1, 0). Now, the
image of φ̃(1, 0, 1, 1, 1, 1, 1) has to be a ray of the Horn cone. We deduce that this image
is (1, 1, 1, 1, 2, 2, 0), and thus ν1 + ν3 + ν4 + ν5 + ν6 + ν7 = (2, 2, 0).

Combining these three constraints, we get ν5 = ν7, which contradicts the invertibility
of φ.

Note also that the linear automorphisms of (Λ3)
3 preserving the Littlewood-Richardson

coefficients are proved to form a group of cardinality 288 (so big !) in [BR20].

6 A stability result

In this section, we will focus on the case where λ and µ are near-rectangular. Using the
hive model, we give a proof of Proposition 4.

Proof of Proposition 4. Using Theorem 11, we prove the proposition by counting the in-
tegral hives with boundary labels determined by λ, µ and ν as in Figure 1. Consider such
an integral hive and focus on the labels of its edges. An edge is said to be strictly interior
if it has no vertex on the sides of Tn.

Observe that for any unitary triangle, the label of the horizontal edge is the sum of the
labels of its two other sides. This determines the labels of the three edges in the corners
of Tn as in Figure 3.

Consider now a trapezoid

a b

x
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ν1 ν2 ν3 νn−2 νn−1 νn

λ1

0

λ2

λ2

λ2

λ2

0

µ1

µ2

µ2

µ2

µ2

ν1−λ1
νn

µ1

Figure 3: Hives for two near rectangular partitions

Inequalities (11) imply that a ⩾ x ⩾ b. In particular, if a = b then x = a. Moreover,
if a = b then the labels on two parallel edges of the trapezoid are equal. The trapezoids
with long side parallel to the two other sides of Tn have similar properties.

It then follows that the labels on the strictly interior edges parallel to the north-west
(resp. north-east) side of Tn are equal to λ2 (resp. µ2). The relation between the 3
labels of any unitary triangle then implies that the labels on the strictly interior hor-
izontal edges are equal to λ2 + µ2. Now, the mentioned properties of the trapezoids
imply that ν3 = · · · = νn−2 = λ2 + µ2. That is, ν must have the aforementioned form:
ν = ν1ν2(λ2 + µ2)

n−4νn−1νn. Notice moreover that, even if n = 4, Inequalities (11) show
immediately that one must still have ν2 ⩾ λ2 + µ2 ⩾ νn−1.

Let us now consider the labels of the edges with exactly one vertex on the boundary of
Tn. By the properties of the trapezoids and unitary triangles as mentioned above, these
labels depend on 8 values a0, a1, . . . , a7 as shown on Figure 4, and they are related by the
following equations:
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a0

a0

a0

a0

a1

a1

a1

a1

a2

a2

a2

a2

a3

a3

a3

a3

a4a5 a6 a6 a6a7 a7 a7

ν1 ν2 νn−1 νnλ2 + µ2 λ2 + µ2

λ1

0

λ2

λ2

λ2

λ2

0

µ1

µ2

µ2

µ2

µ2

ν1−λ1
νn

µ1

Figure 4: Hives for two near rectangular partitions 2



a0 + a1 = µ1

a0 + µ2 = a3
λ2 + a1 = a2
ν1 − λ1 + a5 = a2
a4 + νn = a3
a4 + a7 = νn−1

a5 + a6 = ν2
a6 + a7 = λ2 + µ2

⇐⇒



a1 = µ1 − a0
a2 = λ2 + µ1 − a0
a3 = µ2 + a0
a4 = µ2 − νn + a0
a5 = λ1 + λ2 + µ1 − ν1 − a0
a6 = λ2 + 2µ2 − νn−1 − νn + a0
a7 = −µ2 + νn−1 + νn − a0

In particular, the hive is entirely determined by the value of a0. We can now look at all
the rhombus inequalities that must be satisfied by these ai’s:

a0 ⩾ 0,
λ2 ⩾ a0,
a1 ⩾ µ2,

ν1 ⩾ a2,
a1 ⩾ ν1 − λ1,
a2 ⩾ ν2,
µ2 ⩾ a6,

a3 ⩾ νn,
νn ⩾ a0,

νn−1 ⩾ a3.

Expressing these inequalities in terms of a0, we obtain m ⩾ a0 ⩾M , where

M = max(0, λ2 + µ1 − ν1, νn − µ2), and
m = min(λ2, µ1 − µ2, λ1 + µ1 − ν1, λ2 + µ1 − ν2,−λ2 − µ2 + νn−1 + νn, νn, νn−1 − µ2).

Observe finally that, by assumption, νn−1 ⩽ λ2 + µ2 and ν2 ⩾ λ2 + µ2. Thus

νn−1 − µ2 ⩽ λ2, λ2 + µ1 − ν2 ⩽ µ1 − µ2, −λ2 − µ2 + νn−1 + νn ⩽ νn.
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Figure 5: A bijection between sets of hives

We can rewrite the definition of m as

m = min(λ1 + µ1 − ν1, λ2 + µ1 − ν2,−λ2 − µ2 + νn−1 + νn,−µ2 + νn−1).

Since no integral hive exists if M > m, and m − M + 1 hives otherwise, the proof is
complete.

The stability result of Proposition 4 can be interpreted as a proof of the existence of a
bijection between sets of hives. Such a bijection can, for instance, be obtained as follows.

Starting from a hive of size n (n ⩾ 4), consider the three areas colored on the left of
Figure 5: the four triangles in the north corner, the four in the south-east one, and the
seven in the south-west one. Then, send this hive to the one of size 4 obtained by keeping
these three colored-areas (picture on the right). The proof of Proposition 4 implies that
this map is well defined, and that it is a bijection.

Remark 15. Let α, β, γ be three partitions such that cγα,β = 1. By Fulton’s Conjecture
(see [KT99] or [Bel07, BKR12, Res11]), we have ckγkα,kβ = 1, for any k ⩾ 0. Let (α̃, β̃, γ̃)
be a second triple of partitions. The stability result of [SS16] (see also [Par19, Pel19])
asserts that cγ̃+kγ

α̃+kα,β̃+kβ
does not depend on the integer k big enough.

Returning to the setting of Proposition 4, consider α = 1λ2 , β = 1µ2 and γ = 1λ2+µ2

that satisfy cγα,β = 1. Set also α̃ = (λ1λ2λ2)
′, β̃ = (µ1µ2)

′ and γ̃ = (ν1ν2ν3ν4)
′, where □′

denotes the conjugate partition. Since the Littlewood-Richardson coefficient is invariant
under simultaneous conjugation of the three partitions, we get cνλµ = cγ̃+kγ

α̃+kα,β̃+kβ
for k =

n − 2. Thus, the stability result of [SS16] asserts that cνλµ does not depend on n big
enough. Proposition 4 asserts that, more precisely, this sequence is constant for k ⩾ 2.

7 The case of GL4(C)

This section is about GL4(C). But Proposition 4 allows to extend several results to any
GLn(C) for n ⩾ 4.
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7.1 The Horn cone

The set of points in Hornn with λ and/or µ near-rectangular is the set of integer points on a
face of this cone. Proposition 4 implies that the geometry of this face and the Littlewood-
Richardson coefficients on it do not depend on n ⩾ 4. We denote by Horn0

n the set of
points in Hornn with the first two partitions λ and µ in Λ0

n. Then Hornn ≃ Z2 × Horn0
n.

Moreover, Horn0
n is the set of integer points in some strongly convex cone. Hence it has

a unique minimal set of generators, the Hilbert basis of the cone. Set

Hornnr2

4 = {(λ, µ, ν) ∈ Horn4 : λ and µ are near-rectangular}

and
Hornnr

4 = {(λ, µ, ν) ∈ Horn4 : λ is near-rectangular}.

The inequalities defining the Horn cone HornQ
n are well known (see Section 3). By convex

geometry and explicit calculations, one can deduce the minimal lists of inequalities for
Hornnr2

4 and Hornnr
4 . Softwares like Normaliz [BIS] also allow to make the computation.

Proposition 16. Let λ, µ in Λ0
4 and ν in Λ4 such that λ and µ are near-rectangular.

Then, cνλµ ̸= 0 if and only if

|λ|+ |µ| = |ν|,
ν1 ⩾ ν2, ν4 ⩾ 0,

ν3 + ν4 ⩾ λ2 + µ2,
ν1 + ν3 ⩾ λ1 + λ2 + µ2, ν1 + ν3 ⩾ λ2 + µ1 + µ2,

ν2 ⩾ λ2 + µ2 ⩾ ν3,
ν3 ⩾ λ2, ν3 ⩾ µ2,

λ1 + µ2 ⩾ ν2, λ2 + µ1 ⩾ ν2.

Remark 17. Proposition 4 also implies that ν1 + ν4 ⩾ λ2 + µ1. This is a consequence of
these 11 inequalities.

Proposition 18. The cone generated by Hornnr2

4 ∩ Horn0
4 has 8 extremal rays generated

by the triples (λ, µ, ν) associated to the following inclusions

1. V4(1) ⊂ V4(1)⊗ V4(0) (twice by permuting the factors);

2. V4(13) ⊂ V4(1
3)⊗ V4(0) (twice by permuting the factors);

3. V4(12) ⊂ V4(1)⊗ V4(1);

4. V4(14) ⊂ V4(1)⊗ V4(1
3) (twice by permuting the factors);

5. V4(2212) ⊂ V4(1
3)⊗ V4(1

3).

Each triple (λ, µ, ν) on one of these extremal rays indexes a Littlewood-Richardson co-
efficient with value 1. The minimal set of generators of the semigroup Hornnr2

4 ∩ Horn0
4

consists in these 8 triples.
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We get similar descriptions for Hornnr
4 .

Proposition 19. Let λ, µ in Λ0
4 and ν in Λ4 such that λ is near-rectangular. Then,

cνλµ ̸= 0 if and only if all of the following inequalities hold:

|λ|+ |µ| = |ν|,
ν1 ⩾ ν2 ⩾ ν3 ⩾ ν4 ⩾ 0,

λ1 ⩾ λ2 ⩾ 0, µ1 ⩾ µ2 ⩾ µ3 ⩾ 0,
λ1 + µ1 ⩾ ν1, min(λ2 + µ1, λ1 + µ2) ⩾ ν2,
min(λ2 + µ2, λ1 + µ3) ⩾ ν3, min(λ1, µ1, λ2 + µ3) ⩾ ν4,

ν1 ⩾ max(λ1, µ1, λ2 + µ2), ν2 ⩾ max(µ2, λ2 + µ3), ν3 ⩾ max(λ2, µ3) ,
ν1 + ν2 ⩾ max(λ1 + λ2 + µ2, λ2 + µ1 + µ2), ν1 + ν3 ⩾ max(λ1 + λ2 + µ3, λ2 + µ1 + µ3),
ν2 + ν3 ⩾ λ2 + µ2 + µ3, ν1 + ν4 ⩾ λ2 + µ1,
ν2 + ν4 ⩾ λ2 + µ2, ν3 + ν4 ⩾ λ2 + µ3.

These are 32 inequalities, and each corresponds to a facet of the cone they define.

Proposition 20. The cone generated by Hornnr
4 ∩ Horn0

4 has 12 extremal rays generated
by the triples (λ, µ, ν) associated to the following inclusions

1. V4(1) ⊂ V4(1) ⊗ V4(0), V4(1) ⊂ V4(1
3) ⊗ V4(0), V4(1) ⊂ V4(0) ⊗ V4(1), V4(12) ⊂

V4(0)⊗ V4(1
2) and V4(13) ⊂ V4(0)⊗ V4(1

3) ;

2. V4(12) ⊂ V4(1)⊗ V4(1) ;

3. V4(14) is contained in V4(1)⊗ V4(1
3) and V4(13)⊗ V4(1) ;

4. V4(2212) is contained in V4(1
3)⊗ V4(1

3) and V4(212)⊗ V4(1
2) ;

5. V4(13) ⊂ V4(1)⊗ V4(1
2) ;

6. V4(213) ⊂ V4(1
3)⊗ V4(1

2).

Each triple (λ, µ, ν) on one of these extremal rays indexes a Littlewood-Richardson coeffi-
cient with value 1. The minimal set of genrators of the semigroup Hornnr

4 ∩Horn0
4 consists

in the 12 primitive elements on these 12 extremal rays.

7.2 Special case of self-dual representations

Let k and l be two nonnegative integers and n ⩾ 4. The SLn(C)-representations
Vn((2k)k

n−2), Vn((2l)ln−2) and hence Vn((2k)kn−2)⊗ Vn((2l)l
n−2) are self-dual.

In [PW22, Section 8], conjectural values (for n = 6) are given for the numbers of iso-
typic components in Vn((2k)kn−2)⊗Vn((2l)l

n−2) and for the numbers of self-dual isotypic
components. Here we prove and extend these formulas.

Corollary 21. Let us assume, without loss, that l ⩽ k. The number of distinct isotypic
components in Vn((2k)k

n−2)⊗ Vn((2l)l
n−2) is{

l3 + 3l2 + 3l + 1 if 2l ⩽ k,
1
3
k3 − 2k2l + 4kl2 − 5

3
l3 − k2 + 4kl − l2 + 2

3
k + 5

3
l + 1 if 2l ⩾ k.
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Proof. By Proposition 4, one may assume that n = 4. Then Proposition 16 implies that
ν ∈ Z4 is the highest weight of an isotypic component of V4((2k)k2) ⊗ V4((2l)l

2) if and
only if (recall that l ⩽ k) all of the following conditions hold:

4(k + l) = |ν|, ν1 ⩾ ν2,
ν4 ⩾ 0, ν3 + ν4 ⩾ k + l,

ν1 + ν3 ⩾ 3k + l,
2n+m ⩾ ν2 ⩾ k + l ⩾ ν3 ⩾ k.

(15)

The corollary follows by explicit calculations that can be performed with [VSB+07].

Similarly, one gets the number of self-dual representations.

Corollary 22. Let us assume, without loss, that l ⩽ k. The SLn(C)-representation
Vn((2k)k

n−2)⊗ Vn((2l)l
n−2) contains (l + 1)2 distinct self-dual isotypic components.

Proof. By Proposition 4, one may assume that n = 4. Then the set of self-dual isotypic
components of V4((2k)k2)⊗ V4((2l)l

2) is obtained by adding the condition

ν1 + ν4 = ν2 + ν3,

to the conditions (15). The corollary follows by explicit calculations that can be performed
with [VSB+07].

7.3 Computation of Nbn(c
•
λµ > c) for λ and µ near-rectangular

In this subsection, we report on the computation of the function

Nb4(c
•
λµ > c) : (Λnr

4 )2 × N −→ N
(λ, µ, c) 7−→ #{ν ∈ Λ4 : cνλµ > c}.

By Proposition 4, this function determines Nbn(c
•
λµ > c) for any near-rectangular parti-

tions λ and µ of length n ⩾ 4.
Since Propositions 12 and 4 give similar expressions for the Littlewood-Richardson

coefficient, we can apply the strategy of Section 5.
We get that Nb4(c

•
λµ > c) is the number of points ν ∈ Λ4 such that λ1+2λ2+µ1+2µ2 =

ν1 + ν2 + ν3 + ν4 and

−λ2 − µ2 + ν2 ⩾ 0, λ2 + µ2 − ν3 ⩾ 0,
λ1 − λ2 ⩾ c, −λ2 + ν3 ⩾ c,
ν1 − ν2 ⩾ c, ν3 − ν4 ⩾ c,
λ1 + µ1 − ν1 ⩾ c, λ2 + µ1 − ν2 ⩾ c,
−λ2 − µ2 + ν3 + ν4 ⩾ c, −µ2 + ν3 ⩾ c,
λ1 + µ2 − ν2 ⩾ c, λ1 + λ2 + µ2 − ν2 − ν4 ⩾ c,
λ1 + µ1 + µ2 − ν1 − ν4 ⩾ c, λ2 + µ1 + µ2 − ν2 − ν4 ⩾ c.

In particular, Nb4(c
•
λµ > c) is the number of integer points in some polytope depending

linearly on the data (λ, µ, c). Therefore Nb4(c
•
λµ > c) is piecewise quasi-polynomial, and
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can be computed using Barvinok’s algorithm. Surprisingly, here Λ = (Λnr
4 )2 × Z and

Nb4(c
•
λµ > c) is in fact piecewise polynomial.

As in Section 5, from this point on we use the basis of fundamental weights to write
λ = k1ϖ1+k2ϖ

∗
1 and µ = l1ϖ1+l2ϖ

∗
1. Thus the symmetry we want to observe corresponds

once again to swapping k1 and k2. Consider the function

ψ : N5 −→ N
(k1, k2, l1, l2, c) 7−→ #{ν ∈ Λ4 | cνk1ϖ1+k2ϖ∗

1 ,l1ϖ1+l2ϖ∗
1
> c} .

We now give details about the results in Proposition 5:

Proposition 23. We have ψ(k1, k2, l1, l2, c) = 0 unless

c ⩽ min(k1, k2, l1, l2). (16)

Moreover, the set of (k1, k2, l1, l2, c) ∈ Q5 satisfying (16) decomposes into 36 cones
C1, . . . , C36, such that on the integer points of each ψ is given by polynomial functions
P1, . . . , P36. The first 12 of these pairs (Ci, Pi) are kept unchanged by swapping k1 and k2.
The 24 other such pairs are pairwise swapped by this operation (for all i ∈ {7, . . . , 18},
(C2i−1, P2i−1) and (C2i, P2i) are swapped).

In particular, Conjecture 2 holds for GL4(C) and λ, µ near-rectangular.

To present these cones and polynomial functions as clearly as possible without writing
all of them, let us define the two following involutions. Let s1 be the involution corre-
sponding to swapping k1 and k2, and s2 corresponding to swapping (k1, k2) and (l1, l2).
Then, the generated group ⟨s1, s2⟩ ≃ Z/2Z × Z/2Z acts on the set of all pairs (Ci, Pi)
with 8 orbits. Let us give below one representative for each one of these 8 orbits. The
labelling is the one of the complete list [Res20, pol_and_cones_SL4nr2.txt], chosen so
that the stability when swapping k1 and k2 is easier to see:

C1 : l1 + l2 ⩽ k1 + c, l1 + l2 ⩽ k2 + c,

P1 =

(
−1

2

)
· (−l2 + c− 1) · (−l1 + c− 1) · (−l1 − l2 + 2c− 2)

has a ⟨s1, s2⟩-orbit of size 2;

C16 : l1 + l2 ⩽ k1 + c, l1 + l2 ⩾ k2 + c, k2 ⩾ l1, k2 ⩾ l2,

P16 = P1 −
(
−k2 + l1 + l2 − c+ 2

3

)
has an orbit of size 4;

C2 : l1 + l2 ⩾ k1 + c, l1 + l2 ⩾ k2 + c, k1 ⩾ l1, k1 ⩾ l2, k2 ⩾ l1, k2 ⩾ l2,

P2 = P16 −
(
−k1 + l1 + l2 − c+ 2

3

)
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has an orbit of size 2;

C19 : l1 + l2 ⩾ k1 + c, k1 ⩾ l1, k2 ⩽ l1, k2 ⩾ l2,

P19 = P2 +

(
−k2 + l1 + 1

3

)
has an orbit of size 8;

C21 : l1 + l2 ⩽ k1 + c, k2 ⩽ l1, k2 ⩾ l2,

P21 = P16 +

(
−k2 + l1 + 1

3

)
has an orbit of size 8;

C29 : k1 + k2 ⩾ l1 + l2, l1 + l2 ⩾ k1 + c, k2 ⩽ l1, k2 ⩽ l2,

P29 = P19 +

(
−k2 + l2 + 1

3

)
has an orbit of size 4;

C27 : k1 + k2 ⩽ l1 + l2, k1 ⩾ l1, k1 ⩾ l2,

P27 = P29 +

(
−k1 − k2 + l1 + l2 + 1

3

)
has an orbit of size 4; finally,

C36 : l1 + l2 ⩽ k1 + c, k2 ⩽ l1, k2 ⩽ l2,

P36 = P21 +

(
−k2 + l2 + 1

3

)
also has an orbit of size 4.

Remark 24. One can observe that the polynomial functions Pi are expressed using each
other. We exploit here the fact that the difference between two polynomial functions
associated to two adjacent cones has a simple expression theoretically given by Paradan’s
Formula [Par04, BV09].

7.4 Computation of Nb4(c
•
λµ > 0) for λ near-rectangular

In this section, we report on the computation of the function

Nb4(c
•
λµ > 0) : Λnr

4 × Λ4 −→ N
(λ, µ) 7−→ #{ν ∈ Λ4 : cνλµ > 0}.

As we recalled in Proposition 10, Nb4(c
•
λµ > 0) is the number of integer points in an

affine section of the Horn cone. The inequalities defining this cone are explicitly given
in Proposition 19. One can compute explicitly the quasi-polynomial functions with the
program [VSB+07]. The output is too big (even using symmetries) to be collected there,
so we include the details in [Res20, Supplementary material] for interested reader.
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Proposition 25. The cone generated by Λnr
4 ×Λ4 decomposes into 205 cones of non empty

interior. On the integer points of 151 of them, the function Nb4(c
•
λµ > 0) is polynomial

of degree 3, and on those of 54 other ones it is quasi-polynomial. The only congruence
occurring is the parity of λ1 + |µ|.

Moreover, for any pair (C,P ) where C is one of the 205 cones and P the corresponding
function, one can see that in this list there is also a pair (C ′, P ′) obtained by replacing λ
by λ∗ (in 57 cases, (C ′, P ′) = (C,P )). In particular, Conjecture 7 holds.

Under the action of Z/2Z× Z/2Z, there are 61 orbits of actual polynomial functions
and 22 orbits of quasi-polynomial functions.

Here we give three examples illustrating some of the variety of cases that one can
observe. The function Nb4(c

•
λµ > 0) for λ = k1ϖ1+k2ϖ

∗
1 ∈ Λnr

4 ∩Λ0
4 and µ = µ1µ2µ3 ∈ Λ0

4

satisfies:

• on the cone defined by µ1 ⩾ k1 + µ3, µ1 ⩾ k2 + µ3, µ2 ⩾ µ3, k1 + k2 + µ3 ⩾ µ1 + µ2,
µ3 ⩾ 0, Nb4(c

•
λµ > 0) is equal to

P =
µ3

2
·
(
µ2(2µ1 − µ2 + 1) + 2(µ1 + 1)− (µ3 + 1)(k1 + k2 + µ1 − µ2 + 2)

)
−µ2 + 1

6
·
(
3(k21 + k22)− 3(k1 + k2)(2µ1 + 1) + 3µ2

1 + 2µ2
2 − 3µ1 + 4µ2 − 6

)
,

which is symmetric in (k1, k2).

• on the cone defined by µ1 +µ2 ⩾ k1 + k2 +µ3, k2 +µ1 ⩾ k1 +µ2 +µ3, k2 +µ3 ⩾ µ2,
k1 +µ1 ⩾ k2 +µ2 +µ3, k1 +µ3 ⩾ µ2, k1 + k2 ⩾ µ1, µ3 ⩾ 0 (adjacent to the previous
one), Nb4(c

•
λµ > 0) is

P +
1

24
(k1 + k2 − µ1 − µ2 + µ3 − 1)

·(k1 + k2 − µ1 − µ2 + µ3 + 1) if k1 + k2 + µ1 + µ2 + µ3 is odd,
·(−2 k1 − 2 k2 + 2µ1 + 2µ2 + 4µ3 + 3)

P +
1

24
(k1 + k2 − µ1 − µ2 + µ3)

·
(
2 + (k1 + k2 − µ1 − µ2 + µ3) if k1 + k2 + µ1 + µ2 + µ3 is even,

·(−2 k1 − 2 k2 + 2µ1 + 2µ2 + 4µ3 + 3)
)

which is also symmetric in (k1, k2).

• on the cone defined by µ1 ⩾ k1, µ1 ⩾ k2 + µ3, µ2 ⩾ µ3, k2 ⩾ µ2, k1 + µ3 ⩾ µ1 (also
adjacent to the first one), Nb4(c

•
λµ > 0) is

P +

(
k1 − µ1 + µ3 + 1

3

)
.

which is not symmetric in (k1, k2).
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8 More checking of Conjecture 2

It is to be noted that we checked Conjecture 2 on a few other examples, using SageMath.
See [Res20, test_Conj1.sage]:

• Conjecture 1 holds for GL4(C) if max(λ1 − λ2, λ2) ⩽ 20 and |µ| ⩽ 40.

• Conjecture 1 holds for GL5(C) if max(λ1 − λ2, λ2) ⩽ 20 and |µ| ⩽ 30.

• Conjecture 1 holds for GL6(C) if max(λ1 − λ2, λ2) ⩽ 10 and |µ| ⩽ 30.

• Conjecture 1 holds for GL10(C) if max(λ1 − λ2, λ2) ⩽ 10 and |µ| ⩽ 15.

9 Related questions

9.1 In type Dn

Here we consider questions similar to Conjecture 2 for simple groups of other types than
A. The only types where there are irreducible representations that are not self-dual are
Dn (n ⩾ 4) and E6. Consider the type D5.

D5

1 2 3

5

4

Let (ϖ1, . . . , ϖ5) be the list of fundamental weights. Then, V (ϖ4)
∗ ≃ V (ϖ5) whereas

V (ϖ1), V (ϖ2) and V (ϖ3) are self-dual. The natural generalization of near-rectangular
partitions is then to consider the dominant weights in Nϖ4⊕Nϖ5. A natural generalization
of Conjecture 7 would be: for λ = aϖ4 + bϖ5 ∈ Nϖ4 ⊕ Nϖ5 and µ a dominant weight of
D5, do the two tensor products

VD5(aϖ4 + bϖ5)⊗ VD5(µ) and VD5(bϖ4 + aϖ5)⊗ VD5(µ)

contain the same number of isotypic components?
The answer is no, even assuming that µ ∈ Nϖ4⊕Nϖ5 too. An example is λ = 2ϖ4+ϖ5

and µ = ϖ4 +2ϖ5. The two tensor products have respectively 31 and 30 isotypic compo-
nents, as checked using SageMath [The20]:

sage: D5=WeylCharacterRing("D5",style="coroots")
sage: len(D5(0,0,0,2,1)*D5(0,0,0,1,2))
31
sage: len(D5(0,0,0,1,2)*D5(0,0,0,1,2))
30
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9.2 In type An−1

The representations of SLn(C) corresponding to near-rectangular partitions are of the
form V (aϖ1 + bϖn−1). Observe that (ϖ1, ϖn−1) is a pair of mutually dual fundamental
weights. One could hope that Conjecture 2 or 7 hold for any linear combination of a
given pair of mutually dual fundamental weights. This is not true even for (ϖ2, ϖ3) and
n = 5:

A4

1 2 3 4

Indeed, for λ = ϖ2 + 2ϖ3 and µ = 3ϖ2 +ϖ3, the numbers of isotypic components in
V (λ)⊗ V (µ) and V (λ)∗ ⊗ V (µ) differ:

sage: len(lrcalc.mult([3,3,2],[4,4,1],5))
34
sage: len(lrcalc.mult([3,3,1],[4,4,1],5))
33
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