
Frobenius allowable gaps

of Generalized Numerical Semigroups

Deepesh Singhal
Department of Mathematics
University of California Irvine

California, U.S.A.

singhald@uci.edu

Yuxin Lin
Department of Mathematics

California Institute of Technology
California, U.S.A.

yuxinlin@caltech.edu

Submitted: Sep 23, 2021; Accepted: Oct 4, 2022; Published: Oct 21, 2022

c©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

A generalized numerical semigroup is a submonoid S of Nd for which the com-
plement Nd \S is finite. The points in the complement Nd \S are called gaps. A gap
F is considered Frobenius allowable if there is some relaxed monomial ordering on
Nd with respect to which F is the largest gap. We characterize the Frobenius allow-
able gaps of a generalized numerical semigroup. A generalized numerical semigroup
that has only one maximal gap under the natural partial ordering of Nd is called
a Frobenius generalized numerical semigroup. We show that Frobenius generalized
numerical semigroups are precisely those whose Frobenius gap does not depend on
the relaxed monomial ordering. We estimate the number of Frobenius generalized
numerical semigroup with a given Frobenius gap F = (F (1), . . . , F (d)) ∈ Nd and

show that it is close to
√
3
(F (1)+1)···(F (d)+1)

for large d. We define notions of quasi-
irreducibility and quasi-symmetry for generalized numerical semigroups. While in
the case of d = 1 these notions coincide with irreducibility and symmetry, they are
distinct in higher dimensions.

Mathematics Subject Classifications: 20M14, 05A16, 11D07

1 Introduction

A numerical semigroup S is a subset of the natural numbers that contains 0, is closed
under addition and has a finite complement N \ S. The numbers in N \ S are called gaps
and the largest gap is called the Frobenius number F(S). There is a big literature on
numerical semigroups, see [1, 13] for a general reference.

A generalized numerical semigroup S is a subset of Nd that contains 0, is closed under
addition and has a finite complement Nd \ S. Generalized numerical semigroups have
been studied in several recent papers [4, 6, 5, 3, 7, 9]. The points in the complement are
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called gaps and the collection of all gaps is denoted by H(S) = Nd \ S. The number of
gaps is called the genus, g(S) = |H(S)|. Failla, Peterson and Utano gave this definition
of generalized numerical semigroup in [7]. They also studied the question of counting
generalized numerical semigroups by genus and generalized the notion of the semigroup
tree.

We have a natural partial ordering on Nd. Given x, y ∈ Nd, let x(i), y(i) be the ith

component of x, y respectively. Define x ! y, if x(i) ! y(i) for each 1 ! i ! d. However,
this is not enough to define the Frobenius gap of S, as H(S) could have more than one
maximal element under the natural partial ordering. Failla et al. [7] extend the notion
of Frobenius gap to generalized numerical semigroups with the help of relaxed monomial
orderings on Nd.

Definition 1. A total order ≺ on the elements of Nd is called a relaxed monomial order
if it satisfies:
i) If v, w ∈ Nd and v ≺ w, then v ≺ w + u for any u ∈ Nd.
ii) If v ∈ Nd and v ∕= 0, then 0 ≺ v.

Note that u ≺ v implies that u ∕= v. We will write u " v to mean either u ≺ v or
u = v. Given a relaxed monomial order ≺ on Nd and a generalized numerical semigroup
S ⊆ Nd, its Frobenius gap is defined as

F≺(S) = max
≺

(H(S)).

Of course, different relaxed monomial orders can lead to different gaps becoming the
Frobenius gap of S. Cisto, Failla, Peterson and Utano in [4] define a gap of S to be
Frobenius allowable if it is the Frobenius gap with respect to some relaxed monomial
ordering. The collection of all Frobenius allowable gaps of S is denoted by FA(S) and
number of Frobenius allowable gaps is denoted by τ(S). It is clear that all Frobenius
allowable gaps must be maximal elements of H(S) under the natural partial ordering.
In [4], the authors ask whether all maximal elements of H(S) under the natural partial
ordering are Frobenius allowable. They prove this (see [4, Proposition 4.5, 4.13]) in the
special case whenH(S) has exactly one or two maximal elements under the natural partial
ordering. We answer their question in the general case.

Theorem 2. Given a generalized numerical semigroup S ⊆ Nd, the Frobenius allowable
gaps of S are precisely the maximal elements of H(S) under the natural partial ordering,
that is,

FA(S) = Maximals!(H(S)).

Cisto et al. in [4] define a Frobenius generalized numerical semigroup to be a gen-
eralized numerical semigroup S for which H(S) has exactly one maximal gap under the
natural partial ordering. Theorem 2 shows that this property is equivalent to the Frobe-
nius gap of S being independent of the choice of relaxed monomial ordering. The authors
of [4, 6] study certain families of generalized numerical semigroups which they show are
Frobenius generalized numerical semigroups.
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If one fixes a point F ∈ Nd \ {0} with d # 2, then it is seen that there are infinitely
many generalized numerical semigroups for which F is Frobenius allowable. However, the
number of Frobenius generalized numerical semigroups with a given Frobenius gap F is
clearly finite. We denote this by

N(F ) = #{S ⊆ Nd | S is a Frobenius generalized numerical semigroup,F(S) = F}.

In the case of numerical semigroups, that is, d = 1, Backelin [2] estimates N(F ) and
proves that

2⌊
F−1
2

⌋ ! N(F ) ! 4× 2⌊
F−1
2

⌋.

We build on the work of Backelin and make the first systematic study of counting Frobe-
nius generalized numerical semigroups with a given Frobenius gap.

Given a point F in Nd, let

‖F‖ =
d!

i=1

(F (i) + 1).

So ‖F‖ is the number of points in the box {x ∈ Nd | 0 ! x ! F}. We trivially know that

N(F ) ! 2‖F‖. For large d we prove that N(F ) is close to
√
3
‖F‖

. We use the notation
F − 1 = (F (1) − 1, . . . , F (d) − 1).

Theorem 3. Given ε > 0, there is M > 0 such that for every d > M and F ∈ Nd, we
have "√

3− ε
#‖F−1‖

! N(F ) !
√
3
‖F‖

.

Given a generalized numerical semigroup S ⊊ Nd, a gap P ∈ H(S) is called a pseudo-
Frobenius gap of S if for every nonzero element x of S, x + P is also an element of S.
The collection of all pseudo-Frobenius gaps of S is denoted by PF(S). And the number
of pseudo-Frobenius gaps of S is called its type, t(S). We have a partial ordering "S on
Nd in which x "S y, whenever y−x ∈ S. It is easy to see that the pseudo-Frobenius gaps
of S are precisely the maximal elements of H(S) under this partial ordering, that is,

PF(S) = Maximals"S
(H(S)).

The family of irreducible numerical semigroups have received considerable attention in
the literature. A numerical semigroup is called irreducible if it cannot be expressed as the
intersection of two numerical semigroups properly containing it. Several characterizations
of irreducible numerical semigroups are known. The authors of [8] prove that given a
numerical semigroup S with F(S) = F , the following are equivalent:

• S is irreducible.

• S is maximal (with respect to set theoretic inclusion) among all numerical semi-
groups that do not contain F .
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• For every gap x ∈ H(S), either 2x = F or F−x ∈ S.

• Either PF(S) = {F}, or PF(S) = {F
2
, F}.

A numerical semigroup with PF(S) = {F} is called symmetric and one with PF(S) =
{F

2
, F} is called pseudo-symmetric. A numerical semigroup has type 1 if and only if it is

symmetric.
The authors of [4] define a generalized numerical semigroup to be irreducible if it

cannot be written as an intersection of two generalized numerical semigroups properly
containing it. They prove that irreducible generalized numerical semigroups are always
Frobenius generalized numerical semigroups. They prove that the following are equivalent
for a generalized numerical semigroup S:

• S is irreducible.

• There is a gap F ∈ H(S) such that for every gap x ∈ H(S), either 2x = F or
F − x ∈ S.

• There is a gap F ∈ H(S) such that either PF(S) = {F} or PF(S) = {F
2
, F}.

• There is a gap F ∈ H(S) such that S is maximal (with respect to set theoretic
inclusion) among generalized numerical semigroups that do not contain F .

They call a generalized numerical semigroup symmetric if PF(S) = {F} and pseudo-
symmetric if PF(S) = {F

2
, F}. This shows that a generalized numerical semigroup is

symmetric if and only if it has t(S) = 1. The authors of [4] also show that every generalized
numerical semigroup can be written as a finite intersection of irreducible generalized
numerical semigroup.

By Theorem 2 we know that Frobenius allowable gaps of S are maximal in H(S)
under the natural partial ordering !. Therefore, they are also maximal under "S and
hence are pseudo-Frobenius gaps. Therefore, we see that τ(S) ! t(S). We call a gener-
alized numerical semigroup S quasi-symmetric if τ(S) = t(S). In the case of Frobenius
generalized numerical semigroup, τ(S) = 1. Hence, a Frobenius generalized numerical
semigroup S will be quasi-symmetric when t(S) = 1. Thus the property of being sym-
metric is equivalent to being both quasi-symmetric and a Frobenius generalized numerical
semigroup. The notions of symmetry and quasi-symmetry of course coincide in the case of
numerical semigroups. In Theorem 4, we show that quasi-symmetric generalized numer-
ical semigroups are characterized by a property similar to that of symmetric numerical
semigroups.

Theorem 4. Given a generalized numerical semigroup S ⊆ Nd, τ(S) ! t(S). Moreover,
equality holds if and only if S satisfies the property that for every x ∈ H(S), there is some
Frobenius allowable gap F for which F − x ∈ S.

We call a generalized numerical semigroup S quasi-irreducible if for every gap x ∈
H(S), either 2x ∈ FA(S) or there is some F ∈ FA(S) for which F − x ∈ S. From
Theorem 4, we see that all quasi-symmetric generalized numerical semigroups are quasi-
irreducible. In Theorem 10 and Proposition 11 we prove the following.
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Theorem 5. Given a generalized numerical semigroup S, the following are equivalent:

• S is quasi-irreducible, that is, for every gap x ∈ H(S), either 2x ∈ FA(S) or there
is some F ∈ FA(S) for which F − x ∈ S.

• S is maximal in the collection of all generalized numerical semigroups S ′ for which
FA(S) ⊆ H(S ′).

• For all P ∈ PF(S), either P ∈ FA(S) or 2P ∈ FA(S).

We also study the bounds on the type of a Frobenius generalized numerical semigroup.
For numerical semigroups it is known that

g(S)

F(S) + 1− g(S)
! t(S) ! 2 g(S)− F(S).

The first inequality was proved in [8], and the second in [11]. Numerical semigroups that
satisfy t(S) = 2 g(S)−F(S) are called almost-symmetric. In [6], the authors extended the
second inequality. They prove that if S is a Frobenius generalized numerical semigroup,
then

t(S) ! 2 g(S) + 1− ‖F(S)‖.
If equality holds, then they call Frobenius generalized numerical semigroup
almost-symmetric. The authors of [6] come up with a number of equivalent conditions for
a Frobenius generalized numerical semigroup to be almost-symmetric. We give another
property that is equivalent to almost-symmetry. The special case of Proposition 6 for
numerical semigroups was proved in [14].

Proposition 6. A Frobenius generalized numerical semigroup S with Frobenius gap F is
almost-symmetric if and only if

T (S) = {x ∈ Nd | F − x ∈
$$
Zd \ S

%
∪ {0}

%
}

is a generalized numerical semigroup.

We also extend the first inequality as follows:

Theorem 7. Given a Frobenius generalized numerical semigroup S ⊆ Nd we have

g(S)

‖F(S)‖ − g(S)
! t(S).

2 Frobenius Allowable Gaps

In this section we will prove Theorem 2. We fix a generalized numerical semigroup S ⊆ Nd

and an element h of H(S), which is maximal under the natural partial ordering. We
construct an explicit relaxed monomial order on Nd with respect to which h becomes the
Frobenius gap of S.
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Theorem 2. Given a generalized numerical semigroup S ⊆ Nd, the Frobenius allowable
gaps of S are precisely the maximal elements of H(S) under the natural partial ordering.

Proof. Let h be a maximal element ofH(S) under the natural partial ordering. We reorder
the coordinates so that h(1), h(2), . . . , h(k) are all non zero and h(k+1), h(k+2), . . . , h(d) are
zero. We then define a function φ on Nd:

φ(x) = min
1!i!k

&
x(i)

h(i)

'
.

We now define ≺ as follows, suppose x, y ∈ Nd.

• If φ(x) < φ(y), then x ≺ y.

• If φ(x) = φ(y) and there is a j ∈ {0, 1 . . . , d− 1} such that x(i) = y(i) for 1 ! i ! j
and x(j+1) < y(j+1), then x ≺ y.

This is clearly a total ordering. It is also clear that φ(h) = 1. Moreover, given some
x ∈ H(S) other than h, we know that h ∕! x, as h is maximal in H(S). This means that

there is a i for which x(i) < h(i). In this case h(i) > 0 and i ! k. It follows that x(i)

h(i) < 1
and hence φ(x) < 1 = φ(h). Therefore x ≺ h. This shows that h is the maximum of
H(S) with respect to ≺. The only thing that remains to be shown is that ≺ is a relaxed
monomial order.

We know that φ(0) = 0. If v ∈ Nd is non-zero, then there is some j for which v(j) > 0.
Consider the smallest such j. If φ(v) > 0, then 0 ≺ v since φ(0) = 0 < φ(v). On the
other hand if φ(v) = 0, then for 1 ! i ! j − 1, we have 0(i) = 0 = v(i) and 0(j) = 0 < v(j).
Therefore we still get 0 ≺ v.

Next suppose we have u, v, w ∈ Nd such that v ≺ w. We know that w(i) ! (w + u)(i)

for each i. Moreover, this implies that φ(w) ! φ(w + u). Combining all of this, we see
that w " w + u and hence v ≺ w + u.

Therefore, ≺ is indeed a relaxed monomial ordering and F≺(S) = h. We see that h is
Frobenius allowable and this completes the proof.

We also have a notion of a monomial order which is stronger than a relaxed monomial
order.

Definition 8. A total order ≺, on the elements of Nd is called a monomial order if it
satisfies:
i) If v, w ∈ Nd and v ≺ w, then v + u ≺ w + u for any u ∈ Nd.
ii) If v ∈ Nd and v ∕= 0, then 0 ≺ v.

It is clear that all monomial orders are also relaxed monomial orders. However, as
noted in [4], the converse is not true. In particular, the relaxed monomial order we
constructed in the proof of Theorem 2 is not a monomial order. To see this consider the
case when d = 2, h = (1, 1). In this case (1, 4) ≺ (2, 2) but (1, 4) + (2, 0) ≻ (2, 2) + (2, 0).
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So it is not a monomial order. Of course, it is a relaxed monomial order, so we have
(1, 4) ≺ (2, 2) + (2, 0).

In [12], the author proved that a general monomial order on Nd can be obtained in
terms of d linearly independent vectors in Rd as follows. Given a monomial order ≺, we
can find d linearly independent vectors v1, v2, . . . , vd ∈ Rd

#0, such that for any v, w ∈ Nd

we have v ≺ w if and only if there is some k ∈ {1, 2, . . . d} with the property that for each
1 ! i ! k − 1, we have 〈v, vi〉 = 〈w, vi〉 and 〈v, vk〉 < 〈w, vk〉.

Given a generalized numerical semigroup S ⊆ Nd and a Frobenius allowable gap F ,
one could ask if there is a monomial order ≺ such that F = F≺(S). This is not always
the case. For example let d = 2 and consider

S = N2 \ {(0, 1), (0, 2), (0, 3), (1, 0), (2, 0), (3, 0), (1, 1)}.

This is closed under addition and hence is a generalized numerical semigroup. The gap
(1, 1) is maximal among the gaps in the natural partial ordering. So (1, 1) is Frobenius
allowable. However, there is no monomial order ≺ for which F≺(S) = (1, 1). This is
because given any v1, v2 ∈ R2

#0, either 〈(3, 0), v1〉 > 〈(1, 1), v1〉 or 〈(0, 3), v1〉 > 〈(1, 1), v1〉.
Recall that a generalized numerical semigroup is called a Frobenius generalized nu-

merical semigroup if H(S) has a unique maximal gap under the natural partial ordering.
Theorem 2 allows us to classify which generalized numerical semigroups are Frobenius
generalized numerical semigroups.

Theorem 9. Given a generalized numerical semigroup S, the following are equivalent:
i) S is a Frobenius generalized numerical semigroup, that is, H(S) has a unique maximal
element under the natural partial ordering.
ii) The Frobenius gap of S is independent of the relaxed monomial ordering on Nd, that
is, τ(S) = 1.
iii) PF(S) has a unique maximal element with respect to the natural partial ordering.

Proof. By Theorem 2 we know that i) and ii) are equivalent. It is known that the maximal
members of H(S) under the natural partial ordering are pseudo-Frobenius gaps. This
means that the maximal members of H(S) and PF(S) under the natural partial ordering
are exactly the same. This shows that i) and iii) are equivalent.

3 Quasi-irreducible generalized numerical semigroups

Recall that the type of a generalized numerical semigroup is the number of pseudo-
Frobenius gaps it has, that is,

t(S) = |PF(S)| = #{P ∈ H(S) | P + (S \ {0}) ⊆ S}.

And τ(S) is the number of Frobenius allowable gaps of S. Since all Frobenius allowable
gaps are pseudo-Frobenius, we have τ(S) ! t(S). We start this section by characterizing
quasi-symmetric generalized numerical semigroups, that is, those generalized numerical
semigroup for which τ(S) = t(S).
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Theorem 4. Given a generalized numerical semigroup S ⊆ Nd, τ(S) ! t(S). Moreover,
equality holds if and only if S satisfies the property that for every x ∈ H(S), there is
some Frobenius allowable gap F for which F − x ∈ S.

Proof. We already know that FA(S) ⊆ PF(S), so τ(S) ! t(S). We now prove the next
part of the theorem. First suppose that S satisfies the given property. In this case,
consider some x ∈ H(S) that is not Frobenius allowable. We know that there must be
some Frobenius allowable gap F for which F − x ∈ S. We know that F ∕= x, as x is not
Frobenius allowable. Therefore, F − x is a nonzero element of S and x + (F − x) ∕∈ S.
This shows that x is not a pseudo-Frobenius gap of S. We can conclude that τ(S) = t(S).

We now prove the other direction. Suppose that τ(S) = t(S). Consider x ∈ H(S). We
know that PF(S) = Maximals"S

(H(S)), so there is some P ∈ PF (S) for which x "S P .
This means P − x ∈ S. Moreover, since τ(S) = t(S), we see that P ∈ FA(S).

We note that if a generalized numerical semigroup has type 1, then it must have
τ(S) = 1, that is, it must be a Frobenius generalized numerical semigroup. Moreover, it
must also be quasi-symmetric and hence must satisfy the condition of Theorem 4. These
generalized numerical semigroups are studied in [4] and are called symmetric generalized
numerical semigroups. A generalized numerical semigroup is symmetric if and only if
τ(S) = 1 and it is quasi-symmetric.

Recall that a generalized numerical semigroup S is called quasi-irreducible if for every
x ∈ H(S), either 2x is Frobenius allowable or there is some Frobenius allowable gap F
for which F − x ∈ S. Clearly all quasi-symmetric generalized numerical semigroups are
quasi-irreducible.

A subset D ⊆ Nd is called an anti-chain if whenever we have x, y ∈ D with x ! y,
then x = y.

Theorem 10. Let D be a finite subset of Nd \{0} that is an anti-chain with respect to the
natural partial ordering. Consider the collection of all generalized numerical semigroups
S ⊆ Nd for which D ⊆ H(S). The maximal members of this collection are precisely the
quasi-irreducible generalized numerical semigroups S with FA(S) = D.

Proof. First suppose that we have a quasi-irreducible generalized numerical semigroup
S with FA(S) = D. Assume for the sake of contradiction that S is not maximal in
the collection. This means that there is some generalized numerical semigroup S ′ ⊋ S
with D ⊆ H(S ′). Consider some x ∈ S ′ \ S. Since x ∈ H(S), we know that either
2x ∈ FA(S) = D or there is some F ∈ D for which F − x ∈ S. We know that 2x ∈ S ′,
so 2x cannot be in D. However, if there is some F ∈ D for which F − x ∈ S, then
F − x ∈ S ′ and hence F = (F − x) + x ∈ S ′. This is also impossible. Therefore, we get a
contradiction and S must be maximal in the collection.

We now prove the other direction, consider some generalized numerical semigroup S
which is maximal in the collection. Let

S1 = S ∪ {a ∈ Nd | D ∩ (a+ Nd) = ∅}.
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It is clear that S1 is a generalized numerical semigroup and D ∩ S1 = ∅, so S1 is in the
collection. Also S ⊆ S1, so the maximality of S implies that S = S1. Now consider some
F ∈ FA(S). Since S = S1, F is not in S1 and hence D∩ (F +Nd) ∕= ∅. Theorem 2 implies
that F ∈ D. This shows that FA(S) ⊆ D. Next consider some x ∈ D. We know that
x ∈ H(S), so there must be some F ∈ FA(S) for which x ! F . But then F, x ∈ D. Since
D is an anti-chain, this implies x = F . Therefore FA(S) = D.

Next consider
X = {x ∈ H(S) | 2x ∕∈ D,D ∩ (x+ S) = ∅}.

If X is empty, then S will be quasi-irreducible. Therefore assume for the sake of contra-
diction that X is non-empty. Consider some x ∈ X that is maximal with respect to the
natural partial ordering. Let

S2 = S ∪ {x}.
We will show that S2 is closed under addition. Consider a non-zero s in S. By maximality
of x, we know that x+ s ∕∈ X. Therefore, either 2(x+ s) ∈ D or D ∩ ((x+ s) + S) ∕= ∅ or
x+s ∈ S. We wish to show that x+s ∈ S, so we will show that the other two possibilities
are impossible.

• If 2(x + s) ∈ D, then 2x + 2s /∈ x + S, that is, x + 2s ∕∈ S. Let y = x + 2s. Then,
2y = 2(x + s) + 2s > 2(x + s). Since D is an anti-chain, this means that 2y ∕∈ D.
Next, D ∩ (y + S) = D ∩ (x+ 2s+ S) ⊆ D ∩ (x+ S) = ∅. This means that y ∈ X,
but x < y and this contradicts the maximality of x.

• Note that D ∩ ((x+ s) + S) ⊆ D ∩ (x+ S) = ∅.

Therefore, we have shown that for any non-zero s ∈ S, x + s is also an element of S.
Next by the maximality of x, we also know that 2x ∕∈ X. Therefore, either 4x ∈ D or
D ∩ (2x+ S) ∕= ∅ or 2x ∈ S. We wish to show that 2x ∈ S, so we will rule out the other
two possibilities.

• Suppose D ∩ (2x + S) ∕= ∅. Since x ∈ X, we know that 2x /∈ D and hence
D ∩ (2x+ (S \ {0})) ∕= ∅. But we have already seen that x+ (S \ {0}) ⊆ S, which
implies D ∩ (2x+ (S \ {0})) ⊆ D ∩ (x+ S) = ∅. This is a contradiction.

• If 4x ∈ D, then we know that 4x /∈ x + S, that is, 3x ∈ H(S). Since D is an
anti-chain and 4x ∈ D, we know that 2(3x) ∕∈ D. Note that D being an anti-chain
also implies 3x /∈ D, therefore

D ∩ (3x+ S) = D ∩ (3x+ (S \ {0})) ⊆ D ∩ (2x+ S) = ∅.

This means that 3x ∈ X and it contradicts the maximality of x.

We therefore conclude that 2x ∈ S. This shows that S2 is closed under addition and
hence is a generalized numerical semigroup. Since D ∩ (x+ S) = ∅, we know that x /∈ D.
Therefore S2 ∩ D = ∅. This means that S2 is in the collection and S ⊊ S2. This
contradicts the maximality of S in the collection. Therefore, X must be empty and hence
S is quasi-irreducible with FA(S) = D.
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The special case of this theorem when |D| = 1 was proved in [4], they call such
generalized numerical semigroups irreducible and study them. A generalized numerical
semigroup is irreducible if and only if τ(S) = 1 and it is quasi-irreducible. We now prove
the second half of Theorem 5. The special case of this when τ(S) = 1 was also proved in
[4].

Proposition 11. A generalized numerical semigroup S is quasi-irreducible if and only if
it satisfies the property that for every P ∈ PF(S) either P ∈ FA(S) or 2P ∈ FA(S).

Proof. First suppose that S is quasi-irreducible. Consider some P ∈ PF(S). Since P ∈
H(S), we know that either 2P ∈ FA(S) or there is some F ∈ FA(S) for which F −P ∈ S.
We have nothing to prove in the first case. So suppose that there is some F ∈ FA(S) for
which F − P ∈ S. This means P "S F . But P ∈ PF(S) = Maximals"S

(H(S)), so this
forces P = F and hence P ∈ FA(S).

Conversely, suppose all pseudo Frobenius gaps of S satisfy the given property. Given
x ∈ H(S), we know that there is some P ∈ PF(S) for which x "S P . Say P − x = s ∈ S.
Now we know that either P ∈ FA(S) or 2P ∈ FA(S). If P ∈ FA(S), then P − x ∈ S.
If 2P ∈ FA(S) and s = 0, then 2x ∈ FA(S). Finally, if 2P ∈ FA(S) and s ∕= 0, then
2P − x = P + s ∈ S. Therefore, S is quasi-irreducible.

Corollary 12. If S is a quasi-irreducible generalized numerical semigroup, then

τ(S) ! t(S) ! 2τ(S).

In the case of Frobenius generalized numerical semigroups, the characterization is
actually a bit stronger. The authors of [4] prove that if S is a Frobenius generalized
numerical semigroup and at least one coordinate of its Frobenius gap is odd, then S
is irreducible if and only if PF(S) = {F(S)}. In this case the generalized numerical
semigroup is symmetric. On the other hand if S is a Frobenius generalized numerical
semigroup and all coordinates of its Frobenius gap are even, then S is irreducible if and
only if PF(S) = {F(S)

2
,F(S)}. In this case the generalized numerical semigroup is pseudo-

symmetric.

Example 13. One might wonder if this stronger characterization can be extended to
the case when τ(S) > 1. One might guess that if S is a quasi-irreducible generalized
numerical semigroup, then

PF(S) = FA(S) ∪ {P ∈ Nd | 2P ∈ FA(S)}.

However, this is not the case. Consider S ⊆ N2, with

H(S) = {(1, 0), (2, 0), (0, 1), (1, 1), (2, 2), (1, 3)}.

It is seen that this is indeed a generalized numerical semigroup and PF(S) = FA(S) =
{(2, 2), (1, 3)}. This means that S is quasi-symmetric and hence quasi-irreducible. How-
ever, 2(1, 1) ∈ FA(S) and (1, 1) ∕∈ PF(S).
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4 Frobenius generalized numerical semigroups of small and
large type

In this section we find bounds for the type of a Frobenius generalized numerical semigroup.
It is known that for any Frobenius generalized numerical semigroup S

t(S) ! 2 g(S) + 1− ‖F(S)‖.

A Frobenius generalized numerical semigroup is called almost-symmetric if t(S) = 2 g(S)+
1 − ‖F(S)‖. We establish a new property in Proposition 6 that is equivalent to almost-
symmetry. We then find the lower bound on the type of a Frobenius generalized numerical
semigroup given its genus and Frobenius gap. We show that

g(S)

‖F(S)‖ − g(S)
! t(S).

Proposition 6. A Frobenius generalized numerical semigroup S with Frobenius gap F is
almost-symmetric if and only if

T (S) = {x ∈ Nd | F − x ∈
$$
Zd \ S

%
∪ {0}

%
}

is a generalized numerical semigroup.

Proof. Firstly note that

Nd \ T (S) = {F − s | s ∈ S \ {0}, s ! F}.

So |Nd \ T (S)| = ‖F‖ − g(S) − 1. Let A = {x ∈ Nd | x + T (S) ⊆ T (S)}, we will show
that A = S ∪ PF(S). Note that x ∈ A if and only if for every y ∈ Nd \ T (S) we have
y − x /∈ T (S). This means that x ∈ A if and only if for every s ∈ S \ {0} with s ! F we
have F − s− x /∈ T (S).

Now suppose x ∈ S ∪PF(S) and consider some s ∈ S \ {0} with s ! F . From this we
see that x+s ∈ S and x+s ∕= 0. This means that F − (F −s−x) is not in (Zd \S)∪{0}.
Hence F − s− x /∈ T (S). We therefore conclude that x ∈ A.

Next suppose x ∈ A and assume for the sake of contradiction that x /∈ S ∪ PF(S).
Since x ∈ H(S) and x /∈ PF(S), there must be some s ∈ S \ {0} for which x + s /∈ S.
Now since x + s ∈ H(S) and S is a Frobenius generalized numerical semigroup, we have
x + s ! F . In particular this implies s ∈ S \ {0} and s ! F . Since x ∈ A, we see that
F − s− x /∈ T (S). However, we have F − s− x ∈ Nd and s+ x ∈ (Zd \ S), which means
that F − s− x ∈ T (S). This is a contradiction. Therefore, x ∈ S ∪ PF(S).

We have shown that

A = {x ∈ Nd | x+ T (S) ⊆ T (S)} = S ∪ PF(S).

Now since t(S) is the size of PF(S), we see that

t(S) = |A \ S| = |Nd \ S|− |Nd \ A| = g(S)− |Nd \ A|.
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Since 0 ∈ T (S), we know that A ⊆ T (S). This implies that

t(S) = g(S)− |Nd \ A| ! g(S)− |Nd \ T (S)| = 2 g(S) + 1− ‖F‖.

Moreover, equality holds if and only if T (S) = A. This is equivalent to T (S) being
closed under addition, which is of course equivalent to T (S) being a generalized numerical
semigroup.

When S is a numerical semigroup, its canonical ideal is

S∗ = {x ∈ Z | F(S)− x /∈ S}.

Our construction of T (S) is closely related as T (S) = S∗ ∪ {F(S)}.
Theorem 7. Given a Frobenius generalized numerical semigroup S ⊆ Nd we have

g(S)

‖F(S)‖ − g(S)
! t(S).

Proof. Fix a relaxed monomial ordering ≺ on Nd. Define a map φ from H(S) to S as
follows:

φ(x) = max
≺

{s ∈ S | x+ s ∈ H(S)}.

Here we are taking the maximum of a nonempty finite set, so φ is well defined. Consider
some nonzero s ∈ S, we know that φ(x) + s ∈ S and φ(x) ≺ φ(x) + s. The maximality of
φ(x) implies that x+φ(x)+ s ∈ S. This means that x+φ(x) ∈ PF(S). Let B be the box

B = {x ∈ Nd | 0 ! x ! F(S)}.

So |B| = ‖F(S)‖. Since S is a Frobenius generalized numerical semigroup, we know that
H(S) ⊆ B. This means that |B ∩ S| = ‖F(S)‖ − g(S). Now we define a map ψ from
H(S) to (S ∩B)× PF(S) given by

ψ(x) = (φ(x), x+ φ(x)).

This map is clearly injective, therefore g(S) ! (‖F(S)‖ − g(S)) t(S).

5 Lower bounds for the number of Frobenius generalized nu-
merical semigroups

In this and the next section we will attempt to count the number of Frobenius generalized
numerical semigroups with a given Frobenius gap in Nd. In this section we will obtain a
lower bound for N(F ). We denote x = ⌊x+1

2
⌋.

First consider the case when d = 1, that is, the case of numerical semigroups. Given
F ∈ N, let B = {x ∈ N | F

2
< x < F}. So |B| = F − 1. Now for any subset X ⊆ B,

let S(X) = {0} ∪X ∪ {x | x > F}. Then S(X) is closed under addition and hence is a
numerical semigroup. Moreover, distinctX lead to distinct numerical semigroups. We can
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therefore conclude that for F ∈ N, N(F ) # 2F−1. We will extend this technique to higher
d, by choosing a large piece of the box where we can pick points almost independently.

Given F ∈ Nd, we denote by SF = Nd \ {x ∈ Nd | 0 < x ! F}. So SF is a generalized
numerical semigroup (note that 0 ∈ SF ). In fact SF is a Frobenius generalized numerical
semigroup with Frobenius gap F .

Theorem 14. Let d1 = ⌈d+1
3
⌉. If F ∈ Nd, then

"
3

1
2

!d−d1
i=d1

(di)2
!2d1−1

i=d−d1+1 (
d
i)
#F (1)···F (d)

! N(F ).

Proof. For a subset A ⊆ {1, 2, . . . , d}, consider the following box

BA =

(
x ∈ Nd

))) for i ∈ A :
F (i)

2
< x(i) ! F (i); for i /∈ A : 0 ! x(i) <

F (i)

2

*
.

For each A, the size of the box is

|BA| = F (1) · · ·F (d).

Let B be the union of BA for all subsets A with size d1 ! |A| ! d − d1. Since each BA

has the same size, the size of B is

|B| = F (1) · · ·F (d)

d−d1+

i=d1

&
d

i

'
. (1)

Let C be the union of BA for all subsets A with size d− d1 + 1 ! |A| ! 2d1 − 1. So C is
disjoint from B and the size of C is

|C| = F (1) · · ·F (d)

2d1−1+

i=d−d1+1

&
d

i

'
. (2)

Note that if d /∈ {1, 3}, we have 1 ! d1 ! d − d1 ! d. For d ∈ {1, 3}, we have B = ∅,
but Equation 1 is still satisfied. Also notice that if d ≡ 2 (mod 3), then C = ∅, but
Equation 2 still holds.

Next notice that for any x ∈ B, F−x is also in B. And for any x ∈ C, F−x ∕∈ (B∪C).

A subset of Y ⊆ B is called good if x ∈ Y implies F −x ∕∈ Y . Now, B consists of |B|
2

pairs
of the form x, F − x. Choosing a good subset of B requires choosing at most one element
from each such pair. There are three choices for each pair and hence there are 3

1
2
|B| good

subsets of B. For a good subset Y of B and any subset Z of C we let X = Y ∪ Z and
define

S(X) = S(Y ∪ Z) = SF ∪X ∪ (X +X).

Since Y was a good subset, we know that F is not in S(X). It is therefore clear that F
is the unique maximal element of Nd \ S(X) under the natural partial ordering.
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We next show that S(X) is closed under addition. Consider non-zero x, y ∈ S(X).
If at least one of them is in SF , then x + y is also in SF . Therefore, suppose neither of
them is in SF . If both of them are in X, then x+ y is in X +X. The remaining cases are
when one of them is in X and the other in X +X or when both are in X +X. We can
therefore write x + y =

,n
i=1 xi with xi ∈ X, n ∈ {3, 4}. Say xi is in BAi

with |Ai| # d1
for 1 ! i ! n. Since

|A1|+ |A2|+ |A3| # 3d1 > d,

we know that A1, A2, A3 cannot be pairwise disjoint. So say t ∈ A1∩A2. Therefore x
(t)
1 , x

(t)
2

are both bigger than F (t)

2
and hence (x+ y)(t) > F (t). This implies that x+ y ∈ SF ⊆ S.

This shows that S(X) is closed under addition. Therefore, S(X) is a Frobenius generalized
numerical semigroup with Frobenius gap F .

Finally we show that S(X) are distinct for distinct X. This will follow from the fact
that

S(X) ∩ (B ∪ C) = X.

Clearly X ⊆ S(X)∩ (B ∪C). However if equality does not hold, then there will be some
x in (X +X)∩ (B ∪C). This means that x = x1 + x2 with x1, x2 ∈ X. Say xi ∈ BAi

, we
know that d1 ! |Ai| ! 2d1 − 1. Now if A1 ∩A2 ∕= ∅, then there will be some t ∈ A1 ∩A2.
That will imply x(t) > F (t) and contradict x ∈ B ∪C. On the other hand if A1 ∩A2 = ∅,
then |A1∪A2| = |A1|+|A2| # 2d1 > 2d1−1. For each i ∈ A1∪A2 we have x

(i) > F (i)

2
. This

means that x cannot be in any BA with |A| ! 2d1−1 and this again contradicts x ∈ B∪C.
We therefore see that (X +X)∩ (B ∪C) = ∅ and hence X = S(X)∩ (B ∪C). Therefore,
S(X) are distinct Frobenius generalized numerical semigroups for distinct X. Hence, the

number of Frobenius generalized numerical semigroups we constructed is 3
1
2
|B|2|C|.

Corollary 15. Let d1 = ⌈d+1
3
⌉. If F ∈ Nd, then

-"√
3
# 1

2d

!d−d1
i=d1

(di) ×
"
2
# 1

2d

!2d1−1
i=d−d1+1 (

d
i)
.‖F−1‖

! N(F ).

For most d, the lower bound in Corollary 15 appears to be optimized. However, for
d = 5 this gives a lower bound of

"
3

5
16

#F (1)F (2)F (3)F (4)F (5)

! N(F (1), F (2), F (3), F (4), F (5)).

But we can improve the 35/16 to
√
2.

Proposition 16. For F ∈ N5

"√
2
#‖F−1‖

! N(F ).

Proof. We use the notations from the proof of Theorem 14. Let D be the union of all
boxes BA with |A| # 3. There are sixteen such boxes, so the size of D is

|D| = 16F (1) . . . F (5).
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For an arbitrary subset X of D we define

S(X) = SF ∪X.

We see that F is not in S(X). It is therefore clear that F is the unique maximal element
of Nd \ S(X) under the natural partial ordering.

We next show that S(X) is closed under addition. Consider non-zero x, y ∈ S(X). If
at least one of them is in SF , then x + y is also in SF . Therefore suppose that both of
them are in X. Say x ∈ BA1 and y ∈ BA2 with |Ai| # 3. Since |A1| + |A2| # 6 > 5, we
know that A1 and A2 cannot be disjoint. Say t ∈ A1 ∩ A2, then (x + y)(t) > F (t). This
implies that x+ y ∈ SF ⊆ S. This shows that S(X) is closed under addition. Therefore,
S(X) is a Frobenius generalized numerical semigroup with Frobenius gap F .

Finally we see that S(X) are distinct for distinct X. This follows from the fact that

S(X) ∩D = X.

Hence, the number of Frobenius generalized numerical semigroups we constructed is 2|D|.
Finally notice that

2|D| = 216F
(1)...F (5) # 216

F (1)...F (5)

32 =
√
2
‖F−1‖

.

Lemma 17. For d ∈ N, let d1 = ⌈d+1
3
⌉. As d → ∞ we have:

lim
d→∞

1

2d

d−d1+

i=d1

&
d

i

'
= 1.

Proof. Suppose d # 4. Hoeffding’s inequality [10, Theorem 1] states that if X1, . . . , Xd

are independent random variables such that 0 ! Xi ! 1 and Sd = X1 + · · ·+Xd, then

P
"
Sd − E(Sd) ! −t

#
! exp

&
−2

t2

d

'
.

We takeX1, . . . , Xd to be independent random variables with P(Xi = 0) = P(Xi = 1) = 1
2

and take t = d
6
. This means that E(Sd) =

d
2
and

P
"
Sd − E(Sd) ! −d

6

#
= P

"
Sd !

d

3

#
=

+

0!i! d
3

1

2d

&
d

i

'
! exp

&
− d

18

'
.

Therefore, we see that

1 # 1

2d

d−d1+

i=d1

&
d

i

'
= 1− 2

1

2d

d1−1+

i=0

&
d

i

'
# 1− 2 exp

&
− d

18

'
.

We conclude that

lim
d→∞

1

2d

d−d1+

i=d1

&
d

i

'
= 1.
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Corollary 18. Given ε > 0, for sufficiently large d we have:
for every F ∈ Nd

"√
3− ε

#‖F−1‖
! N(F ).

Proof. We see that

lim
d→∞

"√
3
# 1

2d

!d−d1
i=d1

(di)
=

√
3.

Therefore for large d, we will have
$√

3
% 1

2d

!d−d1
i=d1

(di) #
√
3− ε. And for such d, we have

N(F ) #
-"√

3
# 1

2d

!d−d1
i=d1

(di)
.‖F−1‖

#
"√

3− ε
#‖F−1‖

.

6 Upper bounds for the number of Frobenius generalized nu-
merical semigroups

In this section we will obtain an upper bound for the number of Frobenius generalized
numerical semigroups with a given Frobenius gap.

Lemma 19. For any F ∈ Nd we have:

N(F ) !
√
3
‖F‖

.

Proof. Consider the box B = {x ∈ Nd | 0 ! x ! F}. This box has ‖F‖ points in it.

They are divided into ⌊‖F‖
2
⌋ pairs of the form x, F − x and possibly a single point x with

x + x = F . If S is a Frobenius generalized numerical semigroup with Frobenius gap F ,
then SF ⊆ S and F

2
∕∈ S. Moreover, for each of the ⌊‖F‖

2
⌋ pairs we can either pick one of

the two points or neither of them. This gives 3 choices for each pair. Therefore,

N(F ) ! 3⌊
‖F‖
2

⌋ !
√
3
‖F‖

.

Combining Corollary 18 and Lemma 19, we get the following result.

Theorem 3. Given ε > 0, there exists M > 0 such that for all d > M and F ∈ Nd

"√
3− ε

#‖F−1‖
! N(F ) !

√
3
‖F‖

.

Theorem 3 shows that for large d the upper bound of
√
3
‖F‖

is close to the actual
value. However, for small d this is not the case. For example for d = 1, [2] proves that
for any F ∈ N

N(F ) ! 4
√
2
F
.

We therefore look for a stronger upper bound, specially for smaller d.
Given P, F ∈ Nd with P < F , we denote by L(P, F ) the number of Frobenius gener-

alized numerical semigroups with Frobenius gap F that do not contain P .
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Lemma 20. Given P, F ∈ Nd with P < F , we have

L(P, F ) ! φ2

√
5
φ‖F‖

&
φ
4
√
5

'‖F‖−‖P‖

.

Proof. Consider the box B = {x ∈ Nd | x ! F}. It has ‖F‖ points. Consider a graph with
points of B as vertices, such that x and y are connected by an edge when x+ y ∈ {P, F}
and x ∕= y (see Example 21). For any Frobenius generalized numerical semigroup S with
F(S) = F and P ∈ H(S), we know that S ∩B will be a subset of the graph that does not
contain any edges within it. We therefore count such subsets to get an upper bound for
L(P, F ).

Let us analyze the degrees of vertices x ∈ B.

• If x /∈ {F
2
, P
2
} and x ! P , then x has degree two. It has edges to F − x and P − x.

• If x /∈ {F
2
, P
2
} and x ∕! P , then x has degree one. It has an edge to F − x.

• If x = P
2
(so P

2
∈ Nd), then x has degree one. It has an edge to F − x.

• If x = F
2
and F

2
! P , then x has degree one. It has an edge to P − x.

• If x = F
2
and F

2
∕! P , then x has degree zero.

Therefore, the number of degree one vertices is ‖F‖−‖P‖+α, for some α ∈ {−1, 0, 1, 2}.
Let β be the number of isolated vertices, so β ∈ {0, 1}. Ignoring the possible isolated
vertex, denote the rest of the graph as G. So G has ‖F‖− β vertices and each vertex has
degree one or two. Therefore, G must be a union of paths and cycles.

We will show that G cannot have any cycles. Assume for the sake of contradiction
that G has a cycle x1, x2, . . . , xn. Let xn+1 = x1. Since each xi has degree two, we see that
{xi−1 + xi, xi + xi+1} = {P, F}. This means that the edges alternately sum to P and F .
Therefore, n must be even, say n = 2n1. Without loss of generality suppose x1 + x2 = F .
Then for each i ∈ {1, 2, . . . , n1}, we have x2i−1 + x2i = F and x2i + x2i+1 = P . This
implies that

n1F =

2n1+

j=1

xj = n1P.

But this is impossible since P ∕= F . Therefore, we have a contradiction and G cannot
have any cycles.

Now we know that G is a disjoint union of paths and it has ‖F‖−‖P‖+α vertices of

degree one. Let k = ‖F‖−‖P‖+α
2

, so G must be a union of k disjoint paths. Say the lengths

of the paths are n1, n2, . . . , nk. Then
,k

i=1 ni = ‖F‖ − β.
We call a subset of the vertices good if the subset does not contain any edges. We

claim that for a path graph with n vertices there are Fn+2 good subsets. Here, Fk is
the kth Fibonacci number. This is easily seen for n ∈ {1, 2}. We proceed by induction.
Suppose that n # 3 and this has been checked for n − 1, n − 2. Now consider a path
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graph of length n, call the vertices x1, . . . , xn in order. If a good subset includes xn, then
it cannot include xn−1, so there are F(n−2)+2 good subsets that include xn. On the other
hand there are F(n−1)+2 good subsets that do not have xn. Therefore, the total number
of good subsets is Fn + Fn+1 = Fn+2. This completes the induction step.

We therefore see that the number of good subsets of G is

k!

i=1

Fni+2 !
k!

i=1

1√
5
φni+2 =

&
φ2

√
5

'k

φ‖F‖−β ! φ2

√
5

&
φ2

√
5

' ‖F‖−‖P‖
2

φ‖F‖.

Example 21. Suppose d = 2, F = (3, 3) and P = (2, 2). Then the graph G has 16
vertices and is a union of 4 paths.

(3, 3) (0, 0) (2, 2) (1, 1)

(3, 2) (0, 1) (2, 1) (1, 2) (1, 0) (2, 3)

(3, 1) (0, 2) (2, 0) (1, 3)

(3, 0) (0, 3)

We now obtain an improved upper bound of N(F ) by combining Lemma 19 and
Lemma 20, while keeping in mind that Lemma 20 is more accurate when ‖F‖ − ‖P‖ is
small.

Lemma 22. For any ε with 0 < ε < 1 and for any F ∈ Nd we have

N(F ) !
√
3
(1−2εd)‖F‖

+
φ2

√
5
εd‖F‖φ‖F‖

&
φ
4
√
5

'(1−(1−ε)d)‖F‖

.

Proof. Denote by B the box consisting of those x ∈ Nd with x ! F . Let B1 be the box of
those x with (1− ε)F ! x ! F . And let B2 be the box of those x with x ! εF . We divide
the Frobenius generalized numerical semigroups with F(S) = F into two categories. The
first one consisting of those that have at least one gap in B1 (other than F ) and the
second one consisting of those that have no gaps in B1 (except F ).

First we count the first category generalized numerical semigroups. There are εd‖F‖
points in B1. For each P ∈ B1 the number of first category generalized numerical semi-
groups with P as a gap is at most

φ2

√
5
φ‖F‖

&
φ
4
√
5

'‖F‖−‖P‖

! φ2

√
5
φ‖F‖

&
φ
4
√
5

'‖F‖(1−(1−ε)d)

.

Therefore, the total number of first category generalized numerical semigroups is at most

φ2

√
5
εd‖F‖φ‖F‖

&
φ
4
√
5

'‖F‖(1−(1−ε)d)

.

the electronic journal of combinatorics 29(4) (2022), #P4.12 18



We now count the second category generalized numerical semigroups. A second cate-
gory generalized numerical semigroup must contain all of B1 (except F ) and hence cannot
intersect B2 (other than 0). There are (1− 2εd)‖F‖ points in B \ (B1 ∪B2). They can be
divided into pairs of the form x, F − x. A generalized numerical semigroup cannot have
both the points from any of these pairs. Therefore, we have 3 choices for each pair and
the total number of second category generalized numerical semigroups is at most

√
3
(1−2εd)‖F‖

.

We now optimize the ε in Lemma 22.

Proposition 23. Let εd be the solution of the equation:

(1− εd)
d log

&
φ
4
√
5

'
− εdd log(3) = log

&
φ2

4
√
5
√
3

'
.

Let bd =
√
3
(1−2εdd). Then

N(F ) ! 2φ2

√
5
‖F‖b‖F‖

d .

7 Further Questions

While we have obtained a good estimate of N(F ) for large d, our upper bound is weak
for smaller d. For d ∕= 5, let d1 = ⌈d+1

3
⌉ and

ad =

-"√
3
# 1

2d

!d−d1
i=d1

(di) ×
"
2
# 1

2d

!2d1−1
i=d−d1+1 (

d
i)
.
.

For d = 5, let a5 =
√
2. Let b1 =

√
2, and for d # 2, let bd be the constants from

Proposition 23. We have shown that for each F ∈ Nd

a
‖F−1‖
d ! N(F ) ! O

"
‖F‖b‖F‖

d

#
.

The constants
√
2 ! ad ! bd <

√
3 satisfy

lim
d→∞

ad = lim
d→∞

bd =
√
3.

Some of these constants are listed in Table 1 up to four decimal places.

Conjecture 24. For each d ∈ N>0, N(F ) is of the magnitude of a
‖F‖
d .

Another direction to extend this would be to consider an anti-chain A of k points in
Nd (anti-chain with respect to natural partial ordering). And attempting to count the
number of generalized numerical semigroups S ⊆ Nd for which FA(S) = A.
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d ad bd d ad bd d ad bd
1 1.4142 1.4142 6 1.4904 1.7311 11 1.5293 1.7320
2 1.3160 1.6630 7 1.5130 1.7319 12 1.5798 1.7320
3 1.4142 1.6968 8 1.4777 1.7320 13 1.5891 1.7320
4 1.4612 1.7173 9 1.5415 1.7320 14 1.5693 1.7320
5 1.4142 1.7275 10 1.5553 1.7320 15 1.6095 1.7320

Table 1: Constants for upper and lower bound
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[9] J. I. Garćıa-Garćıa, I. Ojeda, J. C. Rosales et al. On pseudo-Frobenius elements of
submonoids of Nd. Collect. Math., 71:189–204, 2020.

[10] W. Hoeffding. Probability Inequalities for Sums of Bounded Random Variables. Jour-
nal of the American Statistical Association, 58(301):13-30, 1963.

[11] H. Nari. Symmetries on almost symmetric numerical semigroups. Semigroup Forum,
86:140–154, 2013.

[12] L. Robbiano. On the theory of graded structures. Journal of Symbolic Computation,
2(2):139-170, 1986.

the electronic journal of combinatorics 29(4) (2022), #P4.12 20



[13] J. C. Rosales, P. A. Garca Snchez. Numerical semigroups. In Developments in Math-
ematics, volume 20, Springer, 2009.

[14] D. Singhal. Numerical Semigroups of small and large type. International Journal of
Algebra and Computation, 31(5):883-902, 2021.

the electronic journal of combinatorics 29(4) (2022), #P4.12 21


