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Abstract

We study the minimum size f of a feedback vertex set in directed and undirected
n-vertex graphs of given degeneracy or treewidth. In the undirected setting the
bound k−1

k+1n is known to be tight for graphs with bounded treewidth k or bounded

odd degeneracy k. We show that neither of the easy upper and lower bounds k−1
k+1n

and k
k+2n can be exact for the case of even degeneracy. More precisely, for even

degeneracy k we prove that f < k
k+2n and for every ε > 0, there exists a k-degenerate

graph for which f > 3k−2
3k+4n− ε.

For directed graphs of bounded degeneracy k, we prove that f 6 k−1
k+1n and that

this inequality is strict when k is odd. For directed graphs of bounded treewidth
k > 2, we show that f 6 k

k+3n and for every ε > 0, there exists a k-degenerate

graph for which f > k−2blog2(k)c
k+1 n− ε. Further, we provide several constructions of

low degeneracy or treewidth and large f .

Mathematics Subject Classifications: 05C69, 05C20

We consider only simple graphs and oriented directed graphs, i.e, our graphs do not
have loops or multiple edges or arcs, not even anti-parallel arcs. A set F ⊆ V of vertices
of a (directed) graph, is a feedback vertex set if deleting F results in a (directed) graph
without (directed) cycles. The complement of a feedback vertex set is called acyclic
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set, and some results in the literature are formulated in terms of acyclic sets. Deciding
whether a graph has a feedback vertex set of a given size is among the 21 original NP-
complete problems of Karp [7]. Thus finding the minimum size of a feedback vertex
set or equivalently, the largest acyclic set, is a challenging algorithmic problem and was
extensively studied in the literature.

Because of its hardness, a natural class to study the minimum size of a feedback
vertex set are sparse (directed) graphs. A particular example are planar graphs. The size
of a minimum feedback vertex set in a planar graph is (famously) conjectured to be at
most half the vertices by Albertson and Berman [1]. Up to date the best-known upper
bound is 3

5
n achieved through acyclic colorings with Borodin’s result [2]. The size of a

minimum feedback vertex set in planar directed graphs has also been studied by several
authors. Using results of Esperet, Lemoine and Maffray [5] and Li and Mohar [10] one
can infer different upper bounds depending on the length of a shortest directed cycle.
However, a question of Albertson [12, 18] asking whether any planar directed graphs has
a feedback vertex set on at most half its vertices, remains open. Note that this latter
question is a weakening of the undirected setting as well as of famous Neumann-Lara
conjecture [14]. Further, it is known that if true this bound is best-possible [8]. Moreover,
it is noteworthy that the best known upper bound coincides with the above mentioned
3
5
n from the undirected setting [2].

Another class that has received attention in the directed setting are tournaments.
Already Stearns [17] and Erdős and Moser [4] have shown that any tournament on n
vertices admits a feedback vertex set of size n−blog2(n)c−1, while there are tournaments
where no feedback vertex set on less than n− 2blog2(n)c− 1 vertices exists. More precise
bounds for small values of n have been obtained by Sanchez-Flores [15, 16] and recently
more work has been done into that direction by Neiman, Mackey and Heule [13] and by
Lidický and Pfender [11]. Improving the asymptotic upper and lower bounds remains an
open problem.

In this paper we focus on the class of (directed) graphs of bounded treewidth or
degeneracy. Here, the treewidth or degeneracy of a directed graph is simply the treewidth
or degeneracy of its underlying undirected graph. Recall that every graph of treewidth
k also has degeneracy k. In the undirected setting, the minimum feedback vertex set of
graphs of bounded treewidth has been determined by Fertin, Godard and Raspaud [6]:
for a graph of order n, treewidth k, the size of a minimum feedback vertex set is at
most k−1

k+1
n and this bound is best-possible. Moreover, for odd degeneracy k it is easy

to achieve the same upper bound, see Proposition 12. However, for even degeneracy the
same argument only yields an upper bound of k

k+2
n, and a lower bound of k−1

k+1
n. Indeed,

in [3] Borowiecki, Drgas-Burchardt, and Sidorowicz show that the true value for k = 2
is 2

5
n which lies strictly between the above bounds. Our main contribution here is to

construct for any even k a family of graphs of degeneracy k, whose members of large
order n have minimum feedback vertex sets whose size comes arbitrarily close to 3k−2

3k+4
n

(see Theorem 14). On the other hand we know that there exists no graph of order n and
even degeneracy k whose minimum feedback vertex set is of size k

k+2
n, see Proposition 15.

In the directed setting to our knowledge, apart from the above mentioned results in
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planar digraph and tournaments no classes of given degeneracy or treewidth have been
studied previously. We give an upper bound for the smallest feedback vertex sets of n-
vertex graphs of degeneracy k, namely k−1

k+1
n (Theorem 17), which is for k = 2 and k = 3

yields tight bounds 1
3
n and 1

2
n, respectively. For k = 2, the directed triangle is a simple

example reaching the upper bound and for k = 3, the construction from [8] yields 1
2
n

for degeneracy 3. Unlike the undirected setting, we know that there exists no graph of
order n and odd degeneracy k whose minimum feedback vertex set is of size k−1

k+1
n (see

Proposition 18). We present constructions for digraphs with large minimum feedback
vertex set and given small degeneracy (resp. treewidth) in Table 1 (resp. Table 2), that
improve on the bounds obtained from using just tournaments from [13,15,16]. For general
treewidth, taking disjoint unions of the tournaments of [4] on can find n-vertex digraphs

of treewidth k and f > k−2blog2(k+1)c
k+1

n. However, in Theorem 25 we show that on general
directed graphs of treewidth k one can force slightly larger minimum feedback vertex sets.
On the other hand, in Theorem 23 we show that every n-vertex digraph of treewidth k
has a feedback vertex set of size at most k

k+3
n.

Many of our constructions are based on two general ideas, that can be applied in the
directed and undirected setting alike and may be of independent interest. See Proposi-
tions 8 and 9.

1 Preliminaries

Definitions and notations: Let G = (V,E) be a (directed) graph. For a vertex u ∈ V ,
let NG(u) be the set of vertices (neighbors) adjacent to u. Let N−G (u) (resp. N+

G (u)) be
the set of in-neighbors (resp. out-neighbors) of u when G is directed. We denote by
NG[u] := N(u) ∪ {u} the closed neighborhood of u. The closed neighborhood of a set
of vertices S ⊆ V is NG[S] =

⋃
{v∈S}NG[v]. We define the neighborhood NG(S) of S

as NG(S) = NG[S] \ S. We define the degree dG(u) := |NG(u)|, the in-degree d−G(u) :=
|N−G (u)|, and out-degree d+G(u) := |N+

G (u)|. We denote δ(G) := min{dG(v)|v ∈ V } the
minimum degree of G. We also define the minimum in-degree δ−(G) and out-degree δ+(G)
of G similarly. We will drop the subscript G when the graph is clear from the context.
A k-vertex (resp. k−-vertex, k+-vertex) is a vertex of degree k (resp. at most k, at least
k). A set S of vertices forms a clique when every two distinct vertices of S are adjacent.
For every set S ⊆ V , we denote by G− S the graph G where we removed the vertices of
S along with their incident edges. We denote the set of integers {i, i + 1, . . . , j} by [i; j]
and we simplify this notation to [j] when i = 1.

Definition 1 (k-elimination ordering). Let G = (V,E) be a graph, and φ : V ↪→ [|V |] be
an ordering of V . We say that u precedes v in φ if and only if φ(u) < φ(v). For every vertex
v, we define dp(v) = |{u ∈ V | φ(u) < φ(v), uv ∈ E(G)}| and ds(v) = |{w ∈ V |φ(v) <
φ(w), vw ∈ E(G)}|. We say that φ is a k-elimination ordering of V if dp(v) 6 k for all
v ∈ V . We call a k-elimination ordering chordal if {u ∈ V | φ(u) < φ(v), uv ∈ E(G)} is a
clique for every v ∈ V .
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We visualize an elimination ordering often as ordering the vertices from left to right,
and eliminating them from right to left.

Definition 2. Let G be a (undirected) graph:

• G is k-degenerate if and only if G has a k-elimination ordering.

• G is a maximal k-degenerate graph if and only if G has a k-elimination ordering
where dp(v) = min(k, φ(v)− 1) for every v ∈ V (G).

• G is chordal if and only if G has a chordal k-elimination ordering.

• G is a k-tree if and only if G has a chordal k-elimination ordering where dp(v) =
min(k, φ(v)− 1) for every v ∈ V (G).

• G has treewidth k if and only if G is a subgraph of a k-tree.

Observation 3. Let G be a (undirected) graph:

• For every v ∈ V (G), d(v) = dp(v) + ds(v) for every ordering φ.

• If G is a k-degenerate graph, then every subgraph of G is a k-degenerate graph.

• If G is a k-tree, then G is a maximal k-degenerate graph.

• If G is a k-tree and u is a k-vertex, then G− {u} is a k-tree.

Given a graph G we denote by deg(G) the degeneracy of G and by tw(G) its treewidth.
If D is a directed graph, then deg(D) and tw(D) are the degeneracy and the treewidth of
the underlying undirected graph D, respectively.

We denote by n(G) (or simply n when there is no ambiguity) the number of vertices
of a graph G. We denote by f(G) (or simply f when there is no ambiguity) the minimum
size of a feedback vertex set in a (directed) graph G. Clearly, f(D) 6 f(D) for any
directed graph D. We recall below the best known results on acyclic sets in tournaments.

Theorem 4 ([13,16]). Denote by a(n) the minimum size of a maximum acyclic set among
all tournaments (or equivalently all digraphs) on n vertices. Then:

• a(n) = 3 for 4 6 n 6 7,

• a(n) = 4 for 8 6 n 6 13,

• a(n) = 5 for 14 6 n 6 27,

• a(n) = 6 for 28 6 n 6 34,

• 6 6 a(n) 6 7 for 34 6 n 6 46,

• a(n) = 7 for n = 47.

the electronic journal of combinatorics 29(4) (2022), #P4.16 4



Theorem 5 ([4]). There exists a tournament on n vertices where every acyclic subset has
size at most 2blog(n)c+ 1.

These results for acyclic sets translate directly to lower bounds on minimum feedback
vertex sets of graphs with bounded treewidth as tournaments of size k + 1 are k-trees.

Corollary 6 ([13,16]). For all tournaments on k+1 vertices (of treewidth k), there exists
a feedback vertex set of size at most fk where:

• fk = k − 2 for 3 6 k 6 6,

• fk = k − 3 for 7 6 k 6 12,

• fk = k − 4 for 13 6 k 6 26,

• fk = k − 5 for 27 6 k 6 33,

• fk 6 k − 6 for k > 34.

For every 3 6 k 6 33, there exists a tournament on k+ 1 vertices for which the minimum
feedback vertex set has size exactly fk.

Corollary 7 ([4]). There exists a tournament on k+1 vertices where every feedback vertex
set has size at least k − 2blog(k + 1)c.

2 General constructions

Here we present two constructions that work for both directed and undirected graphs.
They yield families of (directed) graphs with a controllable degeneracy or treewidth and
sometimes an interesting ratio f

n
. In both constructions the following definition is impor-

tant: Given a (directed) graph G = (V,E), a set of vertices R ⊆ V is called bad if it is not
contained in any minimum feedback vertex set. Also, for a graph and a subset S ⊂ V a
(chordal) k-elimination ordering φ is called S-last if it satisfies φ(u) < φ(v) for all u ∈ S
and v ∈ V \ S.

Proposition 8. Let D0 be a (directed) graph on k vertices, D1, . . . , Dk be (directed)
graphs with minimum feedback vertex sets of size f0, f1, . . . , fk, respectively and let Ri be
a (nonempty) bad set of Di for all 0 6 i 6 k. Let D be the (directed) graph built as
follows:

• replace vertex vi of D0 by Di, for 1 6 i 6 k;

• for every arc (edge) vivj of D0 add to D all arcs (edges) going from vertices of
Ri ⊆ Di towards vertices of Rj ⊆ Dj.
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Then D has order n1+. . .+nk, minimum feedback vertex set of size at least f0+f1+. . .+fk.
If Ri is minimal (inclusion-wise) for 1 6 i 6 k, then f(D) =

∑
06i6k fi and R =

⋃
vi∈R0

Ri

is a bad set of D.
Moreover, if R1, . . . , Rk cliques of size at most c, D1, . . . , Dk are chordal, have treewidth

at most t, and D0 has treewidth at most t0, then D has treewidth at most max(t, (c+1)t0−
1).

R1 R2

R3

D1 D2

D3

Figure 1: The construction of D in Proposition 8 where D0 is a directed triangle.

Proof. Clearly, D has order n1+. . .+nk. Let F be an optimal feedback vertex set of D and
let Fi = F ∩ V (Di) for i ∈ [k]. Suppose (after relabeling) that |Fi| = fi for i 6 ` 6 k and
|Fi| > fi otherwise. Since we glued on bad sets Ri, the (di)graph D − F has an induced
acyclic sub(di)graph isomorphic to an `-vertex acyclic sub(di)graph of D0. A maximum
acyclic set in D0 has size at most k−f0 by definition of f0. So, we have ` 6 k−f0. Finally,
we get f(D) =

∑
i∈[k] |Fi| >

∑
i∈[k] fi+k− ` >

∑
i∈[k] fi+k− (k−f0) = f0 +f1 + · · ·+fk.

We claim that f(D) =
∑

06i6k fi if Ri is minimal (inclusion-wise) for 1 6 i 6 k.
Indeed, for each i, there exists an optimal feedback vertex set F ′i of Di such that |Ri\F ′i | =
1 by minimality of Ri. So,

⋃
16i6k(Ri \F ′i ) is isomorphic to D0 and has a feedback vertex

set F ′0 of size f0. Therefore, F ′ =
⋃

06i6k F
′
0 is a feedback vertex set of D of size

∑
06i6k fi.

Observe that, if F is a feedback vertex set of D, then F0 = {vi ∈ V (D0) : Ri ⊂ F} is
a feedback vertex set of D0. Moreover, |F | > |F0| + f1 + · · · + fk. As a result, if R0 is a
bad set of D0 and a feedback vertex set F of D contains

⋃
{i:vi∈R0}Ri, then F0 is not a

minimum feedback vertex set and |F0| > f0. This yields |F | > f0 + f1 + · · ·+ fk = f(D)
when Ri is minimal for 1 6 i 6 k. Hence,

⋃
{i:vi∈R0}Ri is a bad set of D.

The bound on the treewidth comes simply from eliminating in each graph Di all
vertices different from Ri first. Afterwards, we are left with the graph obtained from D
by replacing each vertex vi by a clique of size Ri. It is straight-forward to check that its
treewidth is at most ct0 + (c− 1), where t0 = tw(D0) and c = max{|Ri| | i ∈ [k]}.

For the next construction we consider a triple (D,R, r′) of a (directed) graph D =
(V,A), with a bad set R ⊆ V and a vertex r′ ∈ V \ R. Denote by Dr′×|R| = (V ′, A) the
(directed) graph obtained from D by replacing r′ by a stable set S of size |R| each of whose
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vertices is connected to D the same way as r′. The right-left-degeneracy degRL(D,R, r′)
of (D,R, r′) is the minimum k such that Dr′×|R| has a S-last k-elimination ordering.

If D is chordal and R is a clique, denote by D′r′×|R| = (V ′, A) the (directed) graph

obtained from D by replacing r′ by a clique S (oriented arbitrarily) of size |R| each of
whose vertices is connected to D the same way as r′, then D′r′×|R| has an N [S]-last chordal
k-elimination ordering.

Proposition 9. Let (D,R, r′) be a building block such, such that D has n vertices, min-
imum feedback vertex set of size f , and R is bad. Then there is a family (Di)i∈N of
(directed) graphs such that:

• n(Di) = n+ i(n− 1),

• f(Di) > f + if (with equality when R is minimal inclusion-wise),

• deg(Di) 6 degRL(D,R, r′).

r′

D

r′
R

D

R

Di−1

Ri−1

Figure 2: The construction of Di from Di−1 and D in Proposition 9.

Proof. The first member of the family is D0 = D. We will construct Di by gluing a copy
of D to Di−1 in a special way. We call Ri−1 the set of vertices corresponding to the vertices
of R in the last copy of D in Di−1. Formally, the graph Di is built from Di−1 as follows:

1. Take Di−1 and a copy of D, and r′ ∈ V (D) as in the statement of the lemma,

2. add an arc from (r, v) (resp. (v, r)) for all r ∈ Ri−1 ⊆ V (Di−1) and v ∈ V (D) if
(r′, v) ∈ A(D) (resp. (v, r′) ∈ A(D))

3. Delete r′ ∈ V (D) from the newly created graph.
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See Figure 2 for an illustration.
Using the induction hypothesis we have n(Di) = n(Di−1) + (n− 1) = n+ (i− 1)(n−

1) + (n− 1) = n+ i(n− 1).
Now, suppose that F is a minimum feedback vertex set of Di. Let F ′ = F ∩ Di−1

and F ′′ = F \ F ′. Observe that F ′ must be a feedback vertex set of Di−1. If |F ′| =
f(Di−1), then, since Ri−1 is a bad set of Di−1, there is a vertex r ∈ Ri−1 \ F ′. We denote
by (D − {r′}) ∪ {r} the copy of D where we removed r′ and added r with all of the
corresponding arcs as in the second item from the description above. So, F ′′ must be a
feedback vertex set of (D − {r′}) ∪ {r} which is isomorphic to D and |F ′′| > f . Thus,
|F | = |F ′| + |F ′′| > f(Di−1) + f = f + (i − 1)f + f = f + if . If |F ′| > f(Di−1), then
F ′′ is a feedback vertex set of D − {r′} and |F ′′| > f − 1. Thus, |F | = |F ′| + |F ′′| >
f(Di−1) + 1 + f − 1 = f + if . Finally, note that if the bad set R of D is contained in F ′′,
then |F ′′| > f and F cannot be optimal. Thus, Ri = R is a bad set for Di.

When R is minimal (inclusion-wise), then taking a minimum feedback vertex set F ′

(of size f(Di−1)) of Di−1 and a minimum feedback vertex set F ′′ (of size f) disjoint from
F ′ of (D − {r′}) ∪ {r} where r is the unique vertex in R \ F ′ results in F = F ′ ∪ F ′′, a
feedback vertex set of size f(Di−1) + f = f + if of Di.

Let k = degRL(D,R, r′). Since Dr′×|R| has a S-last k-elimination ordering, where
Dr′×|R| = (V ′, A) is the (directed) graph obtained from D by replacing r′ by a stable set
S of size |R| each of whose vertices is connected to D the same way as r′. This means
that in Di we can eliminate the vertices from right to left, i.e, starting with the vertices
of last added copy D − {r′}. The fact that every neighbor of r′ in D now instead has
|R| neighbors in Di−1 is accounted by replacing r′ by a stable set S of size |R| in Dr′×|R|.
After eliminating D − {r′}, we iterate the argument with Di−1.

The same argument, works for the claim on the treewidth. The fact that R is a clique
of D, is propagated through the construction, i.e., Ri−1 is a clique of Di−1. Now, if we have
the chordal N [S]-last k-elimination ordering of D′r′×|R|, this yields a k-chordal elimination

ordering of Di, where we start with D−{r′}. In particular, since the ordering is N [S]-last
and S is a clique that is contained in the neighborhood of all v ∈ N [S] we can assume,
that an optimal N [S]-last elimination ordering first removes N [S] \ S and then S. This
allows to create the chordal elimination ordering for Di.

This construction with R an edge and D being a directed triangle led to the examples
in [8].

Observation 10. By Proposition 9, if we have a building block (D,R, r′) with right-left-

degeneracy k = degRL(D,R, r′), then we obtain directly the lower bound f > f(D)
n(D)−1 for

the class of graphs of degeneracy k.

3 Undirected graphs

In this section we only consider undirected graphs. We begin by giving the known and
the easy results in a bit more detail. The acyclic chromatic number of a graph G is the
smallest ` such that G has a proper `-coloring such that every cycle has at least 3 colors.
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In [6] it is shown that the acyclic chromatic number of a graph of treewidth k is at most
k + 1, and this is used to show that:

Proposition 11 ([6]). Let G be a graph of treewidth k. Then f(G) 6 k−1
k+1

n(G). Moreover,

for every k there are graphs of treewidth k with f(G) = k−1
k+1

n(G).

Thus, the case of bounded treewidth is solved for undirected graphs. However, in [9] it
is shown that the acyclic chromatic number is unbounded on the class of graphs of bounded
degeneracy. Hence, the strategy of [6] cannot work on this larger class. However, the same
upper bound as in Proposition 11 is tight for odd degeneracy:

Proposition 12. Let G be a graph of degeneracy k. Then f(G) 6 k−1
k+1

n(G) if k is odd

and f(G) 6 k
k+2

n(G) if k is even.

Proof. Along a k-elimination ordering φ of G one can inductively construct a coloring of
V into dk+1

2
e induced forests. Indeed, remove the right-most vertex v in the ordering,

color by induction, re-introduce v. Since dp(v) 6 k, one color c is used at most once in
the neighborhood of v, and v can be coloured c to extend the forest of color c. Now, the
union of any dk+1

2
e − 1 of the constructed forests is a feedback vertex set. Distinguishing

the parity of k, we get the claimed upper bounds.

So, the remainder of this section is about the highest ratio of minimum feedback vertex
set and order on graphs of even degeneracy k. From Propositions 11 and 12 we know that
this value lies between k−1

k+1
and k

k+2
.

A reason to believe that none of both bounds is tight, is the case k = 2. It is shown
in [3] that any graph G of degeneracy 2 has f(G) 6 2

5
n(G) and there are infinitely many

2-degenerate graphs attaining this bound. The following presents a first construction
showing, that the lower bound of k−1

k+1
is not tight. Note that for k = 2, the construction

coincides with the 2-degenerate graph given in [3].

Proposition 13. For every even k > 2 there is a graph G with deg(G) 6 k, n(G) =
(k+2)k

2
+ 1 and f(G) = k2

2
.

Kk+1 K2k+1 K2k+1 K2k+1

K k
2+1

Kk+1 Kk+1 Kk+1

Figure 3: Constructing graphs of even degeneracy k, order (k+2)k
2

+ 1, and minimum

feedback vertex set k2

2
.
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Proof. See Figure 3 for a construction of G. We take ` = k
2

disjoint copies of complete
graph Kk+1 on vertex set [k + 1]× [`], and one K`+1 on vertex set [` + 1]. Add all edges
from [k] × [i] to i for all i ∈ [`] – these are the grey edges in Figure 3. Further, add all
edges from (k + 1, i) to j for all 1 6 i < j 6 `+ 1 – these are the blue edges in Figure 3.

First, note that n(G) = `(k + 1) + ` + 1 = (k+2)k
2

+ 1. Second, let us show that one
cannot build an optimal feedback vertex set of G by choosing an optimal feedback vertex
set in each of the cliques. Indeed, note that for any edge ij ∈ K`+1 there is one of the
(k + 1)-cliques that is entirely contained in N({i, j}). Thus, if we are optimum in K`+1,
then an edge ij still remains after removing a feedback vertex. But then, if also an edge
remains in the (k + 1)-clique contained in N({i, j}), the remaining graph contains a C3

or a C4. Hence, we need at least one vertex more than choosing an optimum feedback
vertex set for each of the cliques. This yields that f(G) > `(k − 1) + (`− 1) + 1 = k2

2
as

` = k
2
.

Third, let us prove deg(G) 6 k. Note that vertex ` + 1 has ` neighbors in its clique
and one neighbor in each of the ` cliques of order k+ 1. We thus can remove `+ 1. Now,
the vertex (k + 1, `) has degree k and can be removed. Now, all remaining vertices of
[k + 1] × {`} have degree k and can be removed one after the other. Now, we remove
vertex ` and continue similarly to remove all vertices.

We now present a construction, that for large enough n improves on the one from
Proposition 13.

Theorem 14. For every even k there exists a family of k-degenerate graphs (Gi)i∈N such
that n(Gi) = 3k+6

2
+ i3k+4

2
and f(Gi) = 3k−2

2
+ i3k−2

2
.

R

Kk+1

r′

K k
2
+2

k
2
vertices

k
2
+ 1 vertices

Figure 4: Graph G0 of even degeneracy k, order 3k+6
2

, and minimum feedback vertex set
3k−2
2

.

Proof. See Figure 4 for a construction of G0. We take two disjoint complete graphs:
Kk+1 and K k

2
+2 on vertex set [3k+6

2
]. Let [k + 1] be the vertex set of the first clique and

[k + 2; 3k+6
2

] be the vertex set of the second. Add all edges from [k+2
2

] to k + 2 and from
[k+4

2
; k + 1] to k + 3. Since G0 can be partitioned into two disjoint cliques, a minimum

feedback vertex set of G0 must contain two disjoint optimal feedback vertex sets, one for
each clique: the first F ′ of size k − 1 for Kk+1 and the second F ′′ of size k

2
for K k

2
+2.

Thus, f(G0) > k − 1 + k
2

= 3k−2
2

. Observe that, if F ′′ contains k + 2 (resp. k + 3) and F ′
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contains all of the neighbors of k + 3 (resp. k + 2), then F ′ ∪ F ′′ is a minimum feedback
vertex set of G0, so f(G0) = 3k−2

2
.

Let R = [k+ 4; 3k+6
2

] and observe that R is bad. Indeed, R does not contain k+ 2 nor
k+3, R is contained in the clique of order k

2
+2 and |R| = k

2
. Similar to the construction in

Figure 3, N({k+2, k+3}) contains the whole clique of order k+1 so an optimal feedback
vertex set for Kk+1 of size k−1 would leave a triangle or a 4-cycle behind. Thus, a feedback
vertex set of G0 containing R would have size at least k

2
+ k − 1 + 1 = 3k

2
> f(G0).

As observed previously, a minimum feedback vertex set F ′′ of K k
2
+2 that contains

k + 2 or k + 3 along with a corresponding minimum feedback vertex set F ′ of Kk+1

form a minimum feedback vertex set of G0. Therefore, for every v ∈ R, the set F ′′ =
(R \ {v}) ∪ {k + 2} has size k

2
and is such a minimum feedback vertex set. Thus, R is

minimal (inclusion-wise).
Let r′ = k + 2 and apply Proposition 9 on the triplet (G0, R, r

′). We obtain a family
of graphs (Gi)i∈N such that n(Gi) = 3k+6

2
+ i3k+4

2
and f(Gi) = 3k−2

2
+ i3k−2

2
since R is

minimal. Now, it suffices to prove that degRL(G0, R, r
′) 6 k to show that graphs of this

family are k-degenerate. Consider the following elimination ordering of (G0)r′×|R| where
we replace r′ with a stable set S of size |R| where every vertex of S is connected to every
vertex of N(r′):

• Start by removing vertices of R - each has degree k
2

+1+ |R|−1 = k
2

+1+ k
2
−1 = k.

• Then, remove k + 3 which now has degree k
2

+ 1 + |R| − 1 = k.

• Afterwards, remove vertices of N(k+3), each being of degree at most k at this step.

• Now, remove the vertices of N(S), each of them being of degree k at this step.

• Finally, remove the independent set S.

The above is an S-last k-elimination ordering of (G0)r′×|R|, which concludes our proof.

Theorem 14 shows that, for every ε > 0, there exists a k-degenerate graph on nε
vertices for which f > 3k−2

3k+4
nε − ε. We are not able to prove an asymptotically stronger

upper bound than what is provided by Proposition 12. However, we know that this bound
cannot be attained with equality:

Proposition 15. Let G be a graph of even degeneracy k. Then f(G) < k
k+2

n(G).

Proof. Suppose to the contrary that G with f(G) = k
k+2

n(G) exists. Note that the graph
G+ obtained from G by adding an apex has odd degeneracy k + 1 and therefore by

Proposition 12, we have f(G+)
n(G+)

= f(G+)
n(G)+1

6 k
k+2

. This implies f(G+) = f(G). Thus, in G

there must be a minimum feedback vertex set F such that G+ − F has no cycle, in other
words every cycle involving the apex in G+ must intersect F . This means V (G−F ) is an
independent set. But then F was not minimum for G since G− (F \ {v}) is a star forest
for any v ∈ F , i.e., F \ {v} is a smaller feedback vertex set of G.
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4 Directed graphs

In this section, we consider only directed graphs. The first part will be dedicated to
the class of graphs with bounded degeneracy k. We start by showing that a minimum
feedback vertex set f of a directed graph of order n is at most k−1

k+1
n. Then we show some

constructions with low degeneracy and high f
n

ratio. In the second part, we concentrate on
the subclass of graphs with bounded treewidth k where the additional structure allows an
improvement on the upper bound of f to k

k+3
n. We will also show a general construction

that improves previously known lower bounds for f for any value of k.

4.1 Degeneracy

We start with a simple property on maximal k-degenerate graphs.

Lemma 16. There are no two adjacent k-vertices in a maximal k-degenerate graph with
at least k + 2 vertices.

Proof. Suppose by contradiction that u and v are two adjacent k-vertices in G, a maximal
k-degenerate graph with at least k + 2 vertices. Observe that, by definition, dp(v) =
min(k, φ(v)− 1) for every v ∈ V (G) in any ordering that achieves the property of being a
maximal k-degenerate graph. Thus the first k+1 vertices always form a clique. Moreover,
for a k-vertex x ∈ V (G), we can always take an ordering and move x to the last position
to obtain another valid ordering.

Thus, we can assume w.l.o.g. that there exists φ a k-elimination ordering of G such
that φ(u) < φ(v) and φ(v) = |V (G)|. We have d(u) = dp(u) + ds(u) > dp(u) + 1, so
dp(u) 6 k − 1. Since dp(u) = min(k, φ(u)− 1), we get φ(u) 6 k. So, u has k neighbors in
the first k+ 1 vertices which form a clique. These neighbors are all different from v since
G has at least k + 2 vertices and v is the last vertex in φ. This is a contradiction as u is
a k-vertex.

Theorem 17. Let D be a k-degenerate directed graph, we have f(D) 6 k−1
k+1

n(D).

Proof. Observe that we already have this bound for k odd from the undirected case (see
Proposition 12). So, we will prove Theorem 17 for k even. Suppose that D is a counter-
example minimizing the number of vertices and maximizing the number of edges. If
n(D) 6 k + 1, then any set of vertices of size n(D)− 2 (6 k−1

k+1
n(D)) is a feedback vertex

set of D. If n(D) > k + 2, then D contains a k-vertex since it is edge-maximal.
First, we show that δ−(D) > k

2
and δ+(D) > k

2
. W.l.o.g. suppose by contradiction

that there exists u for which d−(u) 6 k
2
− 1 since k is even. Let D′ = D− (N−(u)∪ {u}),

we have f(D′) 6 k−1
k+1

n(D′) = k−1
k+1

(n(D) − (d−(u) + 1)) by minimality of D. Take an
optimal feedback vertex set F of D′. Then F ∪ N−(u) is a feedback vertex set of D
while |F ∪ N−(u)| = f(D′) + d−(u) 6 k−1

k+1
(n(D) − (d−(u) + 1)) + d−(u) = k−1

k+1
n(D) +

−(k−1)(d−(u)+1)+(k+1)d−(u)
k+1

= k−1
k+1

n(D)+ 2d−(u)+1−k
k+1

. As 2d−(u)+1−k
k+1

< 0 (since d−(u) 6 k
2
−1),

we know that |F ∪N−(u)| < k−1
k+1

n(D), which is a contradiction. As a result, for every k-

vertex u, we have k = d−(u)+d+(u) > δ−(D)+δ+(D) > k. Therefore, d−(u) = d+(u) = k
2
.
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Now, we proceed as follows:
Case 1: D contains two k-vertices sharing at least one neighbor. Let u and v be the

two k-vertices and w be adjacent to u and v. If w ∈ N−(u) (resp. N+(u)), then we
remove N−(u) (resp. N+(u)) from D. We do the same if w ∈ N−(v) (resp. N+(v)), we
also remove u and v from D and call the resulting graph D′. Since N−(u), N+(u), N−(v),
and N+(v) all have size k

2
, we have n(D′) > n(D)−2 · k

2
+1−2 = n(D)− (k+1). Take an

optimal feedback vertex set F ′ of D′ to which we add every vertex removed from D except
for u and v. We call the resulting set F . The set F is a feedback vertex set of D as each
of u and v has become a source or a sink in D−F and |F | = f(D′) +n(D)−n(D′)− 2 6
k−1
k+1

n(D′) + n(D)− n(D′)− 2 = n(D)− 2
k+1

n(D′)− 2. Since n(D′) > n(D)− (k + 1), we

get |F | 6 n(D)− 2
k+1

n(D′)− 2 6 k−1
k+1

n(D), which is a contradiction.
Case 2: D contains a k-vertex adjacent to a (k + 1)−-vertex. Let u be the k-vertex

and v be its (k + 1)−-neighbor. Observe that since D is edge-maximal, v must be a
(k + 1)-vertex by Lemma 16. W.l.o.g. we assume that the arc between u and v is (v, u).
Since δ−(D) > k

2
, δ+(D) > k

2
, and d(v) = k + 1, we must have either d−(v) = k

2
or

d+(v) = k
2
. If d−(v) = k

2
(resp. d+(v) = k

2
), then let D′ = D − (N−(v) ∪ N−(u) ∪ {u})

(resp. D′ = D−(N+(v)∪N+(u)∪{v})). We have n(D′) > n(D)−2· k
2
−1 = n(D)−(k+1).

Take an optimal feedback vertex set F ′ of D′ to which we add every vertex removed from
D except for u and v. The resulting set F is a feedback vertex set of D since the arcs
between {u, v} and the rest of D−F form a directed cut. Moreover, the same calculations
as in Case 1 yield |F | 6 k−1

k+1
n(D), which is a contradiction.

Since by Lemma 16, no two k-vertices in D are adjacent, this covers all cases. Indeed,
otherwise after removing all k-vertices from D, we obtain a graph with minimum degree
at least k + 1, contradicting that D is k-degenerate.

The bound in Theorem 17 is tight for k = 2 e.g. a directed triangle. However, for
greater values of k, we show that this bound is never reached when k is odd.

Proposition 18. Let D be a directed graph of odd degeneracy k > 3, we have f(D) <
k−1
k+1

n(D).

Proof. Take a counter-example D to Proposition 18 minimizing the number of vertices
and maximizing the number of edges. In other words, we have an odd integer k such that
D is k-degenerate and f(D) > k−1

k+1
n(D). Observe that n(D) > k + 1, as otherwise for

any set of vertices of size n(D)− 2 (< k−1
k+1

n(D) as n(D) < k+ 1) is a feedback vertex set
of D.

Since D is an edge-maximal k-degenerate graph of order at least k + 1, there exists
a vertex u of degree k. Consider the integer l = k−1

2
. W.l.o.g. we can assume that

d−(u) 6 d+(u). Since d−(u) + d+(u) = k = 2l + 1, we have d−(u) 6 l. Let D′ =
D − (N−(u) ∪ {u}), we have f(D′) < k−1

k+1
n(D′) = l

l+1
n(D′) by minimality of D. Take an

optimal feedback vertex set F of D′. Then, F ∪N−(u) is a feedback vertex set of D while
|F ∪N−(u)| = f(D′) + d−(u) < l

l+1
n(D′) + d−(u) = l

l+1
(n(D)− (d−(u) + 1)) + d−(u) =

l
l+1
n(D) + −l(d−(u)+1)+(l+1)d−(u)

l+1
= l

l+1
n(D) + d−(u)−l

l+1
. As d−(u)−l

l+1
6 0 (since d−(u) 6 l), we

get |F ∪N−(u)| < f(D), which is a contradiction.
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Proposition 18 is optimal for k = 3 since the construction from [8] shows that for every
n, there exists a 3-degenerate graph with a feedback vertex set of size at least bn−1

2
c.

In the following table, we present some constructions, most of which use Proposition 9
to obtain good ratios for the minimum feedback vertex sets over number of vertices for
graphs with low degeneracy.

degeneracy building blocks for the lower bound using Proposition 9 lower bound
upper bound
(Theorem 17)

3 directed triangle on 1, 2, 3, R = {1, 2}, r′ = 3 (as in [8]) 1
3
−→ 1

2
1
2

4 Figure 5a, R = {0, 1}, r′ = 2 5
10
−→ 5

9
3
5

5 Figure 5b, R = {0, 1, 6}, r′ = 7 4
8
−→ 4

7
2
3

6 Figure 5c, R = {1, 6, 8}, r′ = 10 7
12
−→ 7

11
5
7

8 Figure 5d, R = {6, 7, 8}, r′ = 0 6
10
−→ 6

9
7
9

11 Figure 5e, R = {0, 1, 4, 8}, r′ = 2 7
11
−→ 7

10
5
6

Table 1: Lower and upper bounds for largest ratio f
n

in digraphs with low degeneracy.

(a) deg = 4, f = 5, n = 10,
R = {0, 1}, r′ = 2, degRL = 4.
digraph6 encoding string: IWWc?gbBAGET?W @‘O

(b) deg = 4, f = 4, n = 8,
R = {0, 1, 6}, r′ = 7, degRL = 5.
digraph6 encoding string: GDgJDW]@OI?o
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(c) deg = 6, f = 7, n = 12,
R = {1, 6, 8}, r′ = 10, degRL = 6.
digraph6 encoding string:
K]OL@DhAtH[ccOGGMtCw‘B? Q

(d) deg = 7, f = 6, n = 10,
R = {6, 7, 8}, r′ = 0, degRL = 8.
digraph6 encoding string:
IQ lhcpGUiM[OWy@\\?

(e) deg = 9, f = 7, n = 11,
R = {0, 1, 4, 8}, r′ = 2, degRL = 11.
digraph6 encoding string:
JTc\\c\\ \\g\\g\\G\\G^GRGZG?

Figure 5: Building blocks for Proposition 9 with low degeneracy and large minimum
feedback vertex set.
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4.2 Treewidth

Before showing the upper bound in Theorem 23, we give some simple lemmas and obser-
vations. First, by Theorem 4, we know that

Observation 19. Any set of four vertices of a directed graph contains an acyclic subset
of size 3.

Lemma 20. If G is a k-tree with at least k + 4 vertices, then there are no two adjacent
(k + 1)-vertices such that each of them is adjacent to a k−-vertex.

Proof. Suppose there exist two such vertices v and w and call their respective k−-neighbors
v′ and w′. Observe that G−{v′, w′} is a k-tree with at least k+2 vertices and two adjacent
k−-vertices v and w, which is a contradiction due to Lemma 16.

Lemma 21. In a k-degenerate graph G there exists an integer l > 1 and a (k + l)-vertex
v, such that v has at least l k−-neighbors. Moreover, if G is a k-tree, then v has exactly
l k-neighbors.

Proof. Let G be a k-degenerate graph and consider H = G − {u|d(u) 6 k}. Suppose
by contradiction that for all l > 1, every (k + l)-vertex v ∈ V (G) has at most l − 1
k−-neighbors. As a result, every vertex in H has degree at least k + l − (l − 1) = k + 1,
which is a contradiction since H is a k-degenerate graph. Now if G is a k-tree, then so is
H. Thus, if v has more than l k-neighbors in G, then v would be of degree at most k− 1
in H, which is a contradiction.

Lemma 22. Let G be a k-tree. If u is a k-vertex, then N(u) ⊆ N [v] for every v neighbor
of u.

Proof. Let u be a k-vertex and v ∈ N(u). Since G is a k-tree, N(u) is a k-clique. As a
result, every neighbor of u is a neighbor of v. In other words, N(u) ⊆ N [v].

Theorem 23. If G is a directed graph of treewidth k, then f(G) 6 k
k+3

n(G).

Proof. First, observe that for k = 1, G is a tree so f(G) = 0. As for k = 2 (resp. 3), we
have proven that f(G) 6 1

3
n 6 2

5
n (resp. f(G) 6 2

4
n = 3

6
n) in Theorem 17 as G is also

k-degenerate. Therefore, we only need to prove Theorem 23 for k > 4.
We proceed by induction on n = n(G).

Base case: We are going to prove that for every 0 6 n 6 k+ 6, there exists a minimum
feedback vertex set F such that |F | 6 k

k+3
n.

For 0 6 n 6 3, we always have |F | 6 1 with equality if and only if G is a directed
triangle. As a result, we always have |F | 6 k

k+3
n for k > 4.

For 4 6 n 6 k + 3, by Observation 19 we have |F | 6 n − 3. Since n − 3 − k
k+3

n =

3 n
k+3
− 3 = 3( n

k+3
− 1) 6 0, we get |F | 6 k

k+3
n.

For bigger tournaments, by Corollary 6 we get the following:

• For n = k + 4, |F | 6 n− 4 = k
k+4

n 6 k
k+3

n since k > 4.
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• For n = k + 5, |F | 6 n− 4 = k+1
k+5

n 6 k
k+3

n since k > 4.

• For n = k + 6, if 4 6 k 6 5, then we checked by computer that directed k-trees on
10 (resp. 11) vertices have minimum feedback vertex sets of size at most 5 (resp. 6)
which gives |F | 6 n− 5 = k+1

k+6
6 k

k+3
.

If k > 6, then |F | 6 n− 4 = k+2
k+6

n 6 k
k+3

n.

Induction: Suppose that n > k + 7.
For each case, we will define a subgraph H of G to which we will apply our induction
hypothesis. Observe that in the following, we will never remove more than k + 7 vertices
at a time, thus, our base case along with the induction hypothesis will suffice to prove
our theorem.

Observe that when G is a partial k-tree, we can add edges to G to obtain a k-tree G′

and f(G) 6 f(G′) because a feedback vertex set of G′ is also a feedback vertex set of G.
Thus, from now on, we can assume that G is a k-tree.

By Lemma 21, there exists an integer l > 1 and a (k + l)-vertex v such that v has
exactly l k-neighbors u1, u2, . . . , ul since G is a k-tree. In the following cases, F will always
denote a minimum feedback vertex set.

Case 1: l > 2
Consider H = G−(NG[v]\{u3, . . . , ul}). Now, let F (G) = F (H)∪(NG[v]\{v, u1, . . . , ul}).
Observe that G − F (G) = (H − F (H)) ∪ {v, u1, u2} so we have an acyclic set and a
path on three vertices remaining due to Lemma 22 and Lemma 16. Moreover, |F (G)| =
|F (H)|+k+ l+1−(l+1) = k

k+3
(n−(k+ l+1−(l−2)))+k = k

k+3
(n−(k+3))+k = k

k+3
n.

NG[v] \
⋃

16i6l{ui} ⊇
⋃

16i6lNG(ui)

v

u1 u2 ul

Case 2: l = 1
Let Ik(G) = {x|dG(x) = k, xy ∈ E(G), dG(y) = k + 1}. Observe that Ik(G) 6= ∅ since
l = 1. We define G′ = G − Ik(G). By applying Lemma 21 to G′, there exists an integer
l′ > 1 and a (k + l′)-vertex v′ such that v′ has exactly l′ k-neighbors u′1, u

′
2, . . . , u

′
l′ in G′

since G′ is a k-tree. Observe that there exists 1 6 j 6 l′ such that u′j has a neighbor in
Ik(G). Otherwise dG(u′j) = k and u′j /∈ Ik(G) for every 1 6 j 6 l′ and thus we get Case
1 with l = l′ and v = v′. Let uj be the neighbor of u′j in Ik(G) when it exists. Suppose
w.l.o.g. that u1 exists.
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Case 2.1: l′ > 3
Consider H = G− (NG[v′] \ {u′4, . . . , u′l′ , u4, . . . , ul′}). Now, let F (G) = F (H)∪ (NG′ [v

′] \
{u′1, . . . , u′l′}). Observe that G− F (G) = (H − F (H)) ∪ {u′1, u′2, u′3, u1, u2, u3} so we have
an acyclic set and a forest remaining due to Lemma 22, Lemma 16, and Lemma 20.
Moreover, |F (G)| = |F (H)|+ k + 1 6 k

k+3
(n− (k + 1 + 4)) + k + 1 = kn+3−k

k+3
6 k

k+3
n for

k > 4.

NG′ [v
′] \

⋃
16j6l′{u′j} ⊇

⋃
16j6l′ NG({u′j, uj})

v′

u′1 u′2 u′3 u′l′

u1 u2 u3 ul′

Case 2.2: l′ = 2
If u2 exists, then observe that by defining H and F (G) the same way as previously, the
upper bound on |F (G)| still holds and we have the same desired properties. So, suppose
that u2 does not exists. Since |NG′ [v

′] \ {u′1, u′2}| = k + 1 and dG′(u
′
1) = k, there exists

w′ ∈ (NG′ [v
′]\{u′1, u′2})\NG′(u

′
1). Now, consider H = G− (NG[v′]\{w′}) and let F (G) =

F (H) ∪ (NG[v′] \ {w′, u′1, u′2, u1}). Observe that G − F (G) = (H − F (H)) ∪ {u′1, u′2, u1}
so we have an acyclic set to which we might attach a 1-vertex u′2 and a path due to
Lemma 16. Moreover, |F (G)| = |F (H)|+ k = k

k+3
(n− (k + 3)) + k = k

k+3
n.

NG′ [v
′] \ {u′1, u′2} ⊇ NG({u′1, u′2, u1})

v′ w′ (u′1w
′, u1w

′ /∈ E(G))

u′1 u′2

u1

Case 2.3: l′ = 1
Let Ik(G

′) = {x′|dG′(x′) = k, x′y′ ∈ E(G′), dG′(y
′) = k+1}. Observe that Ik(G

′) 6= ∅ since
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l′ = 1. We define G′′ = G′− Ik(G′). By applying Lemma 21 to G′′, there exists an integer
l′′ > 1 and a (k + l′′)-vertex v′′ such that v′′ has exactly l′′ k-neighbors u′′1, u

′′
2, . . . , u

′′
l′′ in

G′′ since G′′ is a k-tree. Observe that there exists 1 6 j 6 l′′ such that u′′j has a neighbor
u′j in Ik(G

′) and u′j has a neighbor uj in Ik(G). Otherwise, we would get Case 2.1 or
Case 2.2. Suppose w.l.o.g. that u′1 and u1 exists. For each 1 6 j 6 l′′ such that u′j and
uj exists, we define vj ∈ {v′′, u′′j , u′j, uj} as the vertex, such that {v′′, u′′j , u′j, uj} \ {vj} do
not form a directed triangle, which exists thanks to Observation 19.

Case 2.3.1: l′′ > 2
Consider H = G − (NG[v′′] \ {u′′3, . . . , u′′l′′ , u′3, . . . , u′l′′ , u3, . . . , ul′′}). Now, let F (G) =
F (H) ∪ {v1, v2} ∪ (NG′′(v

′′) \ {u′′1, . . . , u′′l′′}). Observe that G − F (G) = (H − F (H)) ∪
(
⋃2
j=1{v′′, u′′j , u′j, uj} \ {vj}) so we have two acyclic sets remaining due to Lemma 22,

Lemma 16, Lemma 20 and the choices of the vj’s. Let i (= 1 or 2) be the number of vj’s
that exists for 1 6 j 6 2. We have |F (G)| = |F (H)|+k+i 6 k

k+3
(n−(k+1+2i+2))+k+i =

kn+(3−k)i
k+3

6 k
k+3

n for k > 4.

NG′′ [v
′′] \

⋃
16j6l′′{u′′j} ⊇

⋃
16j6l′′ NG({u′′j , u′j, uj})

v′′

u′′1 u′′2 u′′l′′

u′1 u′2 u′l′′

u1 u2 ul′′

Case 2.3.2: l′′ = 1
Since |NG′′ [v

′′]\{u′′1}| = k+1 and dG′′(u
′′
1) = k, there exists w′′ ∈ (NG[v′′]\{u′′1})\NG(u′′1).

Recall that v1 ∈ {v′′, u′′1, u′1, u1} is such that {v′′, u′′1, u′1, u1}\{v1} does not form a directed
triangle.

Now, considerH = G−(NG[v′′]\{w′′}). Let F (G) = F (H)∪{v1}∪(NG′′(v
′′)\{w′′, u′′1}).

Observe that G−F (G) = (H −F (H))∪ ({v′′, u′′1, u′1, u1} \ {v1}) so we have an acyclic set
by definition of v1. Moreover, |F (G)| = |F (H)|+ k = k

k+3
(n− (k + 3)) + k = k

k+3
n.
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NG′′ [v
′′] \ {u′′1} ⊇ NG({u′′1, u′1, u1})

v′′

u′′1

w′′ (u′′1w
′, u′1w

′′, u1w
′′ /∈ E(G))

u′1

u1

This upper bound is tight for graphs of treewidth 3 as shown by the construction in [8].
Now, let us show some constructions improving the currently known lower bounds for

directed graphs with bounded treewidth k from Corollary 6 and Corollary 7.

Lemma 24. Let D = (V,A) be a directed graph and RD be a (inclusion-wise) minimal
bad set of D. Let D′ = (V ′, A′), where V ′ = V ∪ {r1, r2} and A′ = A ∪ {(r1, r2)} ∪
{(v, r1), (r2, v)|v ∈ RD}, then n(D′) = n(D) + 2, f(D′) = f(D) + 1, and {r1, r2} is a
minimal bad set of D′.

Proof. We build D′ by applying Proposition 8, where D0 is a directed triangle, D1 = D,
R1 = RD, D2 and D3 are isolated vertices, R2 = D2 and R3 = D3. According to
Proposition 8 R = {r1, r2} is a minimal bad set of D′ since any couple of vertices of D0

is a minimal bad set of D0.

Theorem 25. For every k, there exists a family of directed graphs (Di)i∈N of treewidth
k, such that n(Di) = k + 2 + i(k + 1) and f(Di) > (i+ 1)(k − 2blog(k)c).

Proof. See Figure 6. Let D be a tournament of order k with f(D) > k − 2blog(k)c − 1
from Corollary 7. We build D′ by Lemma 24 and we know that R = {r1, r2} is a bad set in
D′ and N(R) is a minimal bad set in D. By Lemma 24 we also know that |N(R)| 6 k−1,
n(D′) = k + 2 and f(D′) > k − 2blog(k)c. Take r′ to be any vertex of D′ −N [R] (which
exists since |V (D′−N [R])| > k+2− (k+1) = 1) and apply Proposition 9 to (D′, R, r′) to
obtain the family of graphs (Di)i with the desired n(Di) and f(Di). As for its treewidth,
first observe that D′ is chordal and {r1, r2} is a clique. Now the digraph D′r′×|R|, obtained

from D′ by replacing r′ with a clique S of order |R| = 2, has an N [S]-last chordal k-
elimination ordering. This is because {r1, r2} has degree at most k − 1 in D′r′×|R| and

|N [S]| = k − 1 + 2 = k + 1.
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N(R)
D

r1

r2

Figure 6: Building block for Theorem 25 where D is a tournament on k vertices with
f(D) > k − 2blog2(k)c − 1.

Theorem 25 shows that, for every ε > 0, there exists a graph of treewidth k on nε
vertices for which f > k−2blog2(k)c

k+1
nε− ε. This lower bound compared to f > k−2blog2(k+1)c

k+1
n

from Corollary 7, differs by 2
k2
n asymptotically for large values of k. Observe that this

bound also holds for 2 6 k 6 3 as it gives f > 0 for k = 2 and f > 1
4
n for k = 3.

Proposition 26. Given an integer k, a tournament D of order k+ 1, two integers l and
m > 1 such that 2m+ l = k+ 1, and a tournament D0 of size l+m, there exists a family
of directed graphs (Di)i∈N∗ of treewidth k such that

• n(Di) = (i+ 1)(k + 1) and f(Di) > f(D) + i(f(D0) + 1) for m = 1,

• n(Di) = mi(k + 1 + 2m+l
m−1 ) − 2m+l

m−1 and f(Di) > mi(f(D) + m+f(D0)
m−1 ) − m+f(D0)

m−1 for
m > 2.

Proof. Let k, l,m,D,D0 be defined as in the statement. Let T1, . . . , Tm be copies of D
and Im+1, . . . , Im+l be isolated vertices. For each Ti, we build Di by Lemma 24 to obtain
a minimal bad set Ri of size 2. For m + 1 6 i 6 m + l, let Di = Ri = Ii. It is easy to
see that f(Di) = 0, and that Ri is bad and minimal. By Proposition 8, we get a graph
of size m(k + 3) + l with a feedback vertex set of size m(f(D) + 1) + f(D0). We call this
graph D1. See Figure 7 for an example with k = 4, D a tournament on 5 vertices and
f(D) = 2 (by Corollary 6), D0 a directed triangle, l = 1, and m = 2.

We can repeat this construction by adding two vertices to D1 by Lemma 24 to obtain
D′1. By taking the same D0, m copies of D′1, and l isolated vertices. We can apply
Proposition 8 once again. By doing these operations iteratively, we get a family of directed
graphs (Di)i∈N with order n(Di) = m · (n(Di−1) + 2) + l and a feedback vertex set of size
f(Di) = m · (f(Di−1) + 1) + f(D0). We get

• n(Di) = (i+ 1)(k + 1) and f(Di) > f(D) + i(f(D0) + 1) for m = 1,

• n(Di) = mi(k + 1 + 2m+l
m−1 ) − 2m+l

m−1 and f(Di) > mi(f(D) + m+f(D0)
m−1 ) − m+f(D0)

m−1 for
m > 2.

We claim that the constraint 2m + l = k + 1 ensures that there exists a chordal k-
elimination ordering of any Di. Indeed, it suffices to observe that there exists an R-last
chordal k-elimination ordering of a tournament of size k+ 1 with with two added vertices
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by Lemma 24. This means that we can start by removing every tournament glued to D0.
Then, since m vertices of D0, the tournament of size m + l, is replaced by R1, . . . , Rm

which are cliques of size 2, and the other l vertices remain single vertices, we also obtain
a tournament of size 2m + l = k + 1. Thus, we can continue this chordal k-elimination
ordering.

D1 = T1 ∪R1

D3 = R3 = I3

D2 = T2 ∪R2

Figure 7: Construction from Proposition 26 for treewidth 4, where D is a tournament
on 5 vertices and D0 is a directed triangle (the white vertices form a bad set of the
tournament).

Proposition 26 shows that, for every ε > 0, there exists a directed graph of treewidth
k on nε vertices with minimum feedback vertex set f such that:

f >
f(D) + m+f(D0)

m−1

k + 1 + 2m+l
m−1

nε − ε.

Recall that D has size k+ 1 = 2m+ l and D0 has size m+ l. So,
m+f(D0)

m−1
2m+l
m−1

= m+f(D0)
k+1

>
f(D)
k+1

since the minimum feedback vertex set increases by at most 1 when n increases by 1.

As a result, we always get a greater ratio than f(D)
k+1

since
m+f(D0)

m−1
2m+l
m−1

> f(D)
k+1
⇔ f(D)+

m+f(D0)
m−1

k+1+ 2m+l
m−1

>
f(D)
k+1

. The same also holds when we consider the case m = 1 of Proposition 26. Moreover,

taking tournaments from Corollary 7 of size k + 1 and m = k
2
, one can compute that

Proposition 26 yields a slightly better result than Theorem 25 with a difference of 4
k2
n

instead of 2
k2
n. The calculations are however tedious and we omit them here.

For smaller values of k, where we have the exact values of f(D) and f(D0), the dif-
ference between the ratio given by tournaments and this construction for graphs with
bounded treewidth is much more noticeable. In Table 2, for each treewidth k, we pro-
vide n(D), f(D), n(D0), f(D0), l, and m, as well as the lower bound on max{ f(H)

n(H)
:

H is a digraph of treewidth k} obtained by Proposition 26. We also include the lower
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bound obtained from tournaments by Corollary 6. Finally, in the last column, we indi-
cate the upper bound k

k+3
given by Theorem 23.

k n(D) f(D) n(D0) f(D0) l m
lower bound

by Corollary 6
lower bound

by Proposition 26
upper bound

by Theorem 23

4 5 2 3 1 1 2 2
5

1
2

4
7

5 6 3 3 1 0 3 1
2

5
9

5
8

6 7 4 3 1 0 3 4
7

3
5

6
9

7 7 4 7 4 6 1 4
7

5
8

7
10

8 7 4 7 4 5 2 4
7

5
8

8
11

9 10 6 7 4 4 3 6
10

19
30

9
12

10 11 7 7 4 3 4 7
11

29
44

10
13

11 12 8 7 4 2 5 8
12

41
60

11
14

12 13 9 7 4 1 6 9
13

55
78

12
15

13 13 9 13 9 12 1 9
13

5
7

13
16

14 13 9 13 9 11 2 9
13

5
7

14
17

15 13 9 13 9 10 3 9
13

5
7

15
18

16 17 12 13 9 9 4 12
17

49
68

16
19

17 18 13 13 9 8 5 13
18

11
15

17
20

18 19 14 13 9 7 6 14
19

85
114

18
21

19 20 15 13 9 6 7 15
20

53
70

19
22

20 21 16 13 9 5 8 16
21

43
56

20
23

21 22 17 13 9 4 9 17
22

7
9

21
24

22 23 18 13 9 3 10 18
23

181
230

22
25

23 24 19 13 9 2 11 19
24

35
44

23
26

24 25 20 13 9 1 12 20
25

241
300

24
27

25 26 21 13 9 0 13 21
26

137
169

25
28

26 27 22 13 9 0 13 22
27

143
175

26
29

27 27 22 27 22 26 1 22
27

23
28

27
30

28 27 22 27 22 25 2 22
27

23
28

28
31

29 27 22 27 22 24 3 22
27

23
28

29
32

30 27 22 27 22 23 4 22
27

23
28

30
33

31 27 22 27 22 22 5 22
27

23
28

31
34

32 33 27 27 22 21 6 27
33

163
198

32
35

33 34 28 27 22 20 7 28
34

197
238

33
36

Table 2: Lower and upper bounds for largest ratio f
n

in digraphs with low treewidth.

the electronic journal of combinatorics 29(4) (2022), #P4.16 23



The directed Ramsey number R(l) is the smallest integer such that all tournaments of
order R(l) contain a transitive subtournament (acyclic set) of order l, see [11]. We have
seen through computational experiments that for small values of k (k being the treewidth),
taking n(D0) to be the largest R(l) 6 k yields the best result with Proposition 26.
However, it is not clear that it is the best candidate in general.

5 Conclusion

We have presented upper and lower bounds for the minimum feedback vertex set in di-
rected and undirected graphs of bounded degeneracy or treewidth. In the undirected
setting, while constructing non-trivial lower bounds, we were not able to essentially im-
prove the easy upper bound for graphs of even degeneracy k. We suspect however that
this is possible.

Conjecture 27. There is an ε > 0 such that the size f of a minimum feedback vertex of
every n-vertex graph of even degeneracy k satisfies f 6 ( k

k+2
− ε)n.

In the directed setting, we obtained upper bounds for digraphs of bounded treewidth
and for digraphs of bounded degeneracy. We could however, not construct lower bounds
that significantly improve over the probabilistic arguments for tournaments due to [4].
We think that our results can be improved.

Conjecture 28. There is an ε > 0 such that for every n there exists an n-vertex digraph
of degeneracy k and minimum feedback vertex of size f satisfying f > k−(2−ε) log2(k+1)

k+1
n.
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