Crowns in linear 3-graphs of minimum degree 4

Alvaro Carbonero

Department of Combinatorics and Optimization University of Waterloo ON, Canada

ar2carbo@uwaterloo.ca

Willem Fletcher

Department of Mathematics and Statistics Carleton College Northfield, MN, USA

willemrfletcher@gmail.com

András Gyárfás

Alfréd Rényi Institute of Mathematics Budapest, Hungary

gyarfas.andras@renyi.hu

Jing Guo

Fakultät für Mathematik Universität Regensburg Regensburg, Germany

math.guoj@gmail.com

Rona Wang

Department of Mathematics Massachusetts Institute of Technology Cambridge, MA, USA

rona@mit.edu

Shiyu Yan

Department of Pure Mathematics and Mathematical Statistics University of Cambridge Cambridge, UK

math.shiyu.yan@gmail.com

Submitted: Feb 7, 2022; Accepted: Sep 27, 2022; Published: Oct 21, 2022 © The authors. Released under the CC BY-ND license (International 4.0).

Abstract

A 3-graph is a pair H=(V,E) of sets, where elements of V are called points or vertices and E contains some 3-element subsets of V, called edges. A 3-graph is called *linear* if any two distinct edges intersect in at most one vertex.

There is a recent interest in extremal properties of 3-graphs containing no *crown*, three pairwise disjoint edges and a fourth edge which intersects all of them. We show that every linear 3-graph with minimum degree 4 contains a crown. This is not true if 4 is replaced by 3.

Mathematics Subject Classifications: 05B07, 05C35, 05D05

1 Introduction

A 3-graph is a pair H = (V, E) of sets, where elements of V are called points or vertices and E contains some 3-element subsets of V, called edges. If not clear from the context, we use the notation V(H) and E(H) for V and E respectively. We restrict ourselves to the important family of linear 3-graphs where any two distinct edges intersect in at most one vertex. In the remainder of this paper we use the term 3-graph for linear 3-graph.

The number of edges containing a point $v \in V(H)$ is the *degree* of v and is denoted by d(v) or $d_H(v)$. We denote by $\delta(H)$ the minimum degree of H. Similar notations are used for graphs (2-uniform linear hypergraphs). We use [k] to denote $\{1, \ldots, k\}$.

Let F be a fixed 3-graph. A 3-graph, H, is called F-free if H has no subgraph isomorphic to F. The (linear) Turán number of F, $\exp(n, F)$, is the maximum number of edges in an F-free 3-graph on n vertices.

Turán and Ramsey numbers of several linear 3-graphs have been studied by Gyárfás and Sárközy [5] and the acyclic case by Gyárfás, Ruszinkó and Sárközy [6]. The behavior of $ex_{\ell}(n, F)$ is interesting even if F has three or four edges. A famous theorem of Ruzsa and Szemerédi [7] is that $ex_{\ell}(n, T) = o(n^2)$ if T is the triangle. For the Pasch configuration, P, $ex_{\ell}(n, P) = \frac{n(n-1)}{6}$ for infinitely many n since there are P-free Steiner triple systems (see [2]). For the fan, F, we have $ex_{\ell}(n, F) = \frac{n^2}{9}$ if n is divisible by 3 (see [4]). Figure 1 shows these 3-graphs (drawn with the convention that edges are represented as straight line segments).

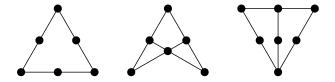


Figure 1: Triangle, Pasch configuration, and Fan

There is a recent interest in the Turán number of the *crown*, C (Figure 2).

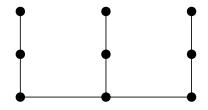


Figure 2: The crown C

The descriptive name crown was coined in [1], the list of small configurations in [2] refers to it as C_{13} . We call the horizontal edge of the crown the *base* and the vertical edges *jewels*.

The crown is the only 3-tree with at most four edges whose Turán number left open in [6] with the following bounds:

$$6\left|\frac{n-3}{4}\right| \leqslant \exp(n,C) \leqslant 2n. \tag{1}$$

The construction for the lower bound in (1) (for the case $n \equiv 3 \pmod{4}$) is the following. Choose three vertices $\{a, b, c\}$, and define edges

$$\{a, x_i, y_i\}, \{a, z_i, w_i\}, \{b, x_i, w_i\}, \{b, y_i, z_i\}, \{c, x_i, z_i\}, \{c, y_i, w_i\}$$

where $i = 1, 2, ..., \lfloor (n-3)/4 \rfloor$ and x_i, y_i, z_i , and w_i are distinct vertices.

In this construction, all but three vertices have degree 3. This poses the question whether raising the minimum degree of a 3-graph H from 3 to 4 ensures a crown. We prove in this note (extracted from [1]) that the answer is affirmative.

Theorem 1. Every 3-graph with minimum degree $\delta(H) \geqslant 4$ contains a crown.

The upper bound of (1) was first improved to $\frac{5n}{3}$ by Fletcher [3] then, with an essential new idea, Tang, Wu, Zhang and Zheng [8] proved that the lower bound is essentially best. Note that Theorem 1 does not follow from this, since minimum degree 4 ensures only $\frac{4n}{3} < \frac{3n}{2}$ edges.

In Sections 2 and 3 we define our tools. In Section 4 we prove Theorem 1.

2 Link graphs of edges with $D(e) = \langle 4, 4, 4 \rangle$

Definition 2 (Link graph of an edge). Assume that H is a 3-graph and $e = \{a, b, c\} \in E(H)$. The link graph, G(e), is the graph whose edges are the pairs $\{x, y\}$ for which there exists $\{x, y, z\} \in E(H)$ with $z \in \{a, b, c\}$. The set of vertices of G(e) is defined as the subset of V(H) covered by the edges of G(e).

A matching in a graph is a set of pairwise disjoint edges. An edge-coloring of a graph is proper if the edges in each color class form a matching. Note that Definition 2 provides a proper 3-coloring of the edges of G(e) with colors a, b, and c. We denote by $\varphi(x,y)$ the color of the edge $\{x,y\}$ in this coloring. Edges with colors a, b, and c will be labelled α , β , and γ , respectively and are colored blue, green and red in colored figures. Observe that a crown with base edge e exists in H if and only if G(e) has three pairwise disjoint edges with different colors, which we call a rainbow matching.

For $e = \{a, b, c\} \in E(H)$, let D(e) denote the degree vector $\langle d(a), d(b), d(c) \rangle$ with coordinates in non-increasing order.

Lemma 3. If a crown-free 3-graph H has an edge $e = \{a, b, c\}$ such that $D(e) = \langle 4, 4, 4 \rangle$, then G(e) is isomorphic (up to permutation of colors) to one of the five graphs in Figure 3.

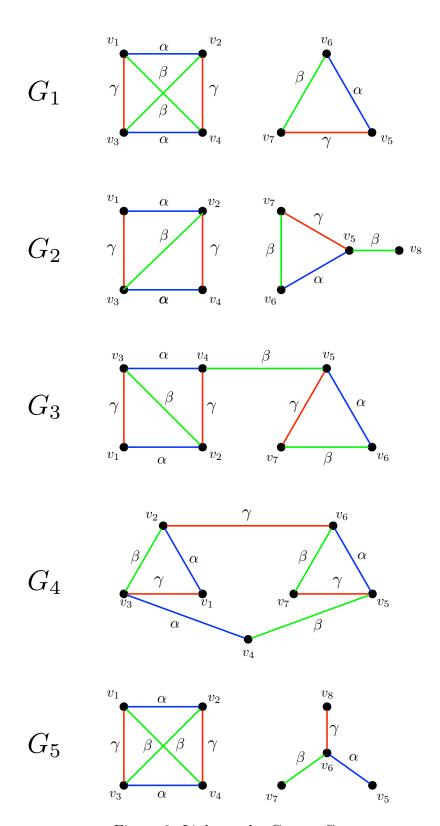


Figure 3: Link graphs G_1, \ldots, G_5

Proof. For $i \in [3]$, let M_i denote the vertex set of the matching of color a, b, and c in G(e), respectively. Observe that for all $i, j \in [3]$, where $i \neq j$, M_i must intersect all the three edges in M_j . Otherwise, there exists an edge $f \in M_j$ not intersecting M_i and an edge $g \in M_k$, for $k \neq i$ or j, such that $g \cap f = \emptyset$. Then f, g, and some edge in M_i is a rainbow matching.

First, we show that $|M_1 \cap M_2| > 3$. It follows from the previous observation that $|M_1 \cap M_2| \ge 3$. Assume for contradiction that $|M_1 \cap M_2| = 3$. Then $S = M_1 \cap M_2$ cannot contain an edge from $M_1 \cup M_2$, otherwise we get a contradiction with our observation. Thus, M_1 and M_2 are matchings from S to $M_1 \setminus S$ and from S to $M_2 \setminus S$, respectively, where $M_1 \setminus S$ and $M_2 \setminus S$ are disjoint. If $e \in M_3$, then $e \in S$ since otherwise e would be part of a rainbow matching. However, it is impossible for there to be three disjoint edges in S since |S| = 3 by assumption.

Now, suppose $|M_1 \cap M_2| = 4$. Then, in S there is one edge of M_1 and one edge of M_2 . If the two edges are disjoint, we have two disjoint α - β paths both with four vertices. One has two α -edges and one β -edge, and the other has the opposite. To avoid a rainbow matching, any γ -edge must intersect every edge in one of the paths. There are thus four possible locations for a γ -edge but any three of them gives G_2 , proving the lemma. On the other hand, if the two edges in S intersect, we will get a contradiction. Indeed, in this case, the edges of $M_1 \cup M_2$ form two disjoint, alternating α - β paths with three and five vertices, respectively. Following the paths, label the three vertices v_1 through v_3 , and the five vertices w_1 through w_5 . The only possible location for a γ -edge that does not intersect v_2 and would not form a rainbow matching is $\{w_2, w_4\}$. However, then at least two γ -edges must intersect v_2 , a contradiction.

We show that the next case implies that G(e) is isomorphic (up to permutation of colors) to one of the G_i 's.

Assume $|M_1 \cap M_2| = 5$. Then either $M_1 \cup M_2$ is an alternating α - β path on seven vertices, or it is a disjoint alternating α - β four-cycle and α - β path on three vertices.

In the former case, label the vertices v_1 through v_7 along the path. Then the possible γ -edges that don't create a rainbow matching are $\{v_1, v_3\}$, $\{v_1, v_6\}$, $\{v_2, v_4\}$, $\{v_2, v_6\}$, $\{v_2, v_7\}$, $\{v_4, v_6\}$, and $\{v_5, v_7\}$. Apart from the symmetry (reflection of a point of the path through v_4), the non-intersecting triples of these edges are

$$\{\{v_1, v_3\}, \{v_2, v_4\}, \{v_5, v_7\}\},$$
$$\{\{v_1, v_3\}, \{v_2, v_6\}, \{v_5, v_7\}\}, \{\{v_1, v_3\}, \{v_2, v_7\}, \{v_4, v_6\}\}.$$

The first triple gives G_3 , and the last two triples give G_4 .

In the latter case denote the alternating four-cycle and the alternating path by C_4 and P_3 , respectively.

When G(e) is disconnected, at least one γ -edge has to intersect C_4 , otherwise all three γ -edges intersect P_3 , which clearly results in a rainbow matching. Moreover, both vertices of such a γ -edge must intersect C_4 , otherwise, this γ -edge together with two disjoint α - β paths contains a rainbow matching. Therefore, there are two ways of placing a γ -edge in C_4 . If a γ -edge intersects P_3 , it must intersect both edges of P_3 , extending P_3 to either a

triangle or to a four-edge star. If only one γ -edge intersects C_4 and two intersect P_3 , we obtain G_2 . If two γ -edges intersect C_4 and only one intersects P_3 , it gives either G_1 or G_5 .

When G(e) is connected, some γ -edge connects C_4 and P_3 . Observe that such a γ -edge has to intersect both edges in P_3 . The only possibility for the remaining two γ -edges is that one is a diagonal of C_4 and the other extends P_3 to a triangle. This gives G_3 .

Lastly, suppose $|M_1 \cap M_2| = 6$. Then $M_1 \cup M_2$ is an alternating α - β six-cycle. Any γ -edges intersecting the cycle in at most one vertex or along a long diagonal are in rainbow matchings. However, at most two γ -edges can be short diagonals without intersecting, which is a contradiction thus concludes the proof.

3 Good quintuple lemma

As shown in Section 2, it is easy to recognize a crown with base edge e: We have to find a rainbow matching in G(e). To recognize other crowns related to G(e), we introduce the following definition:

Definition 4 (Good quintuple). Let H be a 3-graph and $e \in H$. An ordered quintuple $Q = (x_1, x_2, x_3, x_4, x_5)$ of distinct vertices of G(e) is good if

- $\{x_1, x_2\}$, $\{x_2, x_3\}$, and $\{x_4, x_5\}$ are edges of G(e),
- $\varphi(x_1, x_2) = \varphi(x_4, x_5)$. $(\{x_1, x_2\} \cap \{x_4, x_5\}) = \emptyset$ since φ is a proper coloring.)

Remark 5. The ordering of the vertices in $Q = (x_1, x_2, x_3, x_4, x_5)$ is important. Assume that Q is a good quintuple. Then the quintuple $(x_1, x_2, x_3, x_5, x_4)$ is still good. However, observe that $(x_2, x_1, x_3, x_4, x_5)$ is good if and only if $\{x_1, x_3\}$ is an edge in G(e). On the other hand, $(x_3, x_2, x_1, x_4, x_5)$ is never good.

Remark 6. Observe (see Figure 3) that apart from $v_6 \in V(G_5)$, every vertex in each G_i is the first vertex of some good quintuple.

Lemma 7 (Good quintuple lemma). Assume H is a crown-free 3-graph and $Q = \{x_1, x_2, x_3, x_4, x_5\}$ is a good quintuple in G(e) for some $e = \{a, b, c\} \in E(H)$. Then there is no edge $f \in E(H)$ such that $f \cap e = \emptyset$ and that $f \cap Q = \{x_1\}$.

Proof. Without loss of generality, Q defines the edges $\{x_1, x_2, a\}$, $\{x_2, x_3, b\}$, and $\{x_4, x_5, a\}$ in H. Assume towards contradiction that edge $f = \{p, q, x_1\}$ where (from the assumptions) $p, q \notin Q \cup \{a, b, c\}$.

Observe that

$${p,q,x_1}, {x_2,x_3,b}, {x_4,x_5,a}$$

are pairwise disjoint edges and $\{x_1, x_2, a\}$ intersects all of them, thus we have a crown (with base $\{x_1, x_2, a\}$), a contradiction.

4 Proof of Theorem 1

Suppose that Theorem 1 is not true, there exists a crown-free 3-graph H with $\delta(H) \geqslant 4$. Select an arbitrary edge $e = \{a,b,c\} \in E(H)$ and let H' be the 3-graph obtained from H by removing edges intersecting e until $D(e) = \langle 4,4,4 \rangle$ in H'. Then Lemma 3 can be applied to H' and we get that $G_i \subseteq G(e)$ for some $i \in [5]$. Further, note that every vertex v in G_i has degree at most three in H', thus we can select $f_v \in E(H)$ such that $v \in f_v$ and $f_v \cap e = \emptyset$. Selecting $v \neq v_6$, there exists a good quintuple Q with first vertex v in G_i (see Remark 6). We shall get a contradiction from Lemma 7, finding a good quintuple Q satisfying $f_v \cap Q = \{v\}$. This is obvious if $f_v \cap V(G_i) = \{v\}$, therefore in the subsequent cases we may assume that $f_v = \{v, p, q\}$ where $v, p \in V(G_i)$.

- $G(e) = G_1$. Set $v = v_1$ and from the symmetry of G_1 we may assume that $f_{v_1} = \{v_1, v_7, q\}$ (where $q \notin V(G_1)$). Then $Q = (v_1, v_2, v_3, v_5, v_6)$ is a good quintuple.
- $G(e) = G_2$. Set $v = v_1$ and (apart from symmetry) we have to consider either $f_{v_1} = \{v_1, v_7, q\}$ (where $q = v_8$ is possible) or $f_{v_1} = \{v_1, p, q\}$ where $p \in \{v_5, v_8\}$ and $q \notin V(G_2)$. In the former case $Q = (v_1, v_2, v_3, v_5, v_6)$ and in the latter $Q = (v_2, v_3, v_4, v_6, v_7)$ is a good quintuple.
- $G(e) = G_3$. Set $v = v_4$ and (up to symmetry) we have to consider either $f_{v_4} = \{v_4, v_6, q\}$ (where $q = v_1$ is possible) or $f_{v_4} = \{v_4, v_1, q\}$ (where $q \notin G(e)$). In both cases $Q = (v_4, v_5, v_7, v_2, v_3)$ is a good quintuple.
- $G(e) = G_4$. Set $v = v_2$. We have to consider three cases: either $f_{v_2} = \{v_2, v_4, q\}$ (where $q = v_7$ is possible), $f_{v_2} = \{v_2, v_7, q\}$ (where $q \neq v_4$), and $f_{v_2} = \{v_2, v_5, q\}$. In the first two cases $Q = (v_2, v_1, v_3, v_5, v_6)$ is a good quintuple, and in the last case $Q = (v_2, v_3, v_4, v_6, v_7)$ is a good quintuple.
- $G(e) = G_5$. Set $v = v_8$. Assume first $f = f_{v_8} \neq \{v_5, v_7, v_8\}$. Up to symmetry, we may consider $f_{v_8} = \{v_8, v_1, q\}$ (where $q = v_7$ is possible). In both cases, $Q = (v_8, v_6, v_5, v_2, v_4)$ is a good quintuple. Now, assume that $f = f_{v_8} = \{v_5, v_7, v_8\}$. In this case, $d_H(a) = d_H(b) = d_H(c) = 4$, i.e. H = H' since otherwise we have an edge g intersecting e and intersecting $V(G_5)$ in at most one of $\{v_5, v_7, v_8\}$ and in none of $\{v_1, v_2, v_3, v_4\}$ (by linearity). Then g would be a jewel in a crown with base $e = \{a, b, c\}$ leading to contradiction. Since $d_{H'}(v_8) \geqslant 4$, there exists $f' = f'_{v_8} = \{v_8, p, q\} \in E(H)$ different from f_{v_8} and from $\{a, v_6, v_8\}$. Since $f' \cap e = \emptyset$ (from H = H'), we can select f' instead of f. Up to symmetry, we may assume that $p = v_1$ and $q \notin G(e)$, which we have already considered.

Since all cases ended by finding $v \in V(G_i)$, $f_v \in E(H)$, and a good quintuple Q such that $f_v \cap e = \emptyset$ and $f_v \cap Q = \{v\}$, we get a contradiction from Lemma 7, concluding the proof.

Acknowledgements

The authors would like to thank anonymous referees for helpful review and comments.

The result presented here was done as part of the Budapest Semesters in Mathematics Summer Undergraduate Research Program in the summer of 2021 under the supervision of the fourth author.

References

- [1] A. Carbonero, W. Fletcher, J. Guo, A. Gyárfás, R. Wang, S. Yan, Crowns in linear 3-graphs, arXiv:2107.14713v1.
- [2] C. J. Colbourn, A. Rosa, Triple systems, Oxford Mathematical Monographs, Calendron Press, Oxford, 1999.
- [3] W. Fletcher, Improved upper bound on the linear Turán number of the crown, arXiv:2109.02729v1.
- [4] Z. Füredi, A. Gyárfás, An extension of Mantel's theorem to k-graphs, American Mathematical Monthly 127 (2020) 263-268.
- [5] A. Gyárfás, G. N. Sárközy, Turán and Ramsey numbers of linear triple systems, Discrete Mathematics **344** (2021) 112258.
- [6] A. Gyárfás, M. Ruszinkó, G. N. Sárközy, Linear Turán numbers of acyclic triple systems, European Journal of Combinatorics 99 (2022) 103435.
- [7] I. Z. Ruzsa, E. Szemerédi, Triple systems with no six points carrying three triangles, in *Combinatorics (Keszthely, 1976), Coll. Math. Soc. J. Bolyai 18, Volume II.* 939-945.
- [8] C. Tang, H. Wu, S. Zhang, Z. Zheng, On the Turán number of the linear 3-graph C_{13} , The Electronic Journal of Combinatorics **29(3)**:#P3.46 (2022).