Crowns in linear 3-graphs of minimum degree 4
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Abstract

A 3-graph is a pair H = (V, E) of sets, where elements of V' are called points
or vertices and E contains some 3-element subsets of V', called edges. A 3-graph is
called linear if any two distinct edges intersect in at most one vertex.

There is a recent interest in extremal properties of 3-graphs containing no crown,
three pairwise disjoint edges and a fourth edge which intersects all of them. We show
that every linear 3-graph with minimum degree 4 contains a crown. This is not true
if 4 is replaced by 3.

Mathematics Subject Classifications: 05B07, 05C35, 05D05
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1 Introduction

A 3-graph is a pair H = (V| E) of sets, where elements of V' are called points or vertices
and E contains some 3-element subsets of V', called edges. If not clear from the context,
we use the notation V(H) and E(H) for V and E respectively. We restrict ourselves to
the important family of linear 3-graphs where any two distinct edges intersect in at most
one vertex. In the remainder of this paper we use the term 3-graph for linear 3-graph.

The number of edges containing a point v € V(H) is the degree of v and is denoted
by d(v) or dy(v). We denote by §(H) the minimum degree of H. Similar notations are
used for graphs (2-uniform linear hypergraphs). We use [k] to denote {1,..., k}.

Let F' be a fixed 3-graph. A 3-graph, H, is called F-free if H has no subgraph
isomorphic to F. The (linear) Turdn number of F, ex;(n, F'), is the maximum number of
edges in an F-free 3-graph on n vertices.

Turan and Ramsey numbers of several linear 3-graphs have been studied by Gyarfas
and Sarkozy [5] and the acyclic case by Gyérfas, Ruszinké and Sérkozy [6]. The behavior
of exy(n, F) is interesting even if F' has three or four edges. A famous theorem of Ruzsa
and Szemerédi [7] is that exy(n, T') = o(n?) if T is the triangle. For the Pasch configuration,

P, exy(n, P) = % for infinitely many n since there are P-free Steiner triple systems

(see [2]). For the fan, F', we have exy(n, F) = %2 if n is divisible by 3 (see [4]). Figure 1
shows these 3-graphs (drawn with the convention that edges are represented as straight

line segments).

Figure 1: Triangle, Pasch configuration, and Fan

There is a recent interest in the Turan number of the crown, C' (Figure 2).

Figure 2: The crown C

The descriptive name crown was coined in [1], the list of small configurations in [2]
refers to it as Ci3. We call the horizontal edge of the crown the base and the vertical
edges jewels.
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The crown is the only 3-tree with at most four edges whose Turan number left open
in [6] with the following bounds:

6 V - 3J < exo(n, C) < 2n. (1)

The construction for the lower bound in (1) (for the case n =3 (mod 4)) is the following.
Choose three vertices {a, b, c}, and define edges

{a7xi7yi}7 {a7zi7wi}7 {b7xi7wi}7 {bayi7zi}7 {Caxhzi}? {vahwi}

where i = 1,2,...,|(n — 3)/4] and xz;, y;, 2z;, and w; are distinct vertices.

In this construction, all but three vertices have degree 3. This poses the question
whether raising the minimum degree of a 3-graph H from 3 to 4 ensures a crown. We
prove in this note (extracted from [1]) that the answer is affirmative.

Theorem 1. Fvery 3-graph with minimum degree §(H) > 4 contains a crown.

The upper bound of (1) was first improved to 5 by Fletcher [3] then, with an essential
new idea, Tang, Wu, Zhang and Zheng [8] proved that the lower bound is essentially best.
Note that Theorem 1 does not follow from this, since minimum degree 4 ensures only
in 3n
3 < 7 edges.

In Sections 2 and 3 we define our tools. In Section 4 we prove Theorem 1.

2 Link graphs of edges with D(e) = (4,4,4)

Definition 2 (Link graph of an edge). Assume that H is a 3-graph and e = {a,b,c} €
E(H). The link graph, G(e), is the graph whose edges are the pairs {x,y} for which there
exists {z,y,2} € E(H) with z € {a,b,c}. The set of vertices of G(e) is defined as the
subset of V(H) covered by the edges of G(e).

A matching in a graph is a set of pairwise disjoint edges. An edge-coloring of a graph
is proper if the edges in each color class form a matching. Note that Definition 2 provides
a proper 3-coloring of the edges of G(e) with colors a, b, and ¢. We denote by ¢(z,y)
the color of the edge {z,y} in this coloring. Edges with colors a, b, and ¢ will be labelled
«, (3, and 7, respectively and are colored blue, green and red in colored figures. Observe
that a crown with base edge e exists in H if and only if G(e) has three pairwise disjoint
edges with different colors, which we call a rainbow matching.

For e = {a,b,c} € E(H), let D(e) denote the degree vector (d(a),d(b),d(c)) with
coordinates in non-increasing order.

Lemma 3. If a crown-free 3-graph H has an edge e = {a,b, c} such that D(e) = (4,4,4),
then G(e) is isomorphic (up to permutation of colors) to one of the five graphs in Figure
3.
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Figure 3: Link graphs G1,...,Gj5
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Proof. For i € [3], let M; denote the vertex set of the matching of color a, b, and ¢ in
G(e), respectively. Observe that for all 7,5 € [3], where ¢ # j, M; must intersect all the
three edges in M;. Otherwise, there exists an edge f € M, not intersecting M, and an
edge g € My, for k # i or j, such that g N f = (. Then f, g, and some edge in M; is a
rainbow matching.

First, we show that |M; N M, > 3. It follows from the previous observation that
| M1 N Ms| > 3. Assume for contradiction that |M; N Ms| = 3. Then S = M; N M, cannot
contain an edge from M; U M, otherwise we get a contradiction with our observation.
Thus, M; and M, are matchings from S to M; \ S and from S to M, \ S, respectively,
where M; \ S and M, \ S are disjoint. If e € M3, then e € S since otherwise e would be
part of a rainbow matching. However, it is impossible for there to be three disjoint edges
in S since |S| = 3 by assumption.

Now, suppose |M; N M| = 4. Then, in S there is one edge of M; and one edge of
M. If the two edges are disjoint, we have two disjoint o~ paths both with four vertices.
One has two a-edges and one -edge, and the other has the opposite. To avoid a rainbow
matching, any v-edge must intersect every edge in one of the paths. There are thus four
possible locations for a y-edge but any three of them gives G5, proving the lemma. On
the other hand, if the two edges in S intersect, we will get a contradiction. Indeed, in
this case, the edges of M; U M, form two disjoint, alternating a-f paths with three and
five vertices, respectively. Following the paths, label the three vertices v; through vz, and
the five vertices w; through ws. The only possible location for a y-edge that does not
intersect v, and would not form a rainbow matching is {ws,,w,}. However, then at least
two v-edges must intersect v, a contradiction.

We show that the next case implies that G(e) is isomorphic (up to permutation of
colors) to one of the G;’s.

Assume |M; N M| = 5. Then either M; U M, is an alternating a-f path on seven
vertices, or it is a disjoint alternating a-f four-cycle and a-f3 path on three vertices.

In the former case, label the vertices v; through v; along the path. Then the possible
v-edges that don’t create a rainbow matching are {vi,vs}, {vi,v6}, {ve,vs}, {va,v6},
{va, v7}, {4, v}, and {vs, v7}. Apart from the symmetry (reflection of a point of the path
through vy), the non-intersecting triples of these edges are

{{Uh vs}, {v2, v}, {vs, U?]’},
{{Ul, Ug}, {Ug, UG}, {U5, ’U7}}, {{Ul, Ug}, {UQ, U7}, {U4, UG}}.

The first triple gives GG, and the last two triples give Gjy.

In the latter case denote the alternating four-cycle and the alternating path by C;y and
Pj, respectively.

When G(e) is disconnected, at least one y-edge has to intersect Cy, otherwise all three
~v-edges intersect P3, which clearly results in a rainbow matching. Moreover, both vertices
of such a y-edge must intersect Cy, otherwise, this y-edge together with two disjoint a-f3
paths contains a rainbow matching. Therefore, there are two ways of placing a v-edge in
Cy. If a y-edge intersects Ps, it must intersect both edges of Pj, extending P; to either a

ot
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triangle or to a four-edge star. If only one ~-edge intersects C, and two intersect P;, we
obtain Gy. If two y-edges intersect Cy and only one intersects Ps, it gives either G; or
Gs.
When G(e) is connected, some y-edge connects Cy and P3. Observe that such a y-edge
has to intersect both edges in P3. The only possibility for the remaining two y-edges is
that one is a diagonal of Cy and the other extends P; to a triangle. This gives Gs.
Lastly, suppose |M; N My| = 6. Then M; U M; is an alternating a-f six-cycle. Any
~v-edges intersecting the cycle in at most one vertex or along a long diagonal are in rainbow
matchings. However, at most two y-edges can be short diagonals without intersecting,
which is a contradiction thus concludes the proof. O

3 Good quintuple lemma

As shown in Section 2, it is easy to recognize a crown with base edge e: We have to find
a rainbow matching in G(e). To recognize other crowns related to G(e), we introduce the
following definition:

Definition 4 (Good quintuple). Let H be a 3-graph and e € H. An ordered quintuple
Q = (x1, 29, x3, x4, x5) of distinct vertices of G(e) is good if

o {1,202}, {2, 23}, and {w4, x5} are edges of G(e),
o o(xr1,22) = p(xg,x5). ({x1, 22} N{xy, x5} = 0 since ¢ is a proper coloring.)

Remark 5. The ordering of the vertices in @ = (z1, za, 3, T4, x5) is important. Assume
that @ is a good quintuple. Then the quintuple (x1, z9, x3, 5, z4) is still good. However,
observe that (xq,x1, 3, x4, x5) is good if and only if {z1, 23} is an edge in G(e). On the
other hand, (x3,zy, x1, %4, T5) is never good.

Remark 6. Observe (see Figure 3) that apart from vs € V(G5), every vertex in each G; is
the first vertex of some good quintuple.

Lemma 7 (Good quintuple lemma). Assume H is a crown-free 3-graph and QQ = {x1, 3,
T3, %4, x5} 1S a good quintuple in G(e) for some e = {a,b,c} € E(H). Then there is no
edge f € E(H) such that f Ne =10 and that f N Q = {x1}.

Proof. Without loss of generality, ) defines the edges {x1,x2, a}, {x2, z3,b}, and {4, xs,
a} in H. Assume towards contradiction that edge f = {p, ¢, z1} where (from the assump-

tiOHS) b, q §é Q U {aa b7 C}.
Observe that

{p7 q, ‘7:1}7 {$2, Z3, b}7 {%4, Ty, (l}

are pairwise disjoint edges and {z1,zs,a} intersects all of them, thus we have a crown
(with base {1, x2,a}), a contradiction. O
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4 Proof of Theorem 1

Suppose that Theorem 1 is not true, there exists a crown-free 3-graph H with 6(H) > 4.
Select an arbitrary edge e = {a,b,c¢} € E(H) and let H' be the 3-graph obtained from
H by removing edges intersecting e until D(e) = (4,4,4) in H'. Then Lemma 3 can be
applied to H' and we get that G; C G(e) for some i € [5]. Further, note that every vertex
v in G; has degree at most three in H', thus we can select f, € E(H) such that v € f,
and f,Ne = (. Selecting v # v, there exists a good quintuple () with first vertex v in G;
(see Remark 6). We shall get a contradiction from Lemma 7, finding a good quintuple @
satisfying f, N @ = {v}. This is obvious if f, NV (G;) = {v}, therefore in the subsequent
cases we may assume that f, = {v,p, ¢} where v,p € V(G,).

e G(e) = G1. Set v = vy and from the symmetry of G; we may assume that f,, =
{v1,v7,q} (where g ¢ V(Gy)). Then Q = (v, v9, v3,v5,06) is a good quintuple.

e G(e) = G9. Set v = vy and (apart from symmetry) we have to consider either
fo, = {v1,v7,q} (where g = wvg is possible) or f,, = {v1,p,q} where p € {vs,vs}
and ¢ ¢ V(G2). In the former case ) = (v1,vq,v3,v5,06) and in the latter @ =
(v, v3, vy, Vg, v7) is a good quintuple.

e G(e) = G3. Set v = vy and (up to symmetry) we have to consider either f,, =
{v4,v6,q} (where ¢ = vy is possible) or f,, = {v4,v1,q} (where ¢ € G(e)). In both
cases ) = (v4, vs, U7, U2, v3) is a good quintuple.

e G(e) = G4. Set v = vy. We have to consider three cases: either f,, = {v2,v4,¢q}
(where ¢ = v7 is possible), f,, = {v2,v7,q} (where q # v4), and f,, = {va,vs5,¢}. In
the first two cases Q = (vq, v1,v3,vs5,v6) is a good quintuple, and in the last case
Q = (ve, v3,v4,v6,v7) is a good quintuple.

e G(e) = G5. Set v = vs. Assume first f = f,, # {vs,v7,v8}. Up to symmetry,
we may consider f,, = {vs,v1,q} (where ¢ = vy is possible). In both cases, @ =
(vs, vg, U5, V2, v4) is a good quintuple. Now, assume that f = f,, = {vs,v7,v8}. In
this case, dy(a) = dy(b) = duy(c) = 4, i.e. H = H’' since otherwise we have an
edge g intersecting e and intersecting V(Gs) in at most one of {vs,v7,vs} and in
none of {vy, v, v3,v4} (by linearity). Then g would be a jewel in a crown with base
e = {a,b,c} leading to contradiction. Since dps(vs) > 4, there exists f' = f, =

{vs,p,q} € E(H) different from f,, and from {a,vg,vs}. Since f'Ne = @ (from

H = H’), we can select f’ instead of f. Up to symmetry, we may assume that

p=wv; and ¢ ¢ G(e), which we have already considered.

Since all cases ended by finding v € V(G}), f, € E(H), and a good quintuple @) such
that f, Ne =0 and f, N Q = {v}, we get a contradiction from Lemma 7, concluding the
proof. O
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