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Abstract

In this paper, we give a complete, explicit and constructive solution to the double
generalized majorization problem. Apart from purely combinatorial interest, double
generalized majorization problem has strong impact in Matrix and Matrix Pencils
Completion Problems, Bounded Rank Perturbation Problems, and it has additional
nice interpretation in Representation Theory of Kronecker Quivers.
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1 Introduction

By a partition we mean a finite non-increasing sequence of integers. For any integers
a1 ! . . . ! as we define the corresponding partition a = (a1, . . . , as). In the literature
there are many ways of comparing two or more partitions [1, 18, 21]. The classical
majorization in Hardy-Littlewood-Polya sense [18] that compares two partitions, is one
of the best studied and known:

Definition 1. Let g = (g1, . . . , gk) and b = (b1, . . . , bk) be two partitions. If

k!

i=1

gi =
k!

i=1

bi

and

j!

i=1

gi "
j!

i=1

bi, j = 1, . . . , k − 1,

then we say that g is majorized by b and write g ≺ b.

The following notation will be used throughout the paper:

Let n,m, s and k be nonnegative integers, such that

n+ k = m+ s. (1)

Let a, b, c and d be the following partitions:

a = (a1, . . . , as), (2)

b = (b1, . . . , bk), (3)

c = (c1, . . . , cn), (4)

d = (d1, . . . , dm). (5)

For any partition w = (w1, . . . , wl) we shall assume that wi := +∞, for i " 0, and
wi := −∞, for i > l. If a > b are nonnegative integers, then we assume

"b
i=a wi := 0.

In this paper we deal with a generalization of the classical majorization given in [2, 5, 7],
that compares three partitions of the appropriate size:

Definition 2. (Generalized majorization) Let b and c be partitions as in (3) and (4),
respectively. Let g = (g1, . . . , gn+k) be a partition. If

ci ! gi+k, i = 1, . . . , n, (6)
hj!

i=1

gi −
hj−j!

i=1

ci "
j!

i=1

bi, j = 1, . . . , k, (7)
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n+k!

i=1

gi =
n!

i=1

ci +
k!

i=1

bi, (8)

where
hj := min{i|ci−j+1 < gi}, j = 1, . . . , k, (9)

then we say that g is majorized by c and b. This type of majorization we call the
generalized majorization, and we write

g ≺′ (c,b).

Notice that, if (8) is satisfied, then (7) is equivalent to the following:

n+k!

i=hj+1

gi !
n!

i=hj−j+1

ci +
k!

i=j+1

bi, j = 1, . . . , k. (10)

Also, notice that if n = 0, generalized majorization gives the classical one.

Definition 3. (Weak generalized majorization) If partitions g, b and c in Definition
2 satisfy (6), (10) and

n+k!

i=1

gi !
n!

i=1

ci +
k!

i=1

bi,

then we say that g is weakly majorized by c and b, and we write

g ≺′′ (c,b).

During the last decade many interesting, purely combinatorial properties of the gene-
ralized majorization, including some generalizations of well-known properties of the clas-
sical majorization, have been obtained. For the most interesting combinatorial results,
see e.g. [4, 5, 8, 11]. These results demonstrate rich structure of the generalized majoriza-
tion as a combinatorial object, as well as its importance and potential in applications.
Indeed, apart from purely combinatorial interest, the generalized majorization has strong
impact in Matrix and Matrix Pencils Completion Problems [7, 10, 12, 13], where it ap-
pears naturally by studying properties of the Kronecker Invariants of the involved Matrix
Pencils [16]. Also, some of its properties are of great importance in solving Bounded
rank perturbation problems [4, 9, 22, 23, 28]. Finally, the generalized majorization has
additional nice interpretation in Representation Theory of Quivers by using Kronecker
quivers [17, 24, 25, 26], as well as exciting diagrammatics introduced in [11].

The problem of particular interest involving the generalized majorization which con-
nects all above mentioned fields is so-called Double Generalized Majorization Problem. It
appears in Matrix and Matrix Pencils completion problems [2, 7, 10, 12, 13], as well as in
Representation Theory of Quivers [24, 25, 26], and Perturbation Theory [4, 9]. It is the
central problem of this paper:
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Problem 4. Let a, b, c, and d be partitions given as in (2)-(5). Find necessary and
sufficient conditions for the existence of a partition g = (g1, . . . , gm+k+s), such that

g ≺′′ (d, a) and g ≺′′ (c,b). (11)

The solution to Problem 4 given in Theorem 11 is the main result of the paper. In
addition, we also solve a stronger version to Problem 4 given by:

Problem 5. Let a, b, c, and d be partitions given as in (2)-(5). Find necessary and
sufficient conditions for the existence of a partition g = (g1, . . . , gm+k+s), such that

g ≺′ (d, a) and g ≺′ (c,b). (12)

Both of these problems have been solved in [4] in the case s = k = 1. Also, Problem
5 has been studied in [5]. However, it has been realised that the solution in [5, Theorem
5.1] does not cover all of the possible cases, and therefore does not provide a complete
solution to Problem 5. In this paper, we improve the main result from [5]. We introduce
novel definition of the sets S and ∆, and consequently we give novel, explicit necessary
and sufficient conditions, which solve completely and constructively Problems 4 and 5,
without any restrictions. This is the main result of the paper given in Theorem 11.

Moreover, in Section 11 we apply the main result obtained in Theorem 11, and obtain
simple and elegant necessary and sufficient conditions which do not require the sets S and
∆, for Problems 4 and 5 in some special cases. In particular, we consider these problems
when s = 0 (or dually when k = 0), and also when n = 0 (and dually m = 0).

Similar combinatorial problems have appeared in different applications in matrix the-
ory, together with a quest for the explicit solution involving inequalities. Among the most
famous ones are the Carlson problem [3, 14] and the eigenvalue problem for the sums of
Hermitian matrices [15], both of which were shown to be equivalent to the condition that
the Littlewood-Richardson coefficient of certain three partitions is non-zero. The last is a
purely combinatorial condition involving integer partitions, but yet still an implicit one:
it is equivalent to the existence of a certain sequence of partitions (LR sequence). So, one
of the main problems was to find an explicit form of this condition which involves only
inequalities between the three initial partitions. This was famously solved in [15, 19].

A somewhat similar framework motivates the main problem of this paper. The General
Matrix Pencil Completion Problem (GMPCP) reduces to certain combinatorial condition
involving several partitions of integers, and among others there is an implicit condition
like the one in Problem 4. Therefore, to get the fully explicit necessary and sufficient
conditions to GMPCP, it is of high importance to get explicit necessary and sufficient
conditions in Problem 4, which depend only on certain inequalities involving the parti-
tions a,b, c, and d. This is the main result of the present paper.
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2 Sets S and ∆

Lemma 6. [5, Proposition 2.6] Let x be an integer such that there exist w ∈ {1, . . . , n}
and u ∈ {1, . . . ,m} such that cw = du = x. Let

d′ := (d1, . . . , du−1, du+1, . . . , dm),

and
c′ := (c1, . . . , cw−1, cw+1, . . . , cn).

Then there exists a partition g = (g1, . . . , gm+s) such that

g ≺′ (d, a) and g ≺′ (c,b),

if and only if there exists a partition g′ = (g′1, . . . , g
′
m+s−1) such that

g′ ≺′ (d′, a) and g′ ≺′ (c′,b).

Remark 7. In fact, in the course of proving [5, Proposition 2.6] we have also obtained
the corresponding result for the weak generalized majorisation. So, by the notation from
Lemma 6, we also have that there exists a partition g = (g1, . . . , gm+s) such that

g ≺′′ (d, a) and g ≺′′ (c,b),

if and only if there exists a partition g′ = (g′1, . . . , g
′
m+s−1) such that

g′ ≺′′ (d′, a) and g′ ≺′′ (c′,b).

Now, by Lemma 6 and Remark 7, when solving Problems 4 and 5, i.e. from now
on throughout the paper, without loss of generality, we assume that ci ∕= dj for all
i = 1, . . . , n, and all j = 1, . . . ,m.

Let u be the union of the partitions c and d. Let e be the union of the partitions d
and a, and let e′ be the union of the partitions c and b. Thus, we have

u = (u1, . . . , un+m) := (d1, . . . , dm) ∪ (c1, . . . , cn), (13)

e = (e1, . . . , em+s) := (d1, . . . , dm) ∪ (a1, . . . , as), (14)

e′ = (e′1, . . . , e
′
m+s) := (c1, . . . , cn) ∪ (b1, . . . , bk). (15)

In the definition of ei’s, if di = aj, for some i ∈ {1, . . . ,m} and j ∈ {1, . . . , s}, then
let ij = min{ℓ|dℓ = aj}, and let v = min{ℓ|aℓ = aj}, and w = max{ℓ|aℓ = aj}. Then we
put eij−1+v = av, eij+v = av+1, . . . , eij−1+w = aw, eij+w = dij (i.e. e : · · · ! av ! · · · !
aw ! dij ! · · · ). Analogously, if ci = bj, for some i ∈ {1, . . . , n} and j ∈ {1, . . . , k}, then
let ij = min{ℓ|cℓ = bj}, and let v = min{ℓ|bℓ = bj}, and w = max{ℓ|bℓ = bj}. Then we
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put e′ij−1+v = bv, e
′
ij+v = bv+1, . . . , e

′
ij−1+w = bw, e

′
ij+w = cij .

Now we can define sets S and ∆ for given partitions a, b, c, and d. Sets S and ∆ will
be subsets of the sets of indices of the partitions c and d, respectively. More precisely,
S ⊂ {1, . . . , n}, and ∆ ⊂ {1, . . . ,m}. Both sets S and ∆, as well as other auxiliary
sequences and indices that will be defined in this section, and used throughout the paper,
depend solely on the given partitions a, b, c, and d.

Definition 8. (Sets S and ∆)

Definition of the sets S and ∆ is given inductively. We start by putting S and ∆ to
be empty sets, and then we fill them in the following way, step by step:

We shall go through the elements of u (the union of partitions c and d), one by one,
starting from the smallest one. If there are equals among ci’s or di’s, we always first
choose the element with the largest index (note that we are assuming ci ∕= dj for all
i = 1, . . . , n and j = 1, . . . ,m). Once we pick one element from u, it is either dj, for some
j ∈ {1, . . . ,m}, or cj for some j ∈ {1, . . . , n}.

If it is dj, for some j ∈ {1, . . . ,m}, since the definition of S and ∆ is given inductively,
this means that for all i with j < i " m, we have already determined whether i ∈ ∆ or
i /∈ ∆. And also for all i ∈ {1, . . . , n} such that dj > ci, we have already determined
whether i ∈ S or i /∈ S. Our goal is to determine whether we add the index j to the set
∆ or not.

Analogously, if the element from u that we arrived at is cj, for some j ∈ {1, . . . , n},
inductively we have already determined for all i with j < i " n whether i ∈ S os i /∈ S,
as well as for all i ∈ {1, . . . , n} such that cj > di, we have already determined whether
i ∈ ∆ or i /∈ ∆. Our goal is to determine whether we add the index j to the set ∆ or not.

We shall do this by checking couple of inequalities:

– If the element from u is dj, for some j ∈ {1, . . . ,m}, we start with calculating

qj := s− "{i ∈ S|ci < dj}+ "{i ∈ {j + 1, . . . ,m}|i /∈ ∆}+ 1. (16)

Next we check the following:

• If qj > s ⇒ then we add j to ∆

• If qj " s ⇒ then let l ∈ S be the minimal index such that dj > cl

(a) Now, if

"{i ∈ {1, . . . , s}|ai > cl} ! s− "{i ∈ S|i > l}+ "{i ∈ {j + 1, . . . ,m}|di < cl, i /∈ ∆}, (17)
and if dj belongs to the smallest

"{i ∈ {1, . . . , s}|ai > cl}− s+ "{i ∈ S|i > l}− "{i ∈ {j + 1, . . . ,m}|di < cl, i /∈ ∆}+ 1

ei’s bigger than cl, then we do not add j to ∆.1
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(b) otherwise we check the inequality

!

i∈S, ci<dj

ci !
!

m!i>j, i/∈∆

di + dj +
s!

i=qj+1

ai. (18)

If the equation (18) is satisfied, then we do not add j to ∆, and if the equation (18)
is not satisfied then we add j to ∆.

– If the chosen element belongs to c, say cj, for some j ∈ {1, . . . , n}, then we have
the dual definition, i.e. we consider

q′j := k − "{i ∈ ∆|di < cj}+ "{i ∈ {j + 1, . . . , n}|i /∈ S}+ 1. (19)

Then we check the following:

• If q′j > k ⇒ then we add j to S

• If q′j " k ⇒ then let l ∈ ∆ be the minimal index such that ci > dl

(a) Now, if

"{i ∈ {1, . . . , k}|bi > dl} ! k − "{i ∈ ∆|i > l}+ "{i ∈ {j + 1, . . . , n}|ci < dl, i /∈ S}, (20)
and if cj belongs to the smallest

"{i ∈ {1, . . . , k}|bi > dl}− k + "{i ∈ ∆|i > l}− "{i ∈ {j + 1, . . . , n}|ci < dl, i /∈ S}+ 1

e′i’s bigger than dl, then we do not add j to S

(b) otherwise we check the inequality

!

i∈∆, di<cj

di !
!

n!i>j, i/∈S

ci + cj +
k!

i=q′j+1

bi. (21)

If the equation (21) is satisfied, then we do not add j to S, and if the equation (21) is
not satisfied then we add j to S.

Now choose the next smallest element in u, and proceed until all the elements in u
are checked. This ends our definition of the sets S and ∆.

Moreover, throughout the paper, the complements of the sets S and ∆ will be denoted
by Sc and ∆c, respectively, i.e.

Sc := {1, . . . , n} \ S, and ∆c := {1, . . . ,m} \∆.

In order to simplify the notation and presentation of the main result and the proof,
we also define the following integers related to the sets S and ∆:

1More precisely: let φ = max{i ∈ {0, . . . ,m+ s}|ei > cl}, i.e. φ is such that eφ > cl ! eφ+1. Also, let
ν = #{i ∈ {1, . . . , s}|ai > cl} − s + #{i ∈ S|i > l} − #{i ∈ {j + 1, . . . ,m}|di < cl, i /∈ ∆} + 1. Then we
check whether dj is among (eφ−ν+1, eφ−ν+2, . . . , eφ), and if it is one of these, then we do not add j to ∆.
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Definition 9. We shall denote the set of di’s with i ∈ ∆ by

d1 ! · · · ! dh, where h = "∆.

Analogously, we denote all ci’s with i ∈ S by

c1 ! · · · ! ch
′
, where h′ = "S.

Furthermore, for every dj, j = 1, . . . , h, we define

m′
j := "{i ∈ {1, . . . , k}|bi > dj}
t′j := k − (h− j) + "{i ∈ Sc|ci < dj}
z′j := "{i ∈ {1, . . . , n}|ci > dj},

and for every cj, j = 1, . . . , h′, we define

mj := "{i ∈ {1, . . . , s}|ai > cj}
tj := s− (h′ − j) + "{i ∈ ∆c|di < cj}
zj := "{i ∈ {1, . . . ,m}|di > cj}.

Example 10. Let a = (9, 9, 7, 6, 3), b = (9, 6, 2, 1), c = (12, 4, 3) and d = (13, 5) be
partitions. Note that the sum of lengths of the partitions a and d equals the sum of
lengths of the partitions c and b, and it is 7. Also, by definitions (14), (15) and (13) we
have

e = d ∪ a = (13, 9, 9, 7, 6, 5, 3),

e′ = c ∪ b = (12, 9, 6, 4, 3, 2, 1),

and
u = d ∪ c = (13, 12, 5, 4, 3).

Let us calculate sets S and ∆. By Definition 8 we start with u5 which is in this case
c3 = 3. Next, by (21) we calculate q′3 = 5. Since q′3 = 5 > 4 = k, we put 3 ∈ S.

Next we pass to u4 = c2 = 4, and again since q′2 = 5 > 4, we also put 2 ∈ S.
Then we consider u3 = d2 = 5. By (16) we have that q2 = 4 " 5, and 2 is the minimal

index l ∈ S such that d2 > cl. So, by (17) we have "{i ∈ {1, . . . , 5}|ai > c2} − 5 + "{i ∈
S|i > 2} = 0 ! 0. Since e6 > c2 ! e7, we have that e6 is the smallest ei bigger than c2.
Finally, since e6 is d2, by the part (a) of the definition of ∆, we have that 2 /∈ ∆.

Next we consider u2 = c1 = 12. By (19) we have q′1 = 5 > 4, and so we put 1 ∈ S.
Finally, we consider u1 = d1 = 13. Then q1 = 4, and 1 is the minimal index l ∈ S such

that d1 > cl. Thus "{i ∈ {1, . . . , 5}|ai > c1}− 5 + "{i ∈ S|i > 1}− "{i ∈ {2}|di < c1, i /∈
∆} = −4 < 0, and so the part (a) of the definition of ∆ is not satisfied. By the part (b)
since formula (18) in this case is not satisfied, i.e. since

c1 + c2 + c3 = 12 + 4 + 3 < 13 + 5 + 3 = d1 + d2 + a5,
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we have that 1 ∈ ∆.

Hence
S = {1, 2, 3} and ∆ = {1},

and so h′ = 3 and h = 1. Thus, d1 = d1 = 13 and c1 = c1 = 12, c2 = c2 = 4, c3 = c3 = 3.

Now, by using the notation given in this section, we can state the main result of the
paper. The following theorem resolves Problem 4:

Theorem 11. Let a, b, c and d be the partitions as in (2)–(5), respectively. There exists
a partition g = (g1, . . . , gm+s), such that

g ≺′′ (d, a) and g ≺′′ (c,b) (22)

if and only if the following conditions are valid

(i.1) if y ∈ {1, . . . , h′} is such that ty " my, then
zy+my!

i=zy+ty

ei "
h′!

i=y

ci −
!

i!zy+1, i∈∆c

di −
s!

i=my+1

ai,

(ii.1) if x ∈ {1, . . . , h} is such that t′x " m′
x, then

z′x+m′
x!

i=z′x+t′x

e′i "
h!

i=x

di −
!

i!z′x+1, i∈Sc

ci −
k!

i=m′
x+1

bi.

Remark 12. Both these sets of conditions (i.1) and (ii.1) are complicated, and use the
definitions of the sets S and ∆, and corresponding sequences from Definition 9. However,
they all depend only on partitions a, b, c and d. Therefore, in applications of this result
we usually denote these conditions shortly by Ω̄(c,d, a,b).

The following theorem resolves Problem 5:

Theorem 13. There exists a partition g = (g1, . . . , gm+s), such that

g ≺′ (d, a) and g ≺′ (c,b) (23)

if and only if
n!

i=1

ci +
k!

i=1

bi =
m!

i=1

di +
s!

i=1

ai, (24)

and the condition Ω̄(c,d, a,b) is valid.
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Proofs of Theorems 11 and 13 are given in Sections 9 and 10, respectively. The proofs
are very long, combinatorial and technical, and we shall need various auxiliary results in
the course. We have split these results into several sections. Section 4 cites some previous
results on the generalized majorization that will be used in the sufficiency part of the
proof. In Section 5 we give some properties of the sets S and ∆. Section 6 give various
results involving bounds for the numbers tj and qj, as well as the definition of the special
partition ḡ, that will be crucial in the rest of the proof. Section 7 consists of Lemmas
which are used in the necessity part of the proof, while Section 8 consists of Lemmas
which are used in the sufficiency part of the proof.

3 Examples

Example 14. Let us consider data from Example 10, i.e. let a = (9, 9, 7, 6, 3), b =
(9, 6, 2, 1), c = (12, 4, 3) and d = (13, 5) be partitions. As we have calculated in Example
10 then

S = {1, 2, 3} and ∆ = {1},

i.e. d1 = d1 = 13 and c1 = c1 = 12, c2 = c2 = 4, c3 = c3 = 3. Also, by Definition 9, we
have

m′
1 = 0, t′1 = 4, z′1 = 0

m1 = 0, t1 = 4, z1 = 1
m2 = 4, t2 = 4, z2 = 2
m3 = 4, t3 = 5, z3 = 2.

(25)

Now we can check conditions (i.1) and (ii.1). As we have obtained in (25), m′
1 < t′1,

m1 < t1, m2 ! t2, and m3 < t3. Hence, we only need to check condition (i.1) for y = 2.
Since e6 = 5, c2 = 4, c3 = 2, and a5 = 3, we have that condition (i.1) fails:

e6 > c2 + c3 − a5.

Therefore Theorem 11 implies that there is no partition g such that g ≺′′ (d, a) and
g ≺′′ (c,b).

Example 15. Let a = (11, 9, 1), b = (12, 3), c = (8, 7, 5) and d = (10, 4) be partitions.
Let us calculate sets S and ∆ for the above given partitions, and check the conditions
(i.1) and (ii.1) from Theorem 11. Here

u = (10, 8, 7, 5, 4),

e = (11, 10, 9, 4, 1),

e′ = (12, 8, 7, 5, 3).

By Definition 8 we start with u5 = d2 = 4, and we calculate q2 = 4 > 3, and thus we put
2 ∈ ∆.

Next we consider u4 = c3 = 5. We calculate q′3 = 2, and since the part (a) of the
definition is not valid (since 1 < 2), we pass to the part (b). Since formula (21) in this
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case becomes 4 < 5, we conclude that 3 ∈ S. Since u3 = c2 = 7 with q′2 = 2, completely
analogously as for c3, by the part (b) and the formula (21) of Definition 8, we have 2 ∈ S.
Analogously, by the same reason, for u2 = c1 = 8 with q′1 = 2, we conclude 1 ∈ S.

So we pass to u1 = d1 = 10. By (16) we obtain that q1 = 1, and the minimal index
l ∈ S such that d1 > cl is l = 1. Then (17) becomes 2 ! 1, and the two smallest ei bigger
that c1 = 8 are e2 and e3. Since d1 is e2, by part (a) of the definition of ∆, we conclude
that 1 /∈ ∆.

Hence
S = {1, 2, 3} and ∆ = {2},

h′ = 3 and h = 1. Thus, c1 = c1 = 8, c2 = c2 = 7, c3 = c3 = 5, and d1 = d2 = 4. Also, we
can calculate the values of m′

1, t
′
1 and z′1, as well as mi, ti and zi, i = 1, 2, 3. By Definition

9 we have:
m′

1 = 1 t′1 = 2 z′1 = 3,
m1 = 2 t1 = 1 z1 = 1,
m2 = 2 t2 = 2 z2 = 1,
m3 = 2 t3 = 3 z3 = 1.

(26)

Hence, m′
1 < t′1, m1 ! t1, m2 ! t2, and m3 < t3. So the only places where we need to

check condition (i.1) is for m1 ! t1 and m2 ! t2, while (ii.1) is always satisfied.
For m1 ! t1 we need to check whether

e2 + e3 " c1 + c2 + c3 − a3

which gives 19 " 19, and so it holds. As for m2 ! t2 we need to check whether

e3 " c2 + c3 − a1

which gives 9 " 11, and so it also holds. Thus, conditions (i.1) and (ii.1) are satisfied in
this case, and by Theorem 11 there exists a solution to Problem 4. Also, since

"3
i=1 ai +"2

i=1 di =
"2

i=1 bi +
"3

i=1 ci, there also exists a solution to Problem 5 in this case. Later
on, in Examples 41 and 43 we shall define concrete and explicit solutions for both problems
for given partitions.

4 Properties of the generalized majorization

By using the notation from Definition 2, we list some of the well known basic properties
of the auxiliary numbers hj, defined in (9), that will be used throughout the paper:

Since
hj := min{i|ci−j+1 < gi}, j = 1, . . . , k,

we have:
n+ k + 1 > hk > · · · > h2 > h1 > 0, (27)
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and so in particular:
hj ! j, j = 1, . . . , k. (28)

Also, we set
h0 := 0, and hk+1 := n+ k + 1.

Since ci ! gi+k, i = 1, . . . , n, we have that ci−k ! gi, i = 1, . . . , n+ k, and so

ci−j+1 ! gi, for i < hj, for any j = 1, . . . , k + 1. (29)

Lemma 16. [7, Lemma 2] Suppose that b = (b1, . . . , bk), c = (c1, . . . , cn), and g =
(g1, . . . , gn+k) are partitions such that

g ≺′′ (c,b).

Let u ∈ {1, . . . , n+ k} be an integer, and let j ∈ {0, . . . , k} be such that

hj < u " hj+1.

Then
n+k!

i=u

gi !
n!

i=u−j

ci +
k!

i=j+1

bi.

Lemma 17. [5, Lemma 2.4] Let b = (b1, . . . , bk), c = (c1, . . . , cn), and g′ = (g′1, . . . , g
′
n+k)

be partitions such that
g′ ≺′′ (c,b).

Let f ∈ {2, . . . , n+ k}, and let g = (g1, . . . , gn+k) be a partition such that

gi = g′i, i ! f,

gi " g′i, i < f,

g′f−1 ! g1 ! gf−1 ! g1 − 1,

n+k!

i=1

gi !
n!

i=1

ci +
k!

i=1

bi.

Then
g ≺′′ (c,b).

Lemma 18. [7, Lemma 9] Let u1 ! · · · ! uk and v1 ! · · · ! vk be integers. If

"{i ∈ {1, . . . , k}|ui > vj} ! j, for all j = 1, . . . , k,

then
k!

i=1

ui !
k!

i=1

vi + k.
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5 Ordering of the elements of the sets S and ∆

Before going into the details of the proof, we extend formally index sets of the numbers
from Definition 9:

We define d0 := +∞, dh+1 := −∞, t′h+1 := k+1, z′h+1 := n, and we extend definitions
of m′

j, t
′
j and z′j to the case j = 0: m′

0 := "{i ∈ {1, . . . , k}|bi > d0} = 0, t′0 := k − h +
"{i ∈ Sc|ci < d0} = k− h+ "Sc = n+ k− h− h′, and z′0 := "{i ∈ {1, . . . , n}|ci > d0} = 0.

Analogously, we also formally define c0 := +∞, ch
′+1 := −∞, th′+1 := s+1, zh′+1 := m,

and we extend definitions of mj, tj and zj to the case j = 0: m0 := "{i ∈ {1, . . . , s}|ai >
c0} = 0, t0 := s − h′ + "{i ∈ ∆c|di < c0} = s − h′ + "{∆c} = m + s − h − h′, z0 :=
"{i ∈ {1, . . . ,m}|di > c0} = 0.

Since m+ s = n+ k, we have

t0 = t′0 = m+ s− h− h′. (30)

Now, by using Definition 9 we can re-write conditions (17), (18), (20) and (21) in
Definition 8 in the following way:

For dj, j ∈ {1, . . . ,m}, let l ∈ {0, . . . , h′} be such that cl > dj > cl+1. Then

qj = s− (h′ − l) + "{i ∈ ∆c|i > j}+ 1,

and condition (17) becomes

ml+1 ! tl+1,

while (18) is equal to
h′!

i=l+1

ci !
!

i∈∆c, i>j

di + dj +
s!

i=qj+1

ai. (31)

Analogously, for cj, j ∈ {1, . . . , n}, let l′ ∈ {0, . . . , h} be such that dl
′
> cj > dl

′+1.
Then

q′j = k − (h− l′) + "{i ∈ Sc|i > j}+ 1.

Also, (20) becomes
m′

l′+1 ! t′l′+1,

and (21) is equal to
h!

i=l′+1

di !
!

i∈Sc, i>j

ci + cj +
k!

i=q′j+1

bi. (32)

Remark 19. We note that by Definition 8, for all j such that ch
′
> dj, we have qj > s and

thus j ∈ ∆. So we have

ch
′
> dzh′+1 ! · · · ! dm ⇒ zh′ + 1, . . . ,m ∈ ∆. (33)
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Also, for all j such that dh > cj, we have q′j > k and thus j ∈ S. So we have

dh > cz′h+1 ! · · · ! cn ⇒ z′h + 1, . . . , n ∈ S. (34)

Hence, we have
t′h = k, and th′ = s. (35)

In the rest of the section we give auxiliary lemmas concerning the ordering of ci’s, with
i ∈ S and dj’s with j ∈ ∆ with respect to the remaining ones ci’s, with i ∈ Sc and dj’s
with j ∈ ∆c. These results follow directly from the Definition 8 of the sets S and ∆. All
of them are used in the proof of the main result.

Lemma 20. Let y ∈ {0, . . . , h′} and let j ∈ {1, . . . ,m−1} be such that cy > dj ! dj+1 >
cy+1. Then, if j + 1 ∈ ∆ we have that j ∈ ∆.

Proof. By (16) we have qj = qj+1. From the definition of ∆, since j + 1 ∈ ∆, there are
two possibilities: either qj+1 > s, and then qj > s, i.e. j ∈ ∆, as wanted; either (18) is not
valid for dj+1, in which case we trivially obtain that it is not valid for dj as well. Hence
j ∈ ∆, as wanted.

Completely analogously we have the dual result:

Lemma 21. Let x ∈ {0, . . . , h} and let j ∈ {1, . . . , n− 1} be such that dx > cj ! cj+1 >
dx+1. Then, if j + 1 ∈ S we have that j ∈ S.

Now, let us introduce some additional counters, which count the number of the el-
ements not in ∆ between two elements with the indices from S, and analogously, the
number of the elements not in S between two elements with the indices from ∆:

Definition 22. For y ∈ {0, . . . , h′} we define:

wy := "{i ∈ ∆c|cy > di > cy+1}.

For x ∈ {0, . . . , h} we define:

w′
x := "{j ∈ Sc|dx > cj > dx+1}.

Now, as direct corollaries of Lemmas 20 and 21, we have the following arrangement of
the elements from ∆ and S:

Let y ∈ {0, . . . , h}. Then by Lemma 20 we have

dzy > cy > dzy+1 ! dzy+2 ! · · · ! dzy+1−wy# $% &
∈∆

! dzy+1−wy+1 ! · · · ! dzy+1# $% &
/∈∆

> cy+1. (36)

Let x ∈ {0, . . . , h′}. Then by Lemma 21 we have

cz′x > dx > cz′x+1 ! cz′x+2 ! · · · ! cz′x+1−w′
x# $% &

∈S

! cz′x+1−w′
x+1 ! · · · ! cz′x+1# $% &

/∈S

> dx+1. (37)

From Definitions 9 and 22 we directly obtain relations between tj’s and wj’s:
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Lemma 23.

tx+1 = tx + 1− wx, x = 0, . . . , h′, (38)

t′y+1 = t′y + 1− w′
y, y = 0, . . . , h, (39)

zx + tx < zx+1 + tx+1, x = 0, . . . , h′, (40)

z′y + t′y < z′y+1 + t′y+1, y = 0, . . . , h. (41)

Lemma 24. Let j ∈ ∆. Let i ∈ {1, . . . , h} be such that dj = di and let y ∈ {0, . . . , h′} be
such that cy > dj > cy+1. Then

z′i + t′i = j + ty.

Proof. By Definition 9, together with Lemmas 20 and 21, we obtain

z′i + t′i = "{l ∈ {1, . . . , n}|cl > di}+ k − (h− i) + "{l ∈ Sc|cl < di} =

= k − (h− i) + (n− "{l ∈ S|cl < di}) = k − (h− i) + n− (h′ − y) =

= m+ s− (h− i)− (h′ − y).

On the other hand

ty = s− (h′ − y) + "{l ∈ ∆c|dl < cy} = s− h′ + y + (m− h− "{l ∈ ∆c|dl > cy}) =

= m+ s− (h− i) + (h′ − y)− j.

Thus,
z′i + t′i = j + ty,

as wanted.

Dually, we have:

Lemma 25. Let j ∈ S. Let i ∈ {1, . . . , h′} be such that cj = ci and let x ∈ {0, . . . , h} be
such that dx > cj > dx+1. Then

zi + ti = j + t′x.

By Lemmas 23, 24 and 25, we obtain

Lemma 26. The numbers zi + ti for i = 1, . . . , h′, and z′i + t′i for i = 1, . . . , h, are all
distinct. In addition,

{zi + ti|i = 1, . . . , h′} ∪ {z′i + t′i|i = 1, . . . , h} = {t0 + 1, t0 + 2, . . . ,m+ s}.
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6 Some results valid under the assumption ch
′ ! as (and dh !

bk)

In this section we give some important results and improvements on the bounds of qj’s
and tj’s, obtained under the assumptions ch

′ ! as and/or d
h ! bk.

Lemma 27. Suppose that ch
′ ! as, and let j ∈ {1, . . . ,m} be such that dj > ch

′
. Then

qj " s. In addition, if j ∈ ∆c then qj < s.

Proof. Before proceeding note that by the definition of ql all dl such that ch
′
> dl, satisfy

l ∈ ∆, see (33).
Since dj > ch

′
, we have that 1 " j " zh′ . Let p ∈ {0, . . . , h′ − 1} be such that

cp > dj > cp+1. The rest of the proof goes by the induction on j.

Let j = zh′ . By definition (16), we have qzh′ = s− (h′ − p) + 1 " s, as wanted.

Now let 1 " j < zh′ . By induction we suppose that qi " s, for all i = j + 1, . . . , zh′ .
We are left with proving that then qj " s.

By definition (16), we have that if qj+1 < s, then qj " s. So the only case we are left
to consider is when qj+1 = s, j + 1 /∈ ∆ and cp > dj+1 > cp+1. We shall prove that this
case is impossible, i.e. that if cp > dj+1 > cp+1 and qj+1 = s, then j + 1 ∈ ∆.

Let
γ = "{i ∈ ∆c|i = j + 2, . . . , zp+1}.

Since tp+1 = qj+1 − γ = s − γ, and mp+1 " s − 1 (since ch
′ ! as), we have mp+1 −

tp+1 + 1 " γ, so by the definition of γ we have that dj+1 doesn’t satisfy part (a) of the
definition of the set ∆. So we are left with checking the condition (b) of the definition of
the set ∆, i.e. we are left with checking

h′!

i=p+1

ci <
!

i!j+2, i∈∆c

di + dj+1. (42)

Since qj+1 = s, we have

1 + "{i ∈ ∆c|j + 2 " i " m} = h′ − p. (43)

Let u1 ! · · · ! uh′−p be the non-increasing ordering of dj+1 and di with j+2 " i " m,
i /∈ ∆, and let v1 ! · · · ! vh′−p be defined as vi := cp+i, i = 1, . . . , h′ − p. We claim that

ui > vi, i = 1, . . . , h′ − p. (44)

Since dj+1 > cp+1 we have u1 > v1. Now let us fix i0 ∈ {2, . . . , h′ − p}. Then ui0 = dl
for some l /∈ ∆ with j + 2 " l " m, i.e.

i0 = 1 + "{i /∈ ∆|j + 2 " i " l}.
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Let r ∈ {0, . . . , h′ − 1} be such that cr > dl > cr+1. Note that l " zh′ since for all i > zh′

we have i ∈ ∆.
From ql " s we get

"{i ∈ ∆c|l < i " m} " h′ − r − 1. (45)

Then (43) and (45) together give

1 + "{i /∈ ∆|j + 2 " i " l} ! r + 1− p,

i.e.
i0 ! r + 1− p.

Therefore
ui0 = dl > cr+1 = cp+(r+1−p) ! cp+i0 = vi0 .

By Lemma 18 we get (42). Thus, we have proved that j + 1 ∈ ∆, as wanted.

Dually, we have:

Lemma 28. Suppose that dh ! bk, and let j ∈ {1, . . . , n} be such that cj > dh. Then
q′j " k. In addition, if j ∈ Sc then q′j < k.

As a direct corollary of Lemmas 27 and 28, we have

Corollary 29.

ch
′ ! as =⇒ ty < s, for all y = 0, . . . , h′ − 1, (46)

dh ! bk =⇒ t′x < k, for all x = 0, . . . , h− 1. (47)

Proof. We shall prove (46), and (47) follows dually.
First note that there are no i /∈ ∆ such that ch

′−1 > di > ch
′
. Indeed, suppose on the

contrary that j ∈ {1, . . . ,m} is the largest such index. Since mh′ " s − 1 and th′ = s,
j /∈ ∆ implies that (18) is satisfied, i.e. ch

′ ! dj which is a contradiction. Therefore
th′−1 = s− 1.

Now fix y ∈ {0, . . . , h′ − 2}. If there are no i /∈ ∆ such that cy > di > ch
′−1 then

ty = th′−1−(h′−1−y) = s−1−(h′−1−y) < s. If there exists i /∈ ∆ with cy > di > ch
′−1,

then let j be the smallest such index and let p ∈ {y, . . . , h′−2} be such that cp > dj > cp+1.
Then tp = qj, and so by Lemma 27, ty = tp − (p− y) = qj − (p− y) < s− (p− y) " s, as
wanted.

Lemma 30. Suppose that ch
′ ! as. Let j ∈ {1, . . . ,m} be such that j ∈ ∆. Let y ∈

{0, . . . , h′} be such that cy > dj > cy+1. Then ty ! 0.

Proof. If y = h′, then ty = s ! 0, as wanted.

If 0 " y < h′, then dj > ch
′
. Suppose that ty < 0 then:

my+1 − ty+1 + 1 = my+1 − ty − 1 + wy + 1 ! my+1 + wy + 1.
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The last means that dzy+1−wy is among the smallest my+1 − ty+1 + 1 ei’s larger than
cy+1. Since, by Lemma 27 we have that qzy+1−wy " s, by the part (a) of the definition of
the set ∆, we conclude zy+1 −wy /∈ ∆, which is a contradiction by (36). Hence ty ! 0, as
wanted.

Dually, we have:

Lemma 31. Suppose that dh ! bk. Let j ∈ {1, . . . , n} be such that j ∈ S. Let
x ∈ {0, . . . , h} be such that dx > cj > dx+1. Then t′x ! 0.

Lemma 32. Suppose that ch
′ ! as and dh ! bk. Then t0 = t′0 ! 0.

Proof. If any of the sets S or ∆ is empty, we directly get that t0 ! 0. If none of the sets
S and ∆ is empty, then if d1 > c1 by Lemma 30 we have that t0 ! 0, and if c1 > d1 by
Lemma 31 we have that t′0 ! 0, as wanted.

Now, by Lemma 26 we obtain

Lemma 33. Let ch
′ ! as and dh ! bk. The numbers zi + ti for i = 1, . . . , h′, and z′i + t′i

for i = 1, . . . , h, are all distinct and satisfy

{zi + ti|i = 1, . . . , h′} ∪ {z′i + t′i|i = 1, . . . , h} = {t0 + 1, t0 + 2, . . . ,m+ s} ⊂

⊂ {1, . . . ,m+ s}

6.1 Definition of the partition ḡ

Let ch
′ ! as and dh ! bk. Then by Lemma 32 we have t0 ! 0, and so we can define the

following important partition:
Let ḡ = (ḡ1, . . . , ḡm+s) be a partition defined as the following union

(c1, . . . , ch
′
) ∪ (d1, . . . , dh) ∪ (M, . . . ,M)# $% &

t0

, (48)

where
M := max(a1, b1, c1, d1) + 1.

In other words, the partition ḡ is defined as the non-increasing union of all ci, with
i ∈ S, all dj, with j ∈ ∆, with added t0 elements equal to M .

By Lemmas 24 and 25, we have that the partition ḡ from (48) also satisfies:

ḡi = max(a1, b1, c1, d1) + 1, i = 1, . . . , t0, (49)

ḡj = dj−tx , for zx + tx < j < zx+1 + tx+1, x = 0, . . . , h′, (50)

ḡzx+tx = cx, x = 1, . . . , h′, (51)

or equivalently:

ḡi = max(a1, b1, c1, d1) + 1, i = 1, . . . , t′0, (52)
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ḡj = cj−t′x , for z′x + t′x < j < z′x+1 + t′x+1, x = 0, . . . , h, (53)

ḡz′x+t′x = dx, x = 1, . . . , h. (54)

Moreover, by using this partition, we can equivalently re-write conditions Ω̄(c,d, a,b)
in the following, more concise, way:

(o) ch
′ ! as, and dh ! bk, (55)

(i) if y ∈ {1, . . . , h′ − 1} is such that ty " my, then
m+s!

i=zy+ty

ḡi !
m+s!

i=zy+ty

ei (56)

(ii) if x ∈ {1, . . . , h− 1} is such that t′x " m′
x, then

m+s!

i=z′x+t′x

ḡi !
m+s!

i=z′x+t′x

e′i. (57)

Indeed, condition (i.1) for y = h′ and condition (ii.1) for y = h, together are (o). And
by definition of ḡ, condition (i.1) for y ∈ {1, . . . , h′ − 1} is (i), while condition (ii.1) for
y ∈ {1, . . . , h− 1} is (ii).

7 Auxiliary lemmas used in the necessity part of the proof

Consider the partitions a,b, c and d as in (2)–(5), respectively. Main result of this section
is Lemma 38 that will be strongly used in proving the necessity of conditions Ω̄(c,d, a,b).

Lemma 34. Let g = (g1, . . . , gm+s) be a partition which satisfies

g ≺′′ (d, a), and g ≺′′ (c,b).

Then
ch

′ ! gzh′+s and dh ! gz′h+k, (58)

as well as
ch

′ ! as and dh ! bk. (59)

Proof. We shall prove that ch
′ ! gzh′+s and ch

′ ! as. Dually we will have dh ! gz′h+k and

dh ! bk.
If suppose that zh′ = m, i.e. if dm > ch

′
, then ch

′
= cn and since g ≺′′ (c,b) we have

ch
′
= cn ! gn+k = gm+s = gzh′+s, as wanted.

If zh′ < m, then ch
′
= cn−α+1 for some 1 " α " n, and zh′ = m − β, for some

1 " β " m. Then we have that i /∈ S for n−α+1 < i " n, and j ∈ ∆ for m−β < j " m.
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If β < α, we have ch
′
= cn−α+1 ! gn−α+1+k = gm−α+1+s ! gm−β+s = gzh′+s, as wanted.

If β ! α, then from the definition of q′i we have

q′n−α+1 = k − β + α " k.

Since n − α + 1 ∈ S, from the definition of the set S (part (a)) we have that the index
n−α+1 does not belong to the m′

h−β+1 − t′h−β+1 +1 smallest e′i’s bigger than dm−β+1(=
dzh′+1). Let

ū = "{i ∈ {1, . . . , k}|bi > cn−α+1},

v̄ = "{i ∈ {1, . . . , k}|cn−α+1 ! bi > dm−β+1},

w̄ = "{n− α + 1 < i " n|ci > dm−β+1}

and
z̄ = "{n− α + 1 < i " n|ci < dm−β+1}.

Then z̄+w̄ = α−1, t′h−β+1 = k−(β−1)+z̄ andm′
h−β+1 = ū+v̄. Since n−α+1 ∈ S we

have v̄+w̄ ! m′
h−β+1−t′h−β+1+1 = ū+ v̄−k+β− z̄, i.e. ū " w̄+ z̄+k−β = α−1+k−β.

Thus,
α + k > β,

and
ch

′
= cn−α+1 ! bα+k−β (60)

Also, since n−α+1 ∈ S by the part (b) of the definition of the set S (since q′n−α+1 " k),
we have

m!

i=m−β+1

di < cn−α+1 +
n!

i=n−α+2

ci +
k!

i=k+α−β+1

bi. (61)

Now, let us suppose the opposite from what we need to prove, i.e. that ch
′
< gzh′+s.

Last is equivalent to cn−α+1 < gm−β+s. Thus, by definition of h′
j = min{i|ci−j+1 < gi}, we

have h′
m−β+s−n+α " m+ s− β, i.e. h′

k+α−β " m+ s− β. Let u ∈ {0, . . . , k} be such that
h′
u " m+ s− β < h′

u+1. Then u ! k + α− β.

Since g ≺′′ (c,b), by the definition of the weak generalized majorization, and by
Lemma 16, we have

m+s!

i=m+s−β+1

gi !
n!

i=m+s−β+1−u

ci +
k!

i=u+1

bi. (62)

Since g ≺′′ (d, a) implies di ! gi+s, i = 1, . . . ,m, by (62) we have

m!

i=m−β+1

di !
n!

i=m+s−β+1−u

ci +
k!

i=u+1

bi. (63)
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Since u ! k + α− β, from (60) we have that

n!

i=m+s−β+1−u

ci +
k!

i=u+1

bi =
n!

i=n−α+1

ci +
k!

i=k−α+β+1

bi+

+

'
n−α!

i=m+s−β+1−u

ci −
u!

i=k+α−β+1

bi

(
!

n!

i=n−α+1

ci +
k!

i=k−α+β+1

bi,

which together with (63) gives

m!

i=m−β+1

di !
n!

i=n−α+1

ci +
k!

i=k+α−β+1

bi, (64)

which contradicts (61). Thus, ch
′ ! gzh′+s.

Now, let us prove that ch
′ ! as. Let j ∈ {0, . . . , s}, be such that hj < zh′ + s " hj+1

(h0 = 0, hs+1 = m+ s+ 1).
Then g ≺′′ (d, a) (by Lemma 16 and the definition of the weak generalized majoriza-

tion) gives
m+s!

i=zh′+s

gi !
m!

i=zh′+s−j

di +
s!

i=j+1

ai. (65)

Conditions (6) and (65) together with ch
′ ! gzh′+s give

ch
′
+

m!

i=zh′+1

di !
m!

i=zh′+s−j

di +
s!

i=j+1

ai. (66)

If j = s, (66) becomes ch
′ ! dzh′ which is a contradiction by the definition of zh′ . On the

other hand if j < s, then (66) gives

(s− j)ch
′ ! ch

′
+

zh′+s−j−1!

i=zh′+1

di !
s!

i=j+1

ai ! (s− j)as,

i.e. ch
′ ! as, as wanted.

By (59) and by Lemma 32, we have t0 ! 0, and so we can define ḡ as in (49). Since
th′ = s and t′h = k (see (35)), (58) becomes

ḡzh′+s ! gzh′+s, and ḡz′h+k ! gz′h+k. (67)

Hence in the course of proving the previous lemma we have also proved:
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Corollary 35. Let g = (g1, . . . , gm+s) be a partition which satisfies g ≺′′ (d, a), and
g ≺′′ (c,b). Then

ḡi ! gi, i ! zh′ + th′ ,

and
ḡi ! gi, i ! z′h + t′h.

Lemma 36. Let g = (g1, . . . , gm+s) be a partition such that

g ≺′′ (d, a) and g ≺′′ (c,b). (68)

Let y ∈ {0, . . . , h′ − 1}. If

ḡi ! gi, i ! zy+1 + ty+1,

then
ḡi ! gi, i > zy + ty. (69)

Proof. We need to prove that

ḡi ! gi, zy+1 + ty+1 > i > zy + ty. (70)

Those ḡi are then precisely dj such that j ∈ ∆, and cy > dj > cy+1. And so (70) is

dj ! gj+ty , (71)

for all such j = zy + 1, . . . , zy+1 − wy.
Since (68), by Lemma 34 we have ch

′ ! as. Then by (46) we have ty < s. Also, by
Lemma 30 we have that ty ! 0. Therefore, we have 0 " ty < s, i.e. 1 " ty + 1 " s, and
so by the definition hty+1 = min{u|du−ty < gu}.

We shall prove that
hty+1 ! zy+1 + ty+1. (72)

If (72) is valid then du ! gu+ty , for u + ty < zy+1 + ty+1, i.e. u " zy+1 + ty+1 − ty − 1 =
zy+1 − wy, thus proving (71), and consequently the lemma.

Let suppose the opposite to (72), i.e. let hty+1 " zy+1+ty+1−1. Consider u ∈ {1, . . . , s}
such that hu < zy+1+ty+1 " hu+1. Then u ! ty+1 and since g ≺′′ (d, a), by the definition
of the weak generalized majorization, and by Lemma 16, we have:

m+s!

i=zy+1+ty+1

gi !
m!

i=zy+1+ty+1−u

di +
s!

i=u+1

ai. (73)

By the assumptions of the lemma, we have

m+s!

i=zy+1+ty+1

ḡi !
m+s!

i=zy+1+ty+1

gi. (74)
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Inequalities (73) and (74), together with the definition of ḡi, give

h′!

i=y+1

ci +
!

j∈∆, j>zy+1

dj !
m!

i=zy+1+ty+1−u

di +
s!

i=u+1

ai. (75)

Since zy+1 −wy ∈ ∆, and since qzy+1−wy = ty + 1 " s , we have that dzy+1−wy does not
satisfy the condition from the part (b) of the definition of the set ∆:

h′!

i=y+1

ci < dzy+1−wy +
!

i>zy+1−wy , i∈∆c

di +
s!

i=ty+2

ai

which further gives

h′!

i=y+1

ci +
!

i>zy+1, i∈∆

di <
m!

i=zy+1−wy

di +
s!

i=ty+2

ai

Last equation together with (75) give

m!

i=zy+1+ty+1−u

di +
s!

i=u+1

ai <
m!

i=zy+1−wy

di +
s!

i=ty+2

ai.

Since u ! ty + 1 and ty = ty+1 − 1 + wy, we have

zy+1−wy−1!

i=zy+1+ty+1−u

di <
u!

i=ty+2

ai. (76)

Note that there is the same number of summands on the left and the right hand side
in (76). Since zy+1 − wy ∈ ∆, we know that dzy+1−wy does not belong to the smallest
my+1 − ty+1 + 1 ei’s larger than cy+1. Therefore my+1 − ty+1 + 1 " wy + "{i|dzy+1−wy >
ai > cy+1}, i.e. "{i|ai ! dzy+1−wy} " ty. This is equivalent to dzy+1−wy > aty+1, and so the
smallest summand on the LHS of (76) is larger then the largest summand on the RHS,
which gives a contradiction. Thus (72) is valid, and so we have proved our lemma.

Dually, we have:

Lemma 37. Consider a partition g = (g1, . . . , gn+k), such that

g ≺′′ (d, a) and g ≺′′ (c,b).

Let y ∈ {0, . . . , h− 1}. If

ḡi ! gi, i ! z′y+1 + t′y+1,

then
ḡi ! gi, i > z′y + t′y.
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Next, we shall unify results from Lemmas 34 –37 to prove that if there exists a partition
g satisfying g ≺′′ (d, a) and g ≺′′ (c,b), gi’s are bounded above by ḡi’s. More precisely,
by Corollary 35, Lemmas 33, 36 and 37, we have

Lemma 38. Let g = (g1, . . . , gm+s) be a partition such that

g ≺′′ (d, a), and g ≺′′ (c,b). (77)

Then
ḡi ! gi, i = t0 + 1, . . . ,m+ s. (78)

8 Auxiliary lemmas used in the sufficiency part of the proof

Lemma 39. Let i ∈ {0, . . . , h′ − 1}. Suppose that t0 ! 0. Then:

If mi − ti " 0, then ci ! ezi+1+ti+1
. (79)

If mi − ti > 0, then ci < ezi+1+ti+1
. (80)

Proof. Claim (79) follows by Definitions 9 and 22, since zi+1+ti+1 ! zi+wi+ti+1−wi >
zi +mi.

On the other hand, if mi > ti, we have mi+1 − ti+1 + 1 = mi + "{j ∈ {1, . . . , s}|ci !
aj > ci+1} − ti + wi > "{j ∈ {1, . . . , s}|ci ! aj > ci+1} + wi. Therefore mi+1 ! ti+1 and
mi+1 − ti+1 + 1 is strictly bigger than the number of al’s and dj’s with j ∈ ∆c, that are
between ci and ci+1. Therefore at least one among ezi+1+ti+1

, . . . , ezi+1+mi+1
is bigger than

ci, i.e. ci < ezi+1+ti+1
, as wanted.

Lemma 40. Let conditions (i.1) and (ii.1) from Theorem 11 be valid. Then

h′!

i=1

ci !
!

i∈∆c

di +
s!

i=t0+1

ai, (81)

and
h!

i=1

di !
!

i∈Sc

ci +
k!

i=t′0+1

bi. (82)

Proof. Before proceeding we note that (81) is dual to (82). So it is enough to prove one
of them, e.g. (81).

Let us suppose that there are no i ∈ {1, . . . ,m} such that i ∈ ∆c. Then by the
definition we have t0 = s− h′ and

ti = ti−1 + 1 = t0 + i, i = 1, . . . , h′.
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If mi < ti for all i ∈ {1, . . . , h′}, then by the definition of mi we have ci ! ati = at0+i,
and thus

h′!

i=1

ci !
s!

i=t0+1

ai,

which is precisely (81) in this case.

If there is i ∈ {1, . . . , h′} for which mi ! ti, then let y ∈ {1, . . . , h′} be the minimal
such index. Then condition (i.1) for cy gives

zy+my!

i=zy+ty

ei "
h′!

i=y

ci −
s!

i=my+1

ai. (83)

Among ei’s on the LHS there can be no di, since by the part (a) of the definition of the
set ∆, we would have that those i do not belong to ∆, contradicting the assumption that
there are no such indices. Therefore those ei’s are precisely aty , . . . , amy , and so (83) is
equivalent to

h′!

i=y

ci !
s!

i=ty

ai =
s!

i=t0+y

ai. (84)

Since for all i = 1, . . . , y − 1 we have mi + 1 " ti = t0 + i, from the definition of mi,
we have ci ! at0+i, for i = 1, . . . , y − 1. This together with (84) prove (81) in this case.

Now suppose that there exists i ∈ {1, . . . ,m} such that i /∈ ∆. Let j be the minimal
such index. By the definition of the set ∆, we have that qj " s, and thus, by the
definition of qj, we conclude that S is nonempty.

Since all di < ch
′
satisfy i ∈ ∆, there exists y ∈ {1, . . . , h′} such that

cy−1 > dj > cy.

Then by the definition of j, we have j = zy −wy−1 +1. Also, we have that ti = t0 + i, for
i = 1, . . . , y − 1.

If there exists i ∈ {1, . . . , y − 1} such that mi ! ti, denote by x minimal such index.
Then in exactly the same way as in the first case (since there are no i ∈ ∆c with di > cy−1),
we obtain that condition (i.1) for cx implies

h′!

i=x

ci !
!

i∈∆c

di +
s!

i=tx

ai =
!

i∈∆c

di +
s!

i=t0+x

ai.

Together with ci ! at0+i, for i = 1, . . . , x− 1, this proves (81).
Thus, suppose that mi < ti, for all i = 1, . . . , y − 1, and therefore

ci ! at0+i, i = 1, . . . , y − 1. (85)
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Now, since j /∈ ∆, we have two possibilities from the definition of ∆. If the part (a) of
the definition is satisfied, dj is among the smallest my − ty + 1 ei’s larger than cy. Thus,
j, j + 1, . . . , zy /∈ ∆, as well as ty " my.

Then condition (i.1) for cy gives:

zy+my!

i=zy+ty

ei "
h′!

i=y

ci −
!

i>zy , i∈∆c

di −
s!

i=my+1

ai. (86)

By the above assumptions (ezy+ty , . . . , ezy+my) consists of wy−1 di’s, while the remaining
my − ty + 1− wy−1 = my − ty−1 are ai’s, i.e. they are precisely aty−1+1, . . . , amy (they are
all larger than cy). So, (86) becomes:

h!

i=y

ci !
!

i∈∆c

di +
s!

i=ty−1+1

ai =
!

i∈∆c

di +
s!

i=t0+y

ai. (87)

On the other hand, if j /∈ ∆ because of the part (b) of the definition of ∆, then

h′!

i=y

ci !
!

i∈∆c

di +
s!

i=qj+1

ai. (88)

Since from the definition of qi’s and ti’s we have that qj = ty−1, the last inequality becomes
precisely (87).

Therefore, we have obtained that (87) holds, and together with (85) finally gives the
wanted condition (81).

Dually by changing the roles of partitions c and b with d and a, respectively, we
obtain (82).

9 Proof of Theorem 11

9.1 Necessity of conditions (i.1) and (ii.1)

Let us assume that there exists a partition g such that

g ≺′′ (d, a), and g ≺′′ (c,b). (89)

Then we shall prove that conditions (i.1) and (ii.1) hold. By (89) and Lemma 34 we
obtain

ch
′ ! as and dh ! bk, (90)

i.e. we have condition (i.1) for y = h′, and condition (ii.1) for x = h. Also, by Lemma
32, we have t0 ! 0, and thus we can define the partition ḡ as in Section 6.1.

We are left with proving (i.1) for y ∈ {1, . . . , h′ − 1}, and (ii.1) for x ∈ {1, . . . , h− 1}.
Let y ∈ {1, . . . , h′ − 1} be such that ty " my (note again that (90) means that th′ > mh′).
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Let u ∈ {0, . . . , s} be such that hu < zy + ty " hu+1 (h0 = 0, hs+1 = m + s + 1). From
g ≺′′ (d, a), by the definition of the weak generalized majorization, and by Lemma 16,
we have

m+s!

i=zy+ty

gi !
m!

i=zy+ty−u

di +
s!

i=u+1

ai

Together with Lemma 38 this gives

m+s!

i=zy+ty

ḡi !
m!

i=zy+ty−u

di +
s!

i=u+1

ai. (91)

By the definition of e, we have

m!

i=zy+ty−u

di +
s!

i=u+1

ai !
m+s!

i=zy+ty

ei.

The last relation, together with (91) and the definition of the partition ḡ in (48), gives
(i.1), as wanted.

Dually we obtain the condition (ii.1) for x ∈ {1, . . . , h− 1}. This finishes the proof of
the necessity of conditions.

9.2 Sufficiency of conditions (i.1) and (ii.1)

Suppose now that conditions (i.1) and (ii.1) hold. Thus, by Lemma 40 we have that

h′!

i=1

ci !
!

i∈∆c

di +
s!

i=t0+1

ai. (92)

and
h!

i=1

di !
!

i∈Sc

ci +
k!

i=t′0+1

bi. (93)

Also, condition (i.1) for y = h′ and condition (ii.1) for y = h, together give

ch
′ ! as and dh ! bk. (94)

In this section we shall prove that the partition ḡ = (ḡ1, . . . , ḡm+s) defined in Section
6.1 satisfies

ḡ ≺′′ (d, a) (95)

ḡ ≺′′ (c,b), (96)

We start with proving (95). By Definition 3 of the weak majorization we need to prove
the following:

di ! ḡi+s, i = 1, . . . ,m, (97)
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"m+s
i=hj+1 ḡi !

"m
i=hj−j+1 di +

"s
i=j+1 ai, j = 1, . . . , s, (98)

"m+s
i=1 ḡi !

"m
i=1 di +

"s
i=1 ai, (99)

where hj := min{i|di−j+1 < ḡi}, for j = 1, . . . , s.

Before proceeding, we note that (94) and (46), together with (35) give

tx " s, for all x = 0, . . . , h′.

Regarding (97), since t0 " s, we have that ḡi’s appearing in (97) are the ones defined
by (50) and (51). Let i ∈ {1, . . . ,m}.

If i ∈ ∆, from (50) we have that di = ḡi+tx , for some x ∈ {0, . . . , h′}, and since tx " s
for any such x, we obtain di ! ḡi+s, as wanted.

If on the other hand i /∈ ∆, then let y ∈ {0, . . . , h′ − 1} be such that cy > di > cy+1.
Then we have that i ∈ {zy+1 − wy + 1, . . . , zy}, and by (51) we have:

di > cy+1 = ḡzy+1+ty+1 = ḡzy+1−wy+1+ty ! ḡi+s,

since zy+1 − wy + 1 " i and ty " s. This proves (97).

Now, we pass to (98). First we note that from the definition of ḡi, (49)–(50), we can
compute the values of hj, for j = 1, . . . , s. We have that:

hj = j, j = 1, . . . , t0, (100)

and
hj = zx + tx, j = t0 + 1, . . . , s. (101)

Here x = min{i ∈ {1, . . . , h′}|ti = j}.

From (49) we have ḡt0 ! d1, which gives (100).

As for (101), first note that x is well-defined, i.e. the set {i ∈ {1, . . . , h′}|ti = j}
is non-empty, for j = t0 + 1, . . . , s. Indeed, from the definition of tx, we have that
tx+1 = tx+1−wx, and so tx+1 " tx+1, for x = 0, . . . , h′− 1. Since t0 " s = th′ , for every
j, with t0 < j " s, there must exist at least one x ∈ {1, . . . , h′} such that tx = j.

Now, we show that for every j ∈ {t0 +1, . . . , s}, there exists i ∈ {1, . . . , h′}, such that
hj = zi + ti.

Indeed, if, on the contrary, there exists j ∈ {t0 + 1, . . . , s}, for which there are no
i ∈ {1, . . . , h′}, such that hj = zi + ti, then let u ∈ {0, . . . , h′} be such that zu + tu <
hj < zu+1 + tu+1. Then by (50) we have ḡhj

= dhj−tu , and from the definition of hj, we
have dhj−j+1 < ḡhj

= dhj−tu , which implies j " tu, and so u ! 1. But then, from (51),
ḡzu+tu = cu > dzu+1 ! dzu+tu−j+1, and so hj " zu + tu, which is a contradiction.

Hence we have that there exists i ∈ {1, . . . , h′} such that hj = zi + ti. Then from the
definition of hj we have dzi > ci = ḡzi+ti = ḡhj

> dhj−j+1 = dzi+ti−j+1, and so ti ! j. Now,
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if ti > j, since tx+1 " tx + 1, for x = 0, . . . , h′ − 1, since and t0 < j, we have that there
exists u ∈ {1, . . . , i− 1} such that tu = j. Then ḡzu+tu = cu > dzu+1 = dzu+tu−j+1, which
together with zu + tu < zi + ti (since u < i) contradicts the definition of hj. Therefore
ti = j which finally proves (101).

Now we shall prove (98).
Let j = 1, . . . , t0. By (100), condition (98) becomes

m+s!

i=j+1

ḡi !
m!

i=1

di +
s!

i=j+1

ai, j = 1, . . . , t0. (102)

By (49), it is enough to prove (102) for j = t0, i.e.:

m+s!

i=t0+1

ḡi !
m!

i=1

di +
s!

i=t0+1

ai, (103)

which is by the definition of ḡt0+1, . . . , ḡm+s, equivalent to (81).

Now, let j = t0 + 1, . . . , s. Let xj = min{i ∈ {1, . . . , h′}|ti = j}. Then, by (101), the
condition (98) becomes

m+s!

i=zxj+txj+1

ḡi !
m!

i=zxj+1

di +
s!

i=j+1

ai,

which is (by the definition of ḡi’s) equivalent to

h′!

i=xj+1

ci !
!

i!zxj+1, i∈∆c

di +
s!

i=txj+1

ai. (104)

In order to prove (104) we need to consider the following three possibilities:

• wxj
> 0, i.e. cxj > dzxj+1−wxj+1 > cxj+1,

and zxj+1 − wxj
+ 1 /∈ ∆, by the part (b) of the definition of the set ∆

(105)

• wxj
> 0, i.e. cxj > dzxj+1−wxj+1 > cxj+1,

and zxj+1 − wxj
+ 1 /∈ ∆, by the part (a) of the definition of the set ∆,

(106)

• wxj
= 0, i.e. there are no i /∈ ∆, cxj > di > cxj+1. (107)
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First consider the case (105). Suppose that wxj
> 0, such that zxj+1 − wxj

+ 1 /∈
∆, cxj > dzxj+1−wxj+1 > cxj+1, satisfies the following condition (see the part (b) of the

definition of the set ∆ and note that qzxj+1−wxj+1 = txj
):

h′!

i=xj+1

ci ! dzxj+1−wxj+1 +
!

i>zxj+1−wxj+1, i∈∆c

di +
s!

i=txj+1

ai. (108)

Condition (108) is equivalent to (104), which finishes our proof in this case.

Next, we consider the case (106). In this case we have that wxj
> 0, and dzxj+1−wxj+1

is among "{i ∈ {1, . . . , s}|ai > cxj+1} − s + (h′ − xj) − "{i ∈ ∆c|di < cxj+1} + 1 smallest
ei’s larger than cxj+1 (see the part (a) of the definition of the set ∆), i.e.

dzxj+1−wxj+1 ∈ {ezxj+1+txj+1 , . . . , ezxj+1+mxj+1}.

Thus, in this case we have that txj+1 " mxj+1.
Let us consider the differences mi − ti for all i = 0, . . . , xj + 1. We have that mxj+1 −

txj+1 ! 0, and m0−t0 = −t0 " 0 (because of Lemma 32). Thus, there exists v := max{i ∈
{0, . . . , xj}|mi − ti " 0}. Then mv+1 − tv+1 ! 0 and v " xj, so we have that condition
(i.1) is satisfied for v + 1. i.e.

zv+1+mv+1!

i=zv+1+tv+1

ei "
h′!

i=v+1

ci −
!

i>zv+1, i∈∆c

di −
s!

i=mv+1+1

ai. (109)

Let us suppose that v = xj. Then mxj
− txj

" 0. This, by Lemma 39 implies that
cxj ! ezxj+1+txj+1 . Thus, there are exactly wxj

of di’s among ezxj+1+txj+1 , . . . , ezxj+1+mxj+1 ,
and those are dzxj+1−wxj+1, . . . , dzxj+1 . The remaining mxj+1−txj+1+1−wxj

= mxj+1−txj

are ai’s, i.e. atxj+1, . . . , amxj+1 . Then (109) becomes (note that we are in the case v = xj)

h′!

i=xj+1

ci !
!

i>zxj , i∈∆c

di +
s!

i=txj+1

ai, (110)

as wanted.

Next, let us suppose that 0 " v < xj. In this case mi− ti > 0, for all i = v+1, . . . , xj,
and so by Lemma 39 we have that ci < ezi+1+ti+1

, for all i = v + 1, . . . , xj. This implies
that there are no j ∈ ∆ with cv+1 > dj > cxj+1, and so wi = zi+1 − zi and

zi+1 + ti+1 = zi + ti+1 + wi = zi + ti + 1, i = v + 1, . . . , xj. (111)

It also means that (109) can be re-written as :

zxj+mxj!

i=zv+1+tv+1

ei "
h′!

i=v+1

ci −
!

i>zxj , i∈∆c

di −
s!

i=mxj+1

ai. (112)
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Since mv − tv " 0, by Lemma 39 we have cv ! ezv+1+tv+1 , and so cv ! ezv+1+tv+1 ! · · · !
ezxj+mxj

> cxj .
From the definition of xj, we have tr < txj

= j, for all r < xj, i.e.

"{i ∈ ∆c|cr > di > cxj} < xj − r, for all r < xj. (113)

Therefore among ezv+1+tv+1 , . . . , ezxj+mxj
there are at most xj − v−1 di’s (note that as

we have shown above, all such di’s satisfy i /∈ ∆). Also by (111), zxj
+txj

= zv+1+tv+1+xj−
(v+1). Thus, among those ei’s there are at least zxj

+mxj
−(zv+1+tv+1)+1−(xj−v−1) =

zxj
+mxj

+1− (zxj
+ txj

) = mxj
− txj

+1, ai’s. Thus atxj , . . . , amxj
surely belong to them.

Since atxj ! amxj
> cxj and since ezi+1+ti+1

> ci, i = v + 1, . . . , xj, (113) and (112) give

h′!

i=xj+1

ci !
!

i>zxj , i/∈∆

di +
s!

i=txj+1

ai,

i.e. we have proved (104).

So, we are left with the case (107). In this case wxj
= 0, which means that there are

no i /∈ ∆, such that cxj > di > cxj+1.
In this case, we are left with two possibilities

txj+1 " mxj+1 (114)

txj+1 > mxj+1 (115)

The case (114) is done exactly as in the case (106) when wxj
> 0 and txj+1 " mxj+1.

Now, consider the case (115). The proof of this case goes by the induction on j =
t0 + 1, . . . , s.

Let j = s. Since ch
′ ! as, (46) implies tx < s for x < h′. So since th′ = s, we have

xs = h′. Hence (104) becomes 0 ! 0, which is trivially satisfied.

Now, fix j ∈ {t0 +1, . . . , s− 1}, and suppose that (104) is satisfied for all j +1, . . . , s.
We shall prove that it is then also valid for j.

Since txj+1 > mxj+1, we have c
xj+1 ! amxj+1+1 ! atxj+1 . Since there are no i /∈ ∆ such

that cxj > di > cxj+1, we have txj+1 = txj
+ 1 = j + 1, and so xj+1 = xj + 1. By the

induction hypothesis for j + 1, we have

h′!

i=xj+1+1

ci !
!

i!zxj+1+1, i∈∆c

di +
s!

i=txj+1+1

ai. (116)

Since cxj+1 ! amxj+1+1 ! atxj+1 = atxj+1, then (116) gives (104).
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This finishes our proof of (104), and consequently of (98).

Finally, (99) follows from (103) (i.e. (81)), together with (49). Therefore we have
shown that

ḡ ≺′′ (d, a).

Dually we obtain
ḡ ≺′′ (c,b).

This finishes the proof of Theorem 11.

Example 41. Now we can go back to Example 15 and define the wanted partition ḡ such
that

ḡ ≺′′ (d, a) and ḡ ≺′′ (c,b),

where a = (11, 9, 1), b = (12, 3), c = (8, 7, 5) and d = (10, 4).
In Example 15 we have shown that the conditions from Theorem 11 are satisfied,

implying the existence of the wanted partition ḡ. We shall now compute explicitly ḡ as
in Section 6.1.

In Example 15, we have computed sets S and ∆ for the partitions a,b, c,d:

S = {1, 2, 3} and ∆ = {2}.
Thus, c1 = c1 = 8, c2 = c2 = 7, c3 = c3 = 5, and d1 = d2 = 4. Also, by (30) we have

t0 = 1.
We shall define ḡ by formula (48). Hence,

(ḡ1, ḡ2, ḡ3, ḡ4, ḡ5) = (c1, c2, c3) ∪ (d2) ∪ (M),

where M = max{a1, b1, c1, d1}+ 1 = max{12, 11, 10, 8}+1 = 13. In such way, we have:

ḡ = (13, 8, 7, 5, 4).

One can directly check by Definition 3 that the partition ḡ = (13, 8, 7, 5, 4) satisfies

(13, 8, 7, 5, 4) ≺′′ (d, a) and (13, 8, 7, 5, 4) ≺′′ (c,b),

as desired.

10 Proof of Theorem 13

Necessity of conditions (24) and Ω̄(c,d, a,b):

Let there exists a partition g such that

g ≺′ (d, a) and g ≺′ (c,b). (117)
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Then (24) follows trivially. Also, such a partition g also satisfies

g ≺′′ (d, a) and g ≺′′ (c,b), (118)

and so by Theorem 11 we obtain condition Ω̄(c,d, a,b), as wanted.

Sufficiency of conditions (24) and Ω̄(c,d, a,b):

Let us assume that conditions (24) and Ω̄(c,d, a,b) are valid. By Theorem 11, con-
dition Ω̄(c,d, a,b) implies the existence of a partition g′ such that

g′ ≺′′ (d, a) and g′ ≺′′ (c,b). (119)

The rest of this section is completely analogous to [5]. It doesn’t depend on the
definitions of the sets S and ∆, so it remains completely the same. Indeed, the partition
g′ satisfies all the wanted properties for (117) except the total sum, i.e. we have

m+s!

i=1

g′i !
m!

i=1

di +
s!

i=1

ai,

and not the equality. We shall define the desired partition g by decreasing some of the
largest elements of the partition g′, so that the sum of all elements of g is correct, and
such that all properties of generalized majorization remain valid.

To that end, let

Ω :=
m+s!

i=1

g′i −
'

m!

i=1

di +
s!

i=1

ai

(
, (120)

and let

f :=

)
1 + max

*
i ∈ {1, . . . ,m+ s}|

"i
j=1 g

′
j − ig′i < Ω

+
, if Ω > 0,

1, if Ω = 0.
(121)

Let X :=
"f−1

i=1 g′i − Ω, and let u and v be unique non-negative integers, such that
X = u(f − 1) + v, with v < f − 1. Then we set:

gi = u+ 1, i = 1, . . . , v, (122)

gi = u, i = v + 1, . . . , f − 1, (123)

gi = g′i, i = f, . . . ,m+ s. (124)

Then g = (g1, g2, . . . , gm+s) is a partition of non-negative integers satisfying:

m+s!

i=1

gi =
m!

i=1

di +
s!

i=1

ai, (125)

gi = g′i, for all i ! f, (126)
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g′f−1 ! gi ! g′f , for all i = 1, . . . , f − 1,

and
g1 ! gf−1 ! g1 − 1.

By Lemma 17 such defined g1 ! · · · ! gm+s satisfy

g ≺′′ (d, a) and g ≺′′ (c,b).

However, since (24) and (125) are valid, by the definition of the generalized majorization
we also have

g ≺′ (d, a) and g ≺′ (c,b),

as wanted.

Example 42. Consider a partition g′ = (10, 9, 8, 5, 3, 1), satisfying

g′ ≺′′ (d, a) and g′ ≺′′ (c,b)

for some partitions a, b, c, and d such that the sum of the elements of partitions a and d
is equal to the sum of the elements of partitions b and c. Also, let the difference between
the sums of the elements of the partition g′ and the elements of the partitions d and a
together, be equal to 6.

Then by (120) we have Ω = 6. Let us define a partition g such that

g ≺′ (d, a) and g ≺′ (c,b).

Since Ω = 6, by (121) we have that f = 4, and hence by (124) we directly obtain g4 = 5,
g5 = 3 and g6 = 1. Next, we compute X = g′1 + g′2 + g′3 − Ω = 21, as well as u = 7 and
v = 0. Hence by (123) we have g1 = g2 = g3 = 7. Therefore, the wanted partition is

g = (g1, g2, g3, g4, g5, g6) = (7, 7, 7, 5, 3, 1).

Example 43. Now we can go back to Examples 15 and 41 and define the wanted partition
g such that

g ≺′ (d, a) and g ≺′ (c,b). (127)

Recall that a = (11, 9, 1), b = (12, 3), c = (8, 7, 5) and d = (10, 4). In Example 43,
we have obtained the partition ḡ = (13, 8, 7, 5, 4) satisfying

(13, 8, 7, 5, 4) ≺′′ (d, a) and (13, 8, 7, 5, 4) ≺′′ (c,b).

However partition ḡ does not satisfy (127), since
"5

i=1 ḡi >
"3

i=1 ai +
"2

i=1 di. So, we
need to decrease its sum by Ω =

"5
i=1 ḡi −

"3
i=1 ai −

"2
i=1 di = 2, as explained above.

We have f = 1 + max{i|
"i

j=1 ḡj − iḡi < 2} = 2. Hence, we have g2 = 8, g3 = 7, g4 = 5
and g5 = 4. Also, we have that X = ḡ1 − Ω = 11, and so we directly obtain g1 = 11.

One can directly check by Definition 2 that such obtained partition g = (11, 8, 7, 5, 4)
indeed satisfies (127), as desired.
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11 Special cases of double generalized majorization

11.1 Case n = 0

In this subsection we assume n = 0, i.e. we assume that there are no c1, . . . , cn. In this
case the generalized majorization

g ≺′ (c,b)

drops to the classical majorization
g ≺ b.

As we have seen Problem 4 for the generalized majorization is very challenging, while
the same kind of problem for classical majorization is trivial. Indeed, there always exists
a partition simultaneously majorized by two partitions of the same sum. If n = 0 (or
dually m = 0), then Problem 4 becomes something in-between these two problems.

Before solving it, let us consider sets S and ∆ in this case. It is straightforward to see
that in this case the set S must be empty. Let us check what happens with the set ∆:

By (16) we obtain that, in this case, all j = 1, . . . ,m are in ∆. Hence we have h = m
and dj = dj, j = 1, . . . ,m. We also have:

m′
j := "{i|bi > dj}; t′j := s+ j; z′j := 0, j = 1, . . . ,m.

Also, the weak generalized majorization

g ≺′′ (c,b)

in this case becomes

m+s!

i=j+1

gi !
m+s!

i=j+1

bi, j = 0, . . . ,m+ s− 1.

As a corollary to Theorem 11 we obtain the following result:

Theorem 44. Let d = (d1, . . . , dm), a = (a1, . . . , as) and b = (b1, . . . , bm+s) be partitions.
There exists a partition g = (g1, . . . , gm+s), such that

g ≺′′ (d, a)

and
m+s!

i=j+1

gi !
m+s!

i=j+1

bi, j = 0, . . . ,m+ s− 1,

if and only if
m!

i=j

di !
m+s!

i=s+j

bi, for all j = 1, . . . ,m. (128)
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Proof. By Theorem 11 we have that such a g in this case exists if and only if

(o.2) dm ! bm+s

(i.2) if x ∈ {1, . . . ,m− 1} is such that x+ s " m′
x then

m!

i=x

di !
m+s!

i=x+s

bi.

However by the definition of m′
x we have that x + s " m′

x is equivalent to dx " bs+x.
We are left with proving that (o.2) and (i.2) together are equal to (128).

It is straightforward to see that (128) implies both (o.2) and (i.2). The proof of the
contrary goes by the induction on j ∈ {1, . . . ,m}.

Let j = m. Then (o.2) is (128).
Let j ∈ {1, . . . ,m− 1}, and let us suppose that (128) is valid for all j + 1, . . . ,m+ s.

Then
m!

i=j+1

di !
m+s!

i=j+s+1

bi. (129)

Now we have to consider two possibilities:

dj " bj+s (130)

dj > bj+s (131)

If (130), then (i.2) directly gives

m!

i=j

di !
m+s!

i=j+s

bi, (132)

as wanted.
If (131), then by (129) we also get (132), which finishes the proof.

Also, as a corollary to the previous result we have:

Theorem 45. Let d = (d1, . . . , dm), a = (a1, . . . , as) and b = (b1, . . . , bm+s) be partitions.
There exists a partition g = (g1, . . . , gm+s), such that

g ≺′ (d, a)

and
g ≺ b

if and only if
m+s!

i=1

bi =
m!

i=1

di +
s!

i=1

ai (133)

and
m!

i=j

di !
m+s!

i=s+j

bi, for all j = 1, . . . ,m. (134)
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Remark 46. We note that in Theorems 44 and 45 conditions (128) and (134) are much
simpler comparing to (i.1) and (ii.1). Even more surprisingly, (128) and (134) do not
depend on partition a.

Example 47. Let d = (15, 6, 4, 2), a = (12, 10) and b = (20, 11, 9, 5, 3, 1). Then

4!

i=1

di +
2!

i=1

ai =
6!

i=1

bi = 49.

Also, then
4!

i=1

di = 27 !
6!

i=3

bi = 18,

4!

i=2

di = 12 !
6!

i=4

bi = 9,

4!

i=3

di = 6 !
6!

i=5

bi = 4,

4!

i=4

di = 2 !
6!

i=6

bi = 1,

hence by Theorem 45 there exist a partition g such that

g ≺′ (d, a) and g ≺ b. (135)

Moreover, we know how to define such a partition. Since in this case indices of all di’s
belong to ∆, while the set S is empty, by definition (48) we have

ḡ = (21, 21, 15, 6, 4, 2).

Finally, since
"6

i=1 ḡi = 69 > 49, we have to decrease the largest terms of ḡ as in Section
10. To that end, we have Ω =

"6
i=1 ḡi −

"6
i=1 bi = 69 − 49 = 20, and by (121) we have

that f = 4, and consequently X = ḡ1 + ḡ2 + ḡ3 − Ω = 37, u = 12 and v = 1. Therefore,
we have that

g = (13, 12, 12, 6, 4, 2).

By Definitions 1 and 2, it is an easy exercise to check that such defined g satisfies (135).

11.2 Case s = 0

Let us consider another particular case of Problem 4. Let us assume that s = 0, i.e. that
there is no partition a. By the definition of the weak generalized majorization

g ≺′′ (d, a)
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in this case becomes

di ! gi i = 1, . . . ,m, (136)
m!

i=1

gi !
m!

i=1

di, (137)

i.e. we have
gi = di, i = 1, . . . ,m.

And so necessary and sufficient condition for the existence of a partition g satisfying

g ≺′′ (c,b)

and (136) and (137) become
d ≺′′ (c,b).

We note that this implies that in Definition 8 we have that j ∈ ∆ for all j = 1, . . . ,m,
and that none of cj is such that j ∈ S, i.e. S is empty.

12 A word or two on non-negative partitions

Since Problems 4 and 5 have already shown their importance in applications (see e.g.
[2, 4, 7, 9, 10, 12, 13, 25, 26]), in this section we address the question of non-negativity
of involved partitions. This is particularly important when focusing on Matrix Pencil
Completion Problems. In fact, both Problems 4 and 5 naturally appear in Matrix Pen-
cil Completion Problems, where partitions a, b, c, and d, are defined by degrees of the
Kronecker invariants of the involved matrix pencils [7, 10, 16]. Hence partitions c and d
must be nonnegative, while entries of partitions a and b are always bigger than or equal
to −1. Moreover, the wanted partition g also needs to be non-negative.

In solving Problem 4 we define g by choosing elements from c and d: if c and d are
non-negative partitions, so is g. In fact, in the course of solving Problems 4 and 5 we
have also proved the following:

Corollary 48. Let a, b, c and d be partitions as in (2)–(5), respectively. Let c and
d be partitions of non-negative integers. There exists a partition g = (g1, . . . , gm+s) of
non-negative integers, such that

g ≺′′ (d, a) and g ≺′′ (c,b) (138)

if and only if
Ω̄(c,d, a,b)

Corollary 49. Let a, b, c and d be partitions as in (2)–(5), respectively. Let c and
d be partitions of non-negative integers. There exists a partition g = (g1, . . . , gm+s) of
non-negative integers, such that

g ≺′ (d, a) and g ≺′ (c,b) (139)
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if and only if
n!

i=1

ci +
k!

i=1

bi =
m!

i=1

di +
s!

i=1

ai ! 0, (140)

and the condition Ω̄(c,d, a,b) is valid.
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[18] G. Hardy, J. E. Littlewood, G. Pólya. Inequalities. Cambridge University Press, 1991.

[19] A. Knutson and T. Tao. The honeycomb model of GLn(C) tensor products I: proof
of the saturation conjecture. J. Amer. Math. Soc. 12 (1999) 10551090.
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