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Abstract

It is well-known that eigenvalues of graphs can be used to describe structural
properties and parameters of graphs. A theorem of Nosal and Nikiforov states that
if G is a triangle-free graph with m edges, then λ(G) 6

√
m, equality holds if and

only if G is a complete bipartite graph. Recently, Lin, Ning and Wu [Combin.
Probab. Comput. 30 (2021)] proved a generalization for non-bipartite triangle-free
graphs. Moreover, Zhai and Shu [Discrete Math. 345 (2022)] presented a further
improvement. In this paper, we present an alternative method for proving the
improvement by Zhai and Shu. Furthermore, the method can allow us to give a
refinement on the result of Zhai and Shu for non-bipartite graphs without short odd
cycles.

Mathematics Subject Classifications: 05C50

1 Introduction

The present work can be viewed as the second paper of our previous project [29]. In
this paper, we shall use the following standard notation; see e.g., the monograph [9]. We
consider only simple and undirected graphs. Let G be a simple graph with vertex set
V (G) = {v1, . . . , vn} and edge set E(G) = {e1, . . . , em}. We usually write n and m for
the number of vertices and edges respectively. Let N(v) or NG(v) be the set of neighbors
of v, and d(v) or dG(v) be the degree of a vertex v in G. For a subset S ⊆ V (G), we
write e(S) for the number of edges with two endpoints in S. Let Ks,t be the complete
bipartite graph with parts of sizes s and t. We write Cn and Pn for the cycle and path
on n vertices respectively. We denote by t(G) the number of triangles in G.
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1.1 The classical extremal graph problems

We say that a graph G is F -free if it does not contain an isomorphic copy of F as a
subgraph. Apparently, every bipartite graph is C2k+1-free for every integer k > 1. The
Turán number of a graph F is the maximum number of edges in an n-vertex F -free graph,
and it is usually denoted by ex(n, F ). A graph on n vertices with no subgraph F and with
ex(n, F ) edges is called an extremal graph for F . As is known to all, the Mantel theorem
[36] asserts that if G is an n-vertex graph with at least bn2

4
c edges, then either there exist

three edges in G that form a triangle or G = Kbn
2
c,dn

2
e, the balanced complete bipartite

graph.

Theorem 1 (Mantel, 1907). Let G be an n-vertex graph. If G is triangle-free, then
e(G) 6 e(Kbn

2
c,dn

2
e) = bn2

4
c, equality holds if and only if G = Kbn

2
c,dn

2
e.

Mantel’s theorem has many interesting applications and generalizations in the liter-
ature; see, e.g., [1, pp. 269–273] and [5, pp. 294–301] for standard proofs, [6, 8] for
generalizations, and [16, 47] for recent comprehensive surveys. In particular, Mantel’s
Theorem 1 was refined in the sense of the following stability form.

Theorem 2 (Erdős). Let G be an n-vertex triangle-free graph. If G is not bipartite, then

e(G) 6 b (n−1)
2

4
c+ 1.

It is said that this stability result attributes to Erdős; see [9, Page 306, Exercise 12.2.7].
The bound in Theorem 2 is best possible and the extremal graphs are not unique. To
show that the bound is sharp for all integers n, we take two vertex sets X and Y with
|X| = bn

2
c and |Y | = dn

2
e. We take two vertices u, v ∈ Y and join them, then we put every

edge between X and Y \ {u, v}. We partition X into two parts X1 and X2 arbitrarily
(this shows that the extremal graph is not unique), then we connect u to every vertex in
X1, and v to every vertex in X2; see Figure 1 This yields a graph G which contains no

triangle and e(G) = bn2

4
c − bn

2
c + 1 = b (n−1)

2

4
c + 1. Note that G has a cycle C5, so G is

not bipartite.

Figure 1: Extremal graphs in Theorem 2.

1.2 The spectral extremal graph problems

There are various matrices that are associated with a graph, such as the adjacency matrix,
the incidence matrix, the distance matrix, the Laplacian matrix and signless Laplacian
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matrix. One of the main problems of algebraic graph theory is to determine the com-
binatorial properties of a graph that are reflected from the algebraic properties of its
associated matrices. Let G be a simple graph on n vertices. The adjacency matrix of G
is defined as A(G) = [aij]n×n where aij = 1 if two vertices vi and vj are adjacent in G,
and aij = 0 otherwise. We say that G has eigenvalues λ1, λ2, . . . , λn if these values are
eigenvalues of the adjacency matrix A(G). We denote by λi(G) the i-th largest eigenvalue
of G. Let λ(G) be the maximum value in absolute among all eigenvalues of G, which is
known as the spectral radius of a graph G.

There is a rich history on the study of bounding the eigenvalues of a graph in terms
of various parameters; see [2] for eigenvalues and expanders, [11, 15] for eigenvalues and
diameters, [21] for spectral radius and genus, [3] for spectral radius and cut vertices,
[12, 34] for regularity and eigenvalues, [13, 33] for non-regularity and spectral radius, [7]
for spectral radius and cliques, [4, 52] for chromatic number and eigenvalues, [35, 17, 40]
for independence number and eigenvalues, [14, 46] for matching, edge-connectivity and
eigenvalues, [18] for spanning trees and eigenvalues, [48, 30] for eigenvalues of outerplanar
and planar graphs, and [49] for the Colin de Verdière parameter, excluded minors and the
spectral radius.

Let G be a graph on n vertices with m edges. Let A(G) be the adjacency matrix of
G. It is well-known that

2m

n
6 λ(G) 6

√
2m. (1)

Indeed, the lower bound is guaranteed by Rayleigh’s inequality λ(G) > eTA(G)e = 2m
n

,
where e = 1√

n
(1, 1, . . . , 1)T ∈ Rn. The upper bound can be seen by invoking the fact that

λ(G)2 6
∑n

i=1 λ
2
i = tr(A2(G)) =

∑n
i=1 di = 2m. This upper bound was further improved

by Hong [20] as
λ(G) 6

√
2m− n+ 1. (2)

We recommend the readers to [22] and [37] for further extensions. The classical extremal
graph problems usually study the maximum or minimum number of edges that the ex-
tremal graphs can have. Correspondingly, we can study the extremal spectral problem.
We denote by exλ(n, F ) the largest eigenvalue of the adjacency matrix in an n-vertex
graph that contains no copy of F , that is,

exλ(n, F ) := max
{
λ(G) : |G| = n and F * G

}
.

In 1970, Nosal [45] determined the largest spectral radius of a triangle-free graph
in terms of the number of edges, which states that if G is a triangle-free graph, then
λ(G) 6

√
m. This result improved both inequalities (1) and (2) conditionally. In order

to state this result more accurately, we combine with some contributions of Nikiforov’s
works [37, 38, 40], which determined the extremal graphs attaining the equality and also
provided the spectral version of Theorem 1. Thus we write it as in the following complete
form. Note that when we consider the result on a graph with respect to the given number
of edges, we shall ignore the possible isolated vertices if there are no confusions.
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Theorem 3 (Nosal–Nikiforov). Let G be a graph on n vertices with m edges. If G is
triangle-free, then

λ(G) 6
√
m, (3)

equality holds if and only if G is a complete bipartite graph. Moreover, we have

λ(G) 6 λ(Kbn
2
c,dn

2
e), (4)

equality holds if and only if G is a balanced complete bipartite graph Kbn
2
c,dn

2
e.

Theorem 3 implies that if G is a bipartite graph, then λ(G) 6
√
m, equality holds

if and only if G is a complete bipartite graph. On the one hand, inequality (3) implies
the classical Mantel Theorem 1. Indeed, applying the Rayleigh inequality, we have 2m

n
6

λ(G) 6
√
m, which yields m 6 bn2

4
c. On the other hand, combining (3) with Mantel’s

theorem, we obtain λ(G) 6
√
m 6

√
bn2/4c = λ(Kbn

2
c,dn

2
e). So inequality (3) in Theorem

3 can imply inequality (4), which is usually called the spectral Mantel theorem.

Theorem 3 stimulated the developments of two aspects in spectral extremal graph
theory. On the one hand, it is natural to consider the spectral extremal problems for
graphs with given number of vertices. In view of this perspective, various extensions
and generalizations on inequality (4) have been obtained in the literature; see, e.g., [51,
38, 19, 25] for extensions on Kr+1-free graphs with given order; see [7, 40] for relations
between cliques and spectral radius and [41, 10, 27] for surveys. Very recently, Lin, Ning
and Wu [31, Theorem 1.4] proved a generalization on (4) for non-bipartite triangle-free
graphs and provided a spectral version of Theorem 2; see [29] for an alternative proof and
refinement of spectral Turán theorem, and [28] for more stability theorems on spectral
graph problems. In addition, Lin and Guo [32] proved an extension of non-bipartite
graphs without short odd cycles. This result was also independently proved by Li, Sun
and Yu [26, Theorem 1.6] using a different method.

On the other hand, the inequality (3) in Theorem 3 boosted the great interests of
studying the maximum spectral radius of graphs in terms of the number of edges, instead
of the given number of vertices; see [37] for an extension on Kr+1-free graphs, [39] for an
analogue of C4-free graphs, [53] for further extensions on K2,r+1-free graphs, and similar
results of C5-free and C6-free graphs as well, [42] for an extension on Bk-free graphs,
where Bk denotes the book graph consisting of k triangles sharing a common edge, and
[31, 54] for refinements on non-bipartite triangle-free graphs. In this paper, we will focus
mainly on the extremal spectral problems for graphs with given number of edges, which
is becoming increasingly an important and popular topic in recent research on spectral
graph theory.

In 2021, Lin, Ning and Wu [31] proved the following improvement on Theorem 3 by
using tools from doubly stochastic matrix theory; see [42] for a simpler proof by using
elementary numerical inequalities. Let Pn be the path on n vertices, and Cn be the cycle
on n vertices. Given two graphs G and H, we write G ∪ H for the disjoint union of G
and H. In other words, V (G ∪H) = V (G) ∪ V (H) and E(G ∪H) = E(G) ∪ E(H). For
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simplicity, we write kG for the disjoint union of k copies of G. The blow-up of a graph G
is a new graph obtained from G by replacing each vertex v ∈ V (G) with an independent
set Iv, and for two vertices u, v ∈ V (G), we add all edges between Iu and Iv whenever
uv ∈ E(G).

Theorem 4 (Lin–Ning–Wu, 2021). Let G be a triangle-free graph with m edges. Then

λ21(G) + λ22(G) 6 m,

equality holds if and only if G is a blow-up of a member of G in which

G = {P2 ∪K1, 2P2 ∪K1, P4 ∪K1, P5 ∪K1}.

A conjecture of Bollobás and Nikiforov [7, Conjecture 1] states that if G is a Kr+1-free
graph with m edges, then

λ21(G) + λ22(G) 6

(
1− 1

r

)
2m.

Theorem 4 confirmed the case r = 2; see [42, 26] for recent progress. This conjecture of
Bollobás and Nikiforov remains open for the case r > 3. We remark here that λ21(G) +
λ22(G) 6 m does not hold for the C4-free graphs G. Indeed, take G = K+

1,m−1, the graph
obtained from the star K1,m−1 by adding an edge into its independent set. For example,
setting m = 20, we have λ1(K

+
1,19) ≈ 4.425 and λ2(K

+
1,19) = 0.890, while λ21 + λ22 ≈

20.372 > 20.

With the help of Theorem 4, Lin, Ning and Wu [31, Theorem 1.3] further proved the
following refinement on (3) in Nosal’s theorem for non-bipartite triangle-free graphs with
given number of edges.

Theorem 5 (Lin–Ning–Wu, 2021). Let G be a triangle-free graph with m edges. If G is
non-bipartite, then

λ(G) 6
√
m− 1,

equality holds if and only if m = 5 and G = C5.

In 2022, Zhai and Shu [54] proved a further improvement on Theorem 5. Before stating
their result, we need to introduce the extremal graph firstly. For every integer m > 3, we
denote by β(m) the largest root of

Z(x) := x3 − x2 − (m− 2)x+m− 3.

It is not difficult to show that for m > 6, we have

√
m− 2 < β(m) <

√
m− 1. (5)

Furthermore, one can verify that limm→∞(β(m)−
√
m− 2) = 0. On the other hand, if m

is odd, let SK2,m−1
2

be the graph obtained from K2,m−1
2

by subdividing an edge; see Figure
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2 for two different drawings of SK2,m−1
2

. In particular, for m = 5, we have SK2,2 = C5.

Clearly, SK2,m−1
2

is a triangle-free graph on n = m−1
2

+ 3 vertices with m edges, and it is

non-bipartite as it contains a copy of C5. The characteristic polynomial of SK2,m−1
2

is

det(xIn − A(SK2,m−1
2

)) = x
m−5

2 (x2 + x− 1)
(
x3 − x2 − (m− 2)x+m− 3

)
.

Therefore, if m is odd, then β(m) is the largest eigenvalue of SK2,m−1
2

.

For convenience, we denote

H(x) := (x2 + x− 1)Z(x) = x5 −mx3 + (2m− 5)x−m+ 3. (6)

So β(m) is also the largest root of H(x).

Figure 2: Two drawings of the graph SK2,m−1
2

.

The improvement of Zhai and Shu [54] on Theorem 5 can be stated as below.

Theorem 6 (Zhai–Shu, 2022). Let G be a graph of size m. If G is triangle-free and
non-bipartite, then

λ(G) 6 β(m),

equality holds if and only if m is odd and G = SK2,m−1
2

.

The way that Lin, Ning and Wu [31] proved Theorem 5 is original, and the line of
the proof of Zhai and Shu [54] for Theorem 6 is technical. This paper is organized as
follows. In Section 2, we shall present an alternative proof of Theorem 6. The present
proof is different from the original proof in [54]. Our proof uses and develops the ideas
in both [31] and [43], we shall make use of the information of all eigenvalues of graphs,
instead of the second largest eigenvalue only. This proof could introduce the main ideas of
the approach of our paper, without some technicalities that arise in the other cases, i.e.,
it can help us to deal with the extremal spectral problem for graphs without short odd
cycles. In Section 3, by applying the ideas of the proof of Theorem 6, we will give further
refinement on Theorem 6. In Section 4, we will conclude this paper with some possible
open problems for interested readers. This paper can be regarded as a supplement of our
previous article [29]. Both of these two papers provide extensions and generalizations on
the results involving eigenvalues and triangles.
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2 Alternative proof of Theorem 6

Recall that Theorem 6 is an improvement on Theorem 5, since β(m) <
√
m− 1, where

β(m) is the largest root of x3 − x2 − (m − 2)x + m − 3 = 0. The proof of Theorem 5 is
succinct and relies on Theorem 4, which implies that if G is non-bipartite and λ21(G) +
λ22(G) > m, then G contains a triangle. Combining the condition in Theorem 5, we
know that if G satisfies λ1(G) >

√
m− 1, then λ2(G) < 1. This bound on the second

largest eigenvalue provided great convenience to characterize the local structure of G. For
instance, combining λ2(G) < 1 with Cauchy’s interlacing theorem, we obtain that the
shortest odd cycle of G is C5. However, it is not sufficient to apply Theorem 4 for the
proof of Theorem 6. Indeed, if G is a graph satisfying λ(G) > β(m), then invoking the
fact that limm→∞(β(m) −

√
m− 2) = 0, we get only that λ2(G) < 2. Nevertheless, this

bound is invalid for our purpose to describe the local structure of G. The original proof
of Zhai and Shu [54] for Theorem 6 is innovative and avoided the use of Theorem 4, thus
it made more detailed structure analysis of graphs; see [54] for more details.

In what follows, we shall provide an alternative proof of Theorem 6. Our proof grows
out partially from the original proof [31] of Theorem 5. To overcome the obstacle men-
tioned above, we shall make full use of the information of all eigenvalues of graphs, instead
of the second largest eigenvalue merely. By applying Cauchy’s interlacing theorem of all
eigenvalues, we will find some forbidden induced subgraphs and refine the structure of
the desired extremal graph. A key idea relies on the eigenvalue interlacing theorem and a
counting lemma [43], which established the relation between eigenvalues and the number
of triangles of a graph.

The main steps of the proof can be outlined as below. It introduces the main ideas of
the approach of this paper for treating the problem involving short odd cycles.

I First of all, applying the forthcoming Lemmas 7, 8 and 9, we will show that G can
not contain the odd cycle C2k+1 as an induced subgraph for every k > 3, that is, C5

is the shortest odd cycle in G; see Claim 10.

N Upon more computations, we will prove that more substructures, e.g., the graphs
H1, H2, H3 in Figure 3, are also forbidden as induced subgraphs in G by applying
Lemmas 7, 8 and 9 again; see Claim 11.

M Let S be the set of vertices of a copy of C5 in G. Using the above informations of
local structure of G, we will show that every vertex outside of S has exactly two
neighbors in S; see Claim 12.

H Combining with the previous steps, we will prove that G is isomorphic to the sub-
division of the complete bipartite graph Ka,b by subdividing an edge, where a, b > 2
are integers satisfying m = ab + 1. Finally, we will show that λ(SKa,b) is at most
β(m), equality holds if and only if a = 2 or b = 2.
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The following lemma is usually referred to as the eigenvalue interlacing theorem, also
known as the Cauchy, Poincaré, or Sturm interlacing theorem. It states that the eigen-
values of a principal submatrix of a Hermitian matrix interlace those of the underlying
matrix; see, e.g., [55, pp. 52–53] and [56, pp. 269–271]. It is worth noting that this
eigenvalue interlacing theorem provides a useful technique to extremal combinatorics and
plays a significant role in two breakthrough works [23, 24].

Lemma 7 (Eigenvalue Interlacing Theorem). Let H be an n× n Hermitian matrix par-
titioned as

H =

[
A B
B∗ C

]
,

where A is an m×m principal submatrix of H for some m 6 n. Then for every 1 6 i 6 m,

λn−m+i(H) 6 λi(A) 6 λi(H).

Recall that t(G) denotes the number of triangles in G. It is well-known that the value
of (i, j)-entry of Ak(G) is equal to the number of walks of length k in G starting from
vertex vi to vj. Since each triangle of G contributes 6 closed walks of length 3, we can
count the number of triangles and obtain

t(G) =
1

6

n∑
i=1

A3(i, i) =
1

6
Tr(A3) =

1

6

n∑
i=1

λ3i . (7)

The second lemma needed in this paper is a triangle counting lemma in terms of both
the eigenvalues and the size of a graph, it could be seen from [43]. This could be viewed
as a useful variant of (7) by using

∑n
i=1 λ

2
i = tr(A2) =

∑n
i=1 di = 2m.

Lemma 8. (see [43]) Let G be a graph on n vertices with m edges. If λ1 > λ2 > · · · > λn
are all eigenvalues of G, then

t(G) =
1

6

n∑
i=2

(λ1 + λi)λ
2
i +

1

3
(λ21 −m)λ1.

For convenience, we next introduce a function.

Lemma 9. Let f(x) := (
√
m− 2 + x)x2. If a 6 x 6 b 6 0, then

f(x) > min{f(a), f(b)}.

Proof. Since f(x) is monotonically increasing when x ∈ (−∞,−2
3

√
m− 2), and mono-

tonically decreasing when x ∈ [−2
3

√
m− 2, 0]. Thus the desired statement holds immedi-

ately.

It is the time to show an alternative proof of Theorem 6.
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Proof of Theorem 6. Suppose that G contains no triangle and G is non-bipartite such
that λ(G) > β(m). We shall prove that m is odd and G = SK2,m−1

2
. Without loss

of generality, we may assume that G has the maximum value of spectral radius. First
of all, we can see that G must be connected. Otherwise, we can choose G1 and G2 as
two different components, where G1 attains the spectral radius of G, by identifying two
vertices from G1 and G2 respectively, we get a new graph with larger spectral radius,
which is a contradiction1. It is not hard to verify the desired theorem for m 6 10, since
we can consider whether C7 ⊆ G or C9 ⊆ G by a standard case analysis. Next, we shall
consider the case m > 11. The proof proceeds by the following three claims.

Claim 10. The shortest odd cycle in G has length 5.

Proof of Claim 10. Since G is non-bipartite, let s be the length of a shortest odd cycle in
G. Since G is triangle-free and non-bipartite, we have s > 5 and λ(G) <

√
m by Theorem

3. Moreover, a shortest odd cycle Cs ⊆ G must be an induced odd cycle. By computation,
we know that the eigenvalues of Cs are 2 cos 2πk

s
, where k = 0, 1, . . . , s − 1. Since Cs is

an induced copy in G, we know that A(Cs) is a principal submatrix of A(G). Lemma 7
implies that λn−s+i(G) 6 λi(Cs) 6 λi(G) for every i ∈ [s], where λi means the i-th largest
eigenvalue. We next show that s = 5. We denote by λ1, λ2, . . . , λn the eigenvalues of G
for simplicity.

Next we will show that C7 is not an induced subgraph of G. By the monotonicity
of cosx, one can see in the proof that for odd integer s > 7, Cs can not be an induced
subgraph of G. Suppose on the contrary that C7 is an induced odd cycle of G, then
λ2 > λ2(C7) = 2 cos 2π

7
≈ 1.246 and λ3 > λ3(C7) = 2 cos 12π

7
≈ 1.246. Evidently, we get

f(λ2) > f(1.246) > 1.552
√
m− 2 + 1.934,

and
f(λ3) > f(1.246) > 1.552

√
m− 2 + 1.934.

Our goal is to get a contradiction by applying Lemma 8 and showing t(G) > 0. It is
not sufficient to obtain t(G) > 0 by using the positive eigenvalues of C7 only. Next, we
are going to consider the negative eigenvalues of C7. For i ∈ {4, 5, 6, 7}, we know that
λi(C7) < 0. The Cauchy interlacing theorem yields λn−3 6 λ4(C7) = −0.445, λn−2 6
λ5(C7) = −0.445, λn−1 6 λ6(C7) = −1.801 and λn 6 λ7(C7) = −1.801. To apply Lemma
9, we need to find the lower bounds on λi for each i ∈ {n−3, n−2, n−1, n}. We know from
(5) that λ1 > β(m) >

√
m− 2, and then λ2n 6 2m− (λ21 +λ22 +λ23 +λ2n−3 +λ2n−2 +λ2n−1) <

2m − (m − 2 + 6.744) = m − 4.744, which implies −
√
m− 4.744 < λn 6 −1.801. By

Lemma 9, we get

f(λn) > min{f(−
√
m− 4.744), f(−1.801)} >

√
m− 2

1There is another way to get a contradiction. We delete an edge within G2, and then add an edge
between G1 and G2. This operation will also lead to a new graph with larger spectral radius.
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for every m > 11. Similarly, we have λ2n−1 + λ2n 6 2m − (λ21 + λ22 + λ23 + λ2n−3 + λ2n−2) <

m− 1.501. Combining with λ2n−1 6 λ2n, we get −
√

(m− 1.501)/2 < λn−1 6 −1.801. By
Lemma 9, we obtain

f(λn−1) > min{f(−
√

(m− 1.501)/2), f(−1.801)} >
√
m− 2

for every m > 9. Note that
√
m > λ1 > β(m) >

√
m− 2. By Lemma 8, we get

t(G) >
1

6
(f(λ2) + f(λ3) + f(λn) + f(λn−1))−

2

3
λ1

>
1

6
(5.104

√
m− 2− 4

√
m+ 3.868) > 0.

This is a contradiction. Similarly, we can prove by applying the monotonicity of cosx
that Cs can not be an induced subgraph of G for each odd integer s > 7. Thus we get
s = 5.

Let S = {u1, u2, u3, u4, u5} be the set of vertices of a copy of C5 in G. We define the
graphs H1, H2 and H3 as in Figure 3. The eigenvalues of these graphs can be seen in
Table 1. To avoid unnecessary calculations, we did not attempt to get the best bound
on the size of graph in the proof. Next, we consider the case m > 514 in the remaining
proof.

Figure 3: Some forbidden induced subgraphs in G.

λ1 λ2 λ3 λ4 λ5 λ6 λ7

C7 2 1.246 1.246 −0.445 −0.445 −1.801 −1.801
H1 2.115 1 0.618 −0.254 −1.618 −1.860
H2 2.641 1 0.723 0.414 −0.589 −1.775 −2.414
H3 2.681 1 0.642 0 0 −2 −2.323

Table 1: Eigenvalues of forbidden induced subgraphs.

Claim 11. G does not contain any graph of {H1, H2, H3} as an induced subgraph.
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Proof of Claim 11. Suppose on the contrary that G contains Hi as an induced subgraph
for some i ∈ {1, 2, 3}. To obtain a contradiction, we shall show t(G) > 0 by applying
Lemma 8. We first consider the case that H1 is an induced subgraph in G. The Cauchy
interlacing theorem implies λn−6+i(G) 6 λi(H1) 6 λi(G) for every i ∈ {1, 2, . . . , 6}. We
denote λi = λi(G) for short. Obviously, we have

f(λ2) > f(1) =
√
m− 2 + 1,

and
f(λ3) > f(0.618) > 0.381

√
m− 2 + 0.236.

We next consider the negative eigenvalues of G. The Cauchy interlacing theorem implies
λn−2 6 λ4(H1) = −0.254 and λn−1 6 λ5(H1) = −1.618 and λn 6 λ6(H1) = −1.860.
Moreover, we get from (5) that λ1 > β(m) >

√
m− 2 and λ2n 6 2m−(λ21+λ22+λ23+λ2n−2+

λ2n−1) 6 2m− (m− 2 + 4.064) = m− 2.064, which implies −
√
m− 2.064 < λn 6 −1.860.

By Lemma 9, we have

f(λn) > min{f(−
√
m− 2.064), f(−1.860)} > 0.031

√
m− 2.

Secondly, since λ2n−1 + λ2n 6 2m− (λ21 + λ22 + λ23 + λ2n−2) < m+ 0.553 and λ2n−1 6 λ2n, we

get −
√

(m+ 0.553)/2 < λn−1 6 −1.618. By Lemma 9, we get

f(λn−1) > min{f(−
√

(m+ 0.553)/2), f(−1.618)} > 2.617
√
m− 2− 4.235

for every m > 12. Moreover, we have −
√

(m+ 0.618)/3 < λn−2 6 −0.254 and then

f(λn−2) > min{f(−
√

(m+ 0.618)/3), f(−0.254)} > 0.064
√
m− 2− 0.016

for every m > 4. By Lemma 8, we get that for m > 514,

t(G) >
1

6
(f(λ2) + f(λ3) + f(λn−2) + f(λn−1) + f(λn))− 2

3
λ1

>
1

6
(4.093

√
m− 2− 4

√
m− 2.015) > 0,

which is a contradiction.
If H2 is an induced subgraph of G, then we get similarly that λ2 > 1, λ3 > 0.723 and

λ4 > 0.414. Then

f(λ2) > f(1) =
√
m− 2 + 1,

f(λ3) > f(0.723) > 0.522
√
m− 2 + 0.377,

and
f(λ4) > f(0.414) > 0.171

√
m− 2 + 0.07.

The negative eigenvalues of H2 imply that λn−2 6 −0.589, λn−1 6 −1.775 and λn 6
−2.414. Due to λ2n 6 2m− (λ21 + λ22 + λ23 + λ24 + λ2n−2 + λ2n−1) < 2m− (m− 2 + 5.191) =
m− 3.191, we get −

√
m− 3.191 6 λn 6 −2.414. Lemma 9 gives

f(λn) > min{f(−
√
m− 3.191), f(−2.414)} > 0.5

√
m− 2
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for every m > 8. In addition, we have −
√

(m− 0.041)/2 6 λn−1 6 −1.775 and

f(λn−1) > min{f(−
√

(m− 0.041)/2), f(−1.775)} > 2
√
m− 2

for every m > 17. By Lemma 8, we obtain that for m > 6,

t(G) >
1

6
(f(λ2) + f(λ3) + f(λ4) + f(λn−1) + f(λn))− 2

3
λ1

>
1

6
(4.193

√
m− 2− 4

√
m+ 1.447) > 0,

which is also a contradiction.
If H3 is an induced subgraph of G, then we get λ2 > 2 and λ3 > 0.642. Then

f(λ2) > f(1) =
√
m− 2 + 1

and
f(λ3) > f(0.642) > 0.412

√
m− 2 + 0.264.

Moreover, Cauchy’s interlacing theorem gives λn−1 6 −2 and λn 6 −2.323. Since λ2n 6
2m− (λ21 + λ22 + λ23 + λ2n−1) < 2m− (m− 2 + 5.412) = m− 3.412, we get −

√
m− 3.412 <

λn 6 −2.323. Then

f(λn) > min{f(−
√
m− 3.412), f(−2.323)} > 0.7

√
m− 2.

Similarly, we have −
√

(m+ 0.587)/2 < λn−1 6 −2 and

f(λn−1) > min{f(−
√

(m+ 0.587)/2), f(−2)} > 4
√
m− 2− 8.

By Lemma 8, we obtain

t(G) >
1

6
(f(λ2) + f(λ3) + f(λn−1) + f(λn))− 2

3
λ1

>
1

6
(6.112

√
m− 2− 4

√
m− 6.736) > 0,

which is a contradiction.

Let N(S) := ∪u∈SN(u) \S be the union of neighborhoods of vertices of S. We denote
by dS(v) = |N(v) ∩ S| the number of neighbors of v in the set S.

Claim 12. V (G) = S ∪N(S) and dS(v) = 2 for every v ∈ N(S).

Proof of Claim 12. First of all, we prove that dS(v) = 2 for each vertex v ∈ N(S).
Without loss of generality, we may assume that v ∈ N(u1). If dS(v) > 3, then there
exists i ∈ [5] such that {v, ui, ui+1} forms a triangle in G, a contradiction. If dS(v) = 1,
then S ∪ {v} induces a copy of H1, a contradiction. This implies that dS(v) = 2 for
every v ∈ N(S). Next we prove that V (G) = S ∪ N(S). Otherwise, if there is a
vertex v′ ∈ V (G) \ (S ∪ N(S)), then v′ has distance at least 2 from S. We may assume
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that v′vu1 is an induced P3 such that v′ui /∈ E(G) for every i ∈ [5]. From the above
discussion, we know from vu1 ∈ E(G) that dS(v) = 2. By symmetry, we may assume that
NS(v) = {u1, u3}. Since G is triangle-free and v′ui /∈ E(G) for every i ∈ [5], we can see
that {v′, v, u3, u4, u5, u1} induces a copy of H1, a contradiction. Thus, we conclude that
V (G) = S ∪N(S) and dS(v) = 2 for every v ∈ N(S).

Since m > 11, we can fix a vertex v ∈ N(S) and assume that NS(v) = {u1, u3}.
For each w ∈ V (G) \ (S ∪ {v}), since G contains no triangles and no H3 as an induced
subgraph, we know that NS(w) 6= {u3, u5} and NS(w) 6= {u4, u1}. It is possible that
NS(w) = {u1, u3}, {u2, u4} or {u5, u2}. Furthermore, if NS(w) = {u1, u3}, then wv /∈
E(G), since G contains no triangles; if NS(w) = {u2, u4}, then wv ∈ E(G), since G
contains no induced copy of H2. We denote Ni,j = {w ∈ V (G) \ S : NS(w) = {ui, uj}}.
Note that G has no induced copy of H3, there are at least one empty set in {N2,4, N5,2}.
If N2,4 = ∅ and N5,2 = ∅, then V (G) \ S = N1,3. Thus m is odd and G = SK2,m−1

2
.

Without loss of generality, if N2,4 6= ∅, then V (G) \ S = N1,3 ∪ N2,4. Moreover, N1,3

and N2,4 induce a complete bipartite subgraph in G. We denote A = N1,3 ∪ {u2, u4}
and B = N2,4 ∪ {u3, u1}. Clearly, we have |A| = a > 2 and |B| = b > 2. Then we
observe that G is isomorphic to the subdivision of the complete bipartite graph Ka,b by
subdividing the edge u1u4 of Ka,b, and m = e(G) = ab + 1. By a direct computation,
we get that λ(G) 6 β(m), equality holds if and only if a = 2 or b = 2, and thus m is
odd and G = SK2,m−1

2
. The detailed computations are stated below. The characteristic

polynomial of G = SKa,b is

det(xIn − A(SKa,b))

= xa+b−4
(
x5 − (ab+ 1)x3 + (3ab− 2a− 2b+ 1)x− 2ab+ 2a+ 2b− 2

)
.

Hence λ(G) is the largest root of

F (x) := x5 −mx3 + (3m− 2− 2a− 2m−1
a

)x− 2m+ 2a+ 2m−1
a
.

Recall in (6) that β(m) denotes the largest root of H(x). We can easily verify that

H(x)− F (x) = (2a+ 2m−1
a
−m− 3)(x− 1),

which yields H(x) 6 F (x) for every x > 1. Then we get H(λ(G)) 6 F (λ(G)) = 0, which
implies λ(G) 6 β(m). This completes the proof.

Remark. Theorem 3 asserts that if G is a graph with λ(G) >
√
m, then either G

contains a triangle, or G is a complete bipartite graph. Very recently, Ning and Zhai [43]
proved an elegant spectral counting result, which states that if G is an m-edge graph with
λ(G) >

√
m, then G has at least b

√
m−1
2
c triangles, unless G is a complete bipartite graph.

Clearly, this saturation result is a generalization of Nosal’s theorem as well as a spectral
analogue of a result of Rademacher. A natural question is whether the counting result
analogous to Theorem 6 is true. More precisely, if G is non-bipartite with λ(G) > β(m),
then it seems possible that G has at least Ω(

√
m) triangles, unless G = SK2,m−1

2
.
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Although we can see from the proof of Theorem 6 that many cases can yield the
conclusion that G has at least Ω(

√
m) triangles, the answer for the above question is

surprisingly negative. Taking G = K+
1,m−1 as the graph obtained from the star K1,m−1 by

adding an edge into its independent set, we can see thatG is not bipartite and λ(K+
1,m−1) >√

m− 1 > β(m), while G has only one triangle and G 6= SK2,m−1
2

. Note that the graph

K+
1,m−1 has m edges and m vertices. Moreover, we can show that λ(K+

1,m−1) is the largest
root of the equation

x3 − x2 − (m− 1)x+m− 3 = 0.

For m = 4, 5, 6, 7, 8, we can verify that λ(K+
1,m−1) >

√
m; while for m = 9, we get

λ(K+
1,8) = 3 = λ(K1,9). For m > 11, we can check that λ(K+

1,m−1) <
√
m.

3 Graphs without short odd cycles

Let S3(Ka,b) denote the graph obtained from the complete bipartite graph Ka,b by replac-
ing an edge with a five-vertex path P5, that is, introducing three new vertices on an edge.
Clearly, the shortest odd cycle in S3(Ka,b) has length seven.

We next consider the further extension of Theorem 6 for graphs with given size and
no short odd cycles. For each integer m > 7, we denote by γ(m) the largest root of

L(x) := x7 −mx5 + (4m− 14)x3 − (3m− 14)x−m+ 5. (8)

It is not difficult to check that

√
m− 4 < γ(m) 6

√
m− 3. (9)

Indeed, we observe that

L(
√
m− 4) < x(x6 −mx4 + (4m− 14)x2 − (3m− 14))

∣∣
x=
√
m−4 = −m+ 6 6 0,

which leads to
√
m− 4 < γ(m). For every m > 7, we have

L(
√
m− 3) =

√
m− 3(m(m− 11) + 29)−m+ 5 > 0,

equality holds only for m = 7. Combining with L′(x) = 7x6−5mx4+3(4m−14)x2−(3m−
14) > 0 for every x >

√
m− 3, we get L(x) > L(

√
m− 3) > 0 for every x >

√
m− 3,

which implies γ(m) 6
√
m− 3.

Moreover, ifm is odd, let S3(K2,m−3
2

) be the graph obtained from the complete bipartite

graph K2,m−3
2

by subdividing an edge into a path of length 4, i.e., putting 3 new vertices

on an edge; see Figure 4. In particular, for m = 7, we have S3(K2,2) = C7. Clearly,
S3(K2,m−3

2
) has n = m−3

2
+5 vertices and m edges. Moreover, S3(K2,m−3

2
) contains no copy

of both C3 and C5, but it has a copy of C7 and so it is non-bipartite. Upon computation,
the characteristic polynomial of S3(K2,m−3

2
) is given as

det(xIn − A(S3(K2,m−3
2

))) = x
m−7

2

(
x7 −mx5 + (4m− 14)x3 − (3m− 14)x−m+ 5

)
.
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Figure 4: Two drawings of the graph S3(K2,m−3
2

).

Hence, if m is odd, then γ(m) is the largest eigenvalue of S3(K2,m−3
2

).

Note that the extremal graph SK2,m−1
2

in Theorem 6 contains a copy of C5. In this

section, we will prove a refinement on Theorem 6. To be more specific, we will determine
the largest spectral radius for C3-free and C5-free non-bipartite graphs. To proceed, we
need to introduce a lemma.

Lemma 13. Let a, b > 2 and m be integers with m = ab + 4. If G is one of the m-edge
graphs obtained from S3(Ka,b) by adding an edge to one vertex, then λ(G) < γ(m).

Figure 5: A possible graph in Lemma 13.

Proof. We know that G has 7 possible cases. We prove the above case in Figure 5 only,
since the other cases can be proved in the same way. By computation, we obtain that
λ(G) is the largest root of E(x), where E(x) is defined as

E(x) := x8 − (ab+ 4)x6 + (6ab− 2a− 3b+ 5)x4 − (8ab− 5a− 7b+ 5)x2

− (2ab− 2a− 2b+ 2)x+ ab− a− b+ 1.

Note that m = ab+ 4 and

E(x)− xL(x) = (2a− 3)(b− 1)x4 − (5a− 7)(b− 1)x2

− (ab− 2a− 2b+ 3)x+ ab− a− b+ 1.

We can verify that x2L(x) < E(x) for every x >
√

(a− 1)b. Since Ka−1,b is a subgraph

of G, we know that λ(G) > λ(Ka−1,b) =
√

(a− 1)b. Then λ2(G)L(λ(G)) < E(λ(G)) = 0,
which yields L(λ(G)) < 0 and λ(G) < γ(m).
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The main result of this section is as follows.

Theorem 14. Let G be a graph with m edges. If G does not contain any member of
{C3, C5} and G is non-bipartite, then

λ(G) 6 γ(m),

equality holds if and only if m is odd and G = S3(K2,m−3
2

).

Proof. Assume that G has no C3 and C5, and G is non-bipartite with λ(G) > γ(m), we
will show that m is odd and G = S3(K2,m−3

2
). Similar with that in the proof of Theorem

6 in Section 2, it is sufficient to consider the case that G is connected. Since G is non-
bipartite, we can assume that Cs is a shortest odd cycle of G. Note that a shortest odd
cycle in G must be an induced subgraph. Since G is C3-free and C5-free, we have s > 7
and λ(G) <

√
m by Theorem 3. In what follows, we shall show that s = 7. We denote

g(x) := (
√
m− 4 + x)x2.

Let λ1, λ2, . . . , λn be the eigenvalues of G in decreasing order. Since G is non-bipartite
and G has an induced odd cycle of length at least 7. For m 6 10, we can do few case
analysis whether C7 ⊆ G or C9 ⊆ G. Thus it is easy to verify the required theorem for
m 6 10. Next, we shall consider the case m > 11 in the proof.

Claim 15. A shortest odd cycle in G is C7.

Proof of Claim 15. Assume that C9 is an induced odd cycle in G, the Cauchy interlacing
theorem implies λn−9+i(G) 6 λi(C9) 6 λi(G) for every i ∈ {1, 2, . . . , 9}. From the
following Table 2, we can see that λ2, λ3 > 1.532. Then

g(λ2), g(λ3) > g(1.532) > 2.347
√
m− 4 + 3.596.

Moreover, we have λ4, λ5 > 0.347, which implies

g(λ4), g(λ5) > g(0.347) > 0.12
√
m− 4 + 0.041.

We next consider the negative eigenvalues of G. Note from (9) that λ1 > γ(m) >
√
m− 4.

Since λn−3 6 λn−2 6 λ7(C9) = −1 and λn 6 λn−1 6 λ8(C9) = −1.879, we have λ2n 6
2m − (

∑5
i=1 λ

2
i + λ2n−3 + λ2n−2 + λ2n−1) < 2m − (m − 4 + 10.465) = m − 6.465. Thus

−
√
m− 6.465 6 λn 6 −1.879 and then

g(λn) > min{g(−
√
m− 6.465), g(−1.879)} > 0.8

√
m− 4,

where the last inequality holds for every m > 11. Similarly, we have λ2n−1 + λ2n 6
2m − (

∑5
i=1 λ

2
i + λ2n−3 + λ2n−2) < m − 2.934, which together with λ2n−1 6 λ2n yields

−
√

(m− 2.934)/2 < λn−1 6 −1.879. Then for every m > 11, we have

g(λn−1) > min{g(−
√

(m− 2.934)/2), g(−1.879)} > 0.9
√
m− 4.
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Moreover, we can similarly get −
√

(m− 1.934)/3 < λn−2 6 −1 and

g(λn−2) > min{g(−
√

(m− 1.934)/3), g(−1)} >
√
m− 4− 1.

The inequality −
√

(m− 0.934)/4 < λn−3 6 −1 implies

g(λn−3) > min{g(−
√

(m− 0.934)/4), g(−1)} >
√
m− 4− 1.

Owing to
√
m > λ(G) > γ(m) >

√
m− 4, by Lemma 8, we obtain

t(G) >
1

6

(
5∑
i=2

g(λi) + g(λn−5+i)

)
− 4

3
λ1(G)

>
1

6

(
8.634

√
m− 4− 8

√
m+ 5.274

)
> 0,

which is a contradiction. Therefore, the odd cycle C9 can not be an induced subgraph in
G. Similarly, we can show by using the monotonicity of cosx that Cs is not an induced
subgraph of G for each s > 11. Consequently, we get s = 7.

From Claim 15, we denote by S = {u1, u2, . . . , u7} the set of vertices of a copy of C7

in G. Next, we shall show that the following graphs are forbidden induced subgraphs in
G, and compute their eigenvalues; see Figure 6 and Table 2.

Figure 6: Some forbidden induced subgraphs in G.
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λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9

C9 2 1.532 1.532 0.347 0.347 −1 −1 −1.879 −1.879
T1 2.223 1.568 1.247 0.288 0 −0.445 −0.919 −1.801 −2.161
T2 2.573 1.453 1.441 0.566 −0.358 −0.485 −0.795 −1.871 −2.523
T3 2.579 1.618 1.373 0 0 −0.451 −0.618 −2 −2.501
T4 2.503 1.813 1.264 0 0 −0.470 −0.576 −2.191 −2.342
T5 2.414 1.508 1.247 0.679 −0.414 −0.445 −0.825 −1.801 −2.362
T6 2.124 1.540 1.247 0.807 −0.337 −0.445 −1.101 −1.801 −2.032

Table 2: Eigenvalues of graphs C9 and Ti for i ∈ {1, 2, . . . , 6}.

Claim 16. Any graph of {Ti : 1 6 i 6 6} can not be an induced subgraph in G.

We denote by T0 be the graph on 8 vertices obtained from C7 by hanging an edge.
Unfortunately, we can not prove that T0 is not an induced subgraph of G by using similar
calculations. This is slightly different from the proof of Theorem 6 in Section 2, and
makes the forthcoming proof more complicated.

Proof of Claim 16. Our proof needs some tedious calculations similar with that in Claim
15. Suppose on the contrary that G contains Ti as an induced subgraph for some i ∈
{1, 2, 3, 4, 5, 6}. To obtain a contradiction, we shall show t(G) > 0 by applying Lemma 8.
If T1 is an induced subgraph of G, then Cauchy’s interlacing theorem gives λn−9+i(G) 6
λ(T1) 6 λi(G) for every i ∈ {1, 2, . . . , 9}. In particular, we have λ2 > 1.568, λ3 > 1.247
and λ4 > 0.288. Then

g(λ2) > g(1.568) > 2.458
√
m− 4 + 3.855,

g(λ3) > g(1.247) > 1.555
√
m− 4 + 1.939,

and
g(λ4) > g(0.288) > 0.082

√
m− 4 + 0.023.

In addition, the negative eigenvalues of T1 imply that λn−3 6 −0.445, λn−2 6 −0.919,
λn−1 6 −1.801 and λn 6 −2.161. We know from (9) that λ1 > γ(m) >

√
m− 4, which

yields λ2n 6 2m− (
∑4

i=1 λ
2
i + λ2n−3 + λ2n−2 + λ2n−1) < 2m− (m− 4 + 8.382) = m− 4.382.

Then −
√
m− 4.382 < λn 6 −2.161 and

g(λn) > min{g(−
√
m− 4.382), g(−2.161)} > 0.15

√
m− 4.

Since λ2n−1 + λ2n 6 2m − (
∑4

i=1 λ
2
i + λ2n−3 + λ2n−2) < 2m − (m − 4 + 5.139) = m − 1.139

and λ2n−1 6 λ2n, we get −
√

(m− 1.139)/2 < λn−1 6 −1.801 and

g(λn−1) > min{g(−
√

(m− 1.139)/2), g(−1.801)} > 3.243
√
m− 4− 5.841.

Similarly, we have −
√

(m− 0.294)/3 < λn−2 6 −0.919 and

g(λn−2) > min{g(−
√

(m− 0.294)/3), g(−0.919)} > 0.844
√
m− 4− 0.776.
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By Lemma 8, we have

t(G) >
1

6
(g(λ2) + g(λ3) + g(λ4) + g(λn) + g(λn−1) + g(λn−2))−

4

3
λ1(G)

>
1

6
(8.332

√
m− 4− 8

√
m− 0.8) > 0,

which is a contradiction.
If T2 is an induced subgraph ofG, then Cauchy’s interlacing theorem implies λn−9+i(G) 6

λi(T2) 6 λi(G) for every i ∈ {1, 2, . . . , 9}. Since λ2 > 1.453, λ3 > 1.441 and λ4 > 0.566,
we obtain

g(λ2) > g(1.453) > 2.111
√
m− 4 + 3.067,

g(λ3) > g(1.441) > 2.076
√
m− 4 + 2.992,

and
g(λ4) > g(0.566) > 0.320

√
m− 4 + 0.181.

On the other hand, the negative eigenvalues of T2 can imply that λn−4 6 −0.358, λn−3 6
−0.485, λn−2 6 −0.795, λn−1 6 −1.871 and λn 6 −2.523. Due to λ1 >

√
m− 4, then

we have λ2n 6 2m− (
∑4

i=1 λ
2
i + λ2n−i) < 2m− (m− 4 + 9.004) 6 m− 5.004, which yields

−
√
m− 5.004 < λn 6 −2.523. Consequently, we get

g(λn) > min{g(−
√
m− 5.004), g(−2.523)} > 0.4

√
m− 4.

Moreover, since λ2n−1+λ2n 6 2m−(
∑4

i=1 λ
2
i +λ2n−4+λ2n−3+λ2n−2) < 2m−(m−4+5.503) =

m− 1.503 and λ2n−1 6 λ2n, we get −
√

(m− 1.503)/2 < λn−1 6 −1.871 and

g(λn−1) > min{g(−
√

(m− 1.503)/2), g(−1.871)} > 3.5
√
m− 4− 6.549.

Similarly, we have −
√

(m− 0.871)/3 < λn−2 6 −0.795 and

g(λn−2) > min{g(−
√

(m− 0.871)/3), g(−0.795)} > 0.632
√
m− 4− 0.502.

By Lemma 8, we have

t(G) >
1

6
(g(λ2) + g(λ3) + g(λ4) + g(λn) + g(λn−1) + g(λn−2))−

4

3
λ1(G)

>
1

6
(9.039

√
m− 4− 8

√
m− 0.811) > 0,

which is a contradiction.
If T3 is an induced subgraph of G, then λ2 > 1.618 and λ3 > 1.373. We get

g(λ2) > g(1.618) > 2.617
√
m− 4 + 4.235,

and
g(λ3) > g(1.373) > 1.885

√
m− 4 + 2.588.
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The negative eigenvalues of T3 can give that λn−3 6 −0.451, λn−2 6 −0.618, λn−1 6 −2
and λn 6 −2.501. Since λ2n 6 2m− (λ21 + λ22 + λ23 + λ2n−3 + λ2n−2 + λ2n−1) < 2m− (m− 4 +
9.088) = m− 5.088, then −

√
m− 5.088 < λn 6 −2.501 and

g(λn) > min{g(−
√
m− 5.088), g(−2.501)} > 0.5

√
m− 4.

Since λ2n−1 +λ2n 6 2m− (λ21 +λ22 +λ23 +λ2n−3 +λ2n−2) < 2m− (m− 4 + 5.088) = m− 1.088

and λ2n−1 6 λ2n, we get −
√

(m− 1.088)/2 < λn−1 6 −2 and

g(λn−1) > min{g(−
√

(m− 1.088)/2), g(−2)} > 4
√
m− 4− 8.

By Lemma 8, we have

t(G) >
1

6
(g(λ2) + g(λ3) + g(λn) + g(λn−1))−

4

3
λ1(G)

>
1

6
(9.002

√
m− 4− 8

√
m− 1.177) > 0,

which is a contradiction.
If T4 is an induced subgraph of G, then we get from Cauchy’s interlacing theorem that

λ2 > 1.813 and λ3 > 1.264. Then

g(λ2) > g(1.813) > 3.286
√
m− 4 + 5.959,

and
g(λ3) > g(1.264) > 1.597

√
m− 4 + 2.019.

Moreover, we have λn−3 6 −0.470, λn−2 6 −0.576, λn−1 6 −2.191 and λn 6 −2.342.
Since λ2n 6 2m − (

∑3
i=1 λi + λn−i) < 2m − (m − 4 + 10.237) = m − 6.237, we get

−
√
m− 6.237 < λn 6 −2.342 and

g(λn) > min{g(−
√
m− 6.237), g(−2.342)} >

√
m− 4.

Since λ2n−1 + λ2n 6 2m − (
∑3

i=1 λi + λn−3 + λn−2) < 2m − (m − 4 + 5.437) = m − 1.437

and λ2n−1 6 λ2n, we get −
√

(m− 1.437)/2 < λn−1 6 −2.191 and

g(λn−1) > min{g(−
√

(m− 1.437)/2), g(−2.191)} > 4.8
√
m− 4− 10.517.

By Lemma 8, we obtain

t(G) >
1

6
(g(λ2) + g(λ3) + g(λn) + g(λn−1))−

4

3
λ1(G)

>
1

6
(10.683

√
m− 4− 8

√
m− 2.539) > 0,

which is a contradiction.
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If T5 is an induced subgraph of G, then Cauchy’s interlacing theorem implies λ2 >
1.508, λ3 > 1.247 and λ4 > 0.679. Then

g(λ2) > g(1.508) > 2.274
√
m− 4 + 3.429,

g(λ3) > g(1.247) > 1.555
√
m− 4 + 1.939,

and
g(λ4) > g(0.679) > 0.461

√
m− 4 + 0.313.

The negative eigenvalues of T5 imply that λn−4 6 −0.414, λn−3 6 −0.445, λn−2 6 −0.825,
λn−1 6 −1.801 and λn 6 −2.362. Since λ2n 6 2m − (

∑4
i=1 λi + λn−i) < 2m − (m − 4 +

8.583) = m− 4.583, we get −
√
m− 4.583 < λn 6 −2.362 and

g(λn) > min{g(−
√
m− 4.583), g(−2.362)} > 0.25

√
m− 4.

Since λ2n−1 +λ2n 6 2m− (
∑4

i=1 λ
2
i +λ2n−4 +λ2n−3 +λ2n−2) < 2m− (m−4+5.34) = m−1.34

and λ2n−1 6 λ2n, we have −
√

(m− 1.34)/2 < λn−1 6 −1.801 and

g(λn−1) > min{g(−
√

(m− 1.34)/2), g(−1.801)} > 3.243
√
m− 4− 5.841.

Similarly, we can get −
√

(m− 0.659)/3 < λn−2 6 −0.825 and

g(λn−2) > min{g(−
√

(m− 0.659)/3), g(−0.825)} > 0.68
√
m− 4− 0.561.

By Lemma 8, we obtain

t(G) >
1

6
(g(λ2) + g(λ3) + g(λ4) + g(λn) + g(λn−1) + g(λn−2))−

4

3
λ1(G)

>
1

6
(8.463

√
m− 4− 8

√
m− 0.721) > 0,

which is a contradiction.
If T6 is an induced subgraph of G, then Cauchy’s interlacing theorem implies that

λ2 > 1.540, λ3 > 1.247 and λ4 > 0.807. Then

g(λ2) > g(1.540) > 2.371
√
m− 4 + 3.652,

g(λ3) > g(1.247) > 1.555
√
m− 4 + 1.939,

and
g(λ4) > g(0.807) > 0.651

√
m− 4 + 0.525.

The negative eigenvalues of T6 yield that λn−4 6 −0.337, λn−3 6 −0.445, λn−2 6 −1.101,
λn−1 6 −1.801 and λn 6 −2.032. Since λ2n 6 2m − (

∑4
i=1 λ

2
i + λ2n−i) < 2m − (m − 4 +

9.345) = m− 5.345, we get −
√
m− 5.345 < λn 6 −2.032 and

g(λn) > min{g(−
√
m− 5.345), g(−2.032)} > 0.65

√
m− 4.
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Since λ2n−1+λ2n 6 2m−(
∑4

i=1 λ
2
i +λ2n−4+λ2n−3+λ2n−2) < 2m−(m−4+6.101) = m−2.101

and λ2n−1 6 λ2n, we get −
√

(m− 2.101)/2 < λn−1 6 −1.801 and

g(λn−1) > min{g(−
√

(m− 2.101)/2), g(−1.801)} > 3.243
√
m− 4− 5.841.

Similarly, we can get −
√

(m− 0.889)/3 < λn−2 6 −1.101 and

g(λn−2) > min{g(−
√

(m− 0.889)/3), g(−1.101)} > 1.212
√
m− 4− 1.334.

By Lemma 8, we obtain

t(G) >
1

6
(g(λ2) + g(λ3) + g(λ4) + g(λn) + g(λn−1) + g(λn−2))−

4

3
λ1(G)

>
1

6
(9.682

√
m− 4− 8

√
m− 1.059) > 0,

which is a contradiction.

Claim 17. V (G) = S ∪N(S) and dS(v) ∈ {1, 2} for each vertex v ∈ N(S).

Proof of Claim 17. For each v ∈ N(S), without loss of generality, we may assume that
v ∈ N(u1). If dS(v) > 3, then we can find either a C3 or C5 in G, a contradiction. This
implies that dS(v) ∈ {1, 2} for every v ∈ N(S). Next we prove that V (G) = S ∪ N(S).
Otherwise, if there is a vertex v′ ∈ V (G)\ (S∪N(S)), then v′ has distance at least 2 from
S. Let v′vu1 be a path of G such that v′ui /∈ E(G) for every i ∈ [7]. Since dS(v) ∈ {1, 2}
and G is both C3-free and C5-free, we know by symmetry that either NS(v) = {u1} or
NS(v) = {u1, u3}. If NS(v) = {u1}, then {v′, v}∪S induces a copy of T6, a contradiction.
If NS(v) = {u1, u3}, then {v′, v}∪S induces a copy of T5, which is a contradiction. Thus,
we conclude that V (G) = S ∪N(S) and dS(v) ∈ {1, 2} for every v ∈ N(S).

From Claim 17, we assume that V (G)\S = V1∪V2, where Vi = {v ∈ N(S) : dS(v) = i}
for every i = 1, 2. Since T1 is not an induced subgraph of G, we get 0 6 |V1| 6 1. Since
m > 11, we get V2 6= ∅. We can fix a vertex v ∈ V2 and assume that NS(v) = {u1, u3}. For
each w ∈ V2, since G contains no triangles and no T3 as induced subgraphs, we know that
NS(w) 6= {u3, u5} and NS(w) 6= {u6, u1}. Similarly, since G contains no pentagons and
T4 as induced subgraphs, we get NS(w) 6= {u4, u6} and NS(w) 6= {u5, u7}. Therefore, it
is possible that NS(w) = {u1, u3}, {u2, u4} or {u7, u2}. Furthermore, if NS(w) = {u1, u3},
then wv /∈ E(G), since G contains no triangles; if NS(w) = {u2, u4}, then wv ∈ E(G),
since G contains no induced copy of T2. We denote Ni,j = {w ∈ V (G) \ S : NS(w) =
{ui, uj}}. Note that G has no induced copy of T3, there are at least one empty set in
{N2,4, N7,2}.

Case 1. If both N2,4 = ∅ and N7,2 = ∅, then V2 = N1,3 and V (G) \ S = N1,3 ∪ V1.
If |V1| = 0, then m is odd and G = S3(K2,m−3

2
), as desired. If |V1| = 1, then m is even

and G is a graph obtained from S3(K2,m−4
2

) by hanging an edge to one vertex. By setting

a = 2 and b = m−4
2

in Lemma 13, we know that λ(G) < γ(m).
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Case 2. Without loss of generality, we may assume that N2,4 6= ∅, then V (G) \ S =
N1,3 ∪N2,4 ∪ V1. Moreover, N1,3 and N2,4 induce a complete bipartite subgraph in G. We
denote A = N1,3 ∪ {u2, u4} and B = N2,4 ∪ {u3, u1}. Clearly, we have |A| = a > 2 and
|B| = b > 2. If |V1| = 0, then G is isomorphic to the subdivision of Ka,b by replacing the
edge u1u4 of Ka,b with a path of length 4, and m = ab + 3. Note that λ(S3(Ka,b)) is the
largest root of

Q(x) := x7 − (ab+ 3)x5 + (5ab− 2a− 2b+ 2)x3

+ (−5ab+ 4a+ 4b− 3)x− 2ab+ 2a+ 2b− 2.

Recall in (8) that γ(m) denotes the largest root of L(x). We can easily verify that L(x) 6
Q(x) for every x > 1, so we get L(λ(G)) 6 Q(λ(G)) = 0, which implies λ(G) 6 γ(m),
equality holds if and only if a = 2 or b = 2, and thus m is odd and G = S3(K2,m−3

2
). If

|V1| = 1, then m = ab + 4 and G is obtained from S3(Ka,b) by hanging an edge to one
vertex. By Lemma 13 again, we get λ(G) < γ(m). This completes the proof.

4 Concluding remarks

We remark that the method stated in Sections 2 and 3 can further allow us to determine
the largest spectral radius of non-bipartite graphs with no copy of C3, C5 and C7, and so
far as to C9 by more careful computations. From this evidence, we propose the following
conjecture for interested readers. Let S2k−1(Ks,t) denote the graph obtained from the
complete bipartite graph Ks,t by replacing an edge with a path P2k+1 on 2k + 1 vertices,
that is, introducing 2k − 1 new vertices on an edge. Clearly, the odd girth of S2k−1(Ks,t)
is 2k + 3.

Conjecture 18. Let G be a graph with m edges. If G does not contain any member of
{C3, C5, . . . , C2k+1} and G is non-bipartite, then

λ(G) 6 λ(S2k−1(K2,m−2k+1
2

)),

equality holds if and only if m is odd and G = S2k−1(K2,m−2k+1
2

).

Let Bk be the book graph, i.e., the graph obtained from k triangles by sharing a
common edge. In particular, we have B1 = K3 and B2 = K−4 , the 4-vertex complete
graph minus an edge. In 2021, Zhai, Lin and Shu [53, Conjecture 5.2] made the following
conjecture: Let m be large enough and G be a Bk-free graph with m edges. Then

λ(G) 6
√
m,

equality holds if and only if G is a complete bipartite graph.
Soon after, Nikiforov [42] confirmed Zhai–Lin–Shu’s conjecture by showing the follow-

ing stronger theorem. Let bk(G) denote the booksize of G, that is, the maximum number
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of triangles with a common edge in G. Nikiforov [42] proved that if G is a graph with m
edges and λ(G) >

√
m, then

bk(G) >
1

12
4
√
m,

unless G is a complete bipartite graph (with possibly some isolated vertices). Since B2

contains both C3 and C4 as a subgraph, the result of Nikiforov generalized Theorem 3.
We conclude this paper with the following problem and conjecture that the lower

bound bk(G) > c
√
m is true for some constant c > 0.

Conjecture 19. If G is a graph with m edges and λ(G) >
√
m, then

bk(G) > c
√
m

for some constant c > 0, unless G is a complete bipartite graph.
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of Paul Erdős II, R.L. Graham, Springer, New York, 2013, pp. 245–311.

[48] M. Tait, J. Tobin, Three conjectures in extremal spectral graph theory, J. Combin.
Theory Ser. B 126 (2017), 137–161.

[49] M. Tait, The Colin de Verdière parameter, excluded minors, and the spectral radius,
J. Combin. Theory Ser. A 166 (2019), 42–58.

the electronic journal of combinatorics 29(4) (2022), #P4.2 26

https://arxiv.org/abs/2104.12171
https://arxiv.org/abs/2112.12937
https://arxiv.org/abs/2112.15279


[50] P. Turán, On an extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941), pp.
436–452. (in Hungarian).

[51] H. Wilf, Spectral bounds for the clique and indendence numbers of graphs, J. Combin.
Theory Ser. B 40 (1986), 113–117.

[52] P. Wocjan, C. Elphick, New spectral bounds on the chromatic number encompassing
all eigenvalues of the adjacency matrix, Electron. J. Combin. 20 (3) (2013), #P39.

[53] M. Zhai, H. Lin, J. Shu, Spectral extrema of graphs with fixed size: Cycles and
complete bipartite graphs, European J. Combin. 95 (2021), 103322.

[54] M. Zhai, J. Shu, A spectral version of Mantel’s theorem, Discrete Math. 345 (2022),
112630.

[55] X. Zhan, Matrix Theory, Graduate Studies in Mathematics, vol. 147, Amer. Math.
Soc., Providence, RI, 2013.

[56] F. Zhang, Matrix Theory: Basic Results and Techniques, 2nd edition, Springer, New
York, 2011.

the electronic journal of combinatorics 29(4) (2022), #P4.2 27


	Introduction
	The classical extremal graph problems
	The spectral extremal graph problems

	Alternative proof of Theorem 6
	Graphs without short odd cycles
	Concluding remarks

