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Abstract

We introduce the cyclic major index of a cyclic permutation and give a bivariate

analogue of the enumerative formula for the cyclic shuffles with a given cyclic descent

number due to Adin, Gessel, Reiner and Roichman, which can be viewed as a cyclic

analogue of Stanley’s shuffling theorem. This gives an answer to a question of

Adin, Gessel, Reiner and Roichman, which has been posed by Domagalski, Liang,

Minnich, Sagan, Schmidt and Sietsema again.

Mathematics Subject Classifications: 05A05, 05A19, 11P81

1 Introduction

The main theme of this note is to establish a cyclic analogue of Stanley’s shuffling theorem.

Recall that Stanley’s shuffling theorem establishes an explicit expression for the generating

function of the number of shuffles of two disjoint permutations σ and π with a given cyclic

descent number and a given major index. Here we adopt some common notation and

terminology on permutations as used in [13, Chapter 1]. We say that π = π1π2 · · · πn is

a permutation of length n if it is a sequence of n distinct numbers (not necessarily from

1 to n). For example, π = 92 8 10 12 3 7 is a permutation of length 7. Let Sn denote the

set of all permutations of length n.

Let π ∈ Sn. We say that 1 6 i 6 n − 1 is a descent of π if πi > πi+1. The set of

descents of π is called the descent set of π, denoted Des(π), viz.,

Des(π) := {1 6 i 6 n− 1 : πi > πi+1}.
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The number of its descents is called the descent number, denoted des(π), namely,

des(π) := #Des(π),

where the hash symbol #T stands for the cardinality of a set T . The major index of π,

denoted maj(π), is defined to be the sum of its descents. To wit,

maj(π) :=
∑

k∈Des(π)

k.

Let σ ∈ Sn and π ∈ Sm be disjoint permutations, that is, permutations with no

numbers in common. We say that α ∈ Sn+m is a shuffle of σ and π if both σ and π are

subsequences of α. The set of shuffles of σ and π is denoted S(σ, π). For example,

S(6 3, 1 4) = {6 3 1 4, 6 1 3 4, 6 1 4 3, 1 4 6 3, 1 6 3 4, 1 6 4 3}.

Clearly, the number of permutations in S(σ, π) is
(

m+n

n

)

for two disjoint permutations

σ ∈ Sn and π ∈ Sm.

Stanley’s shuffling theorem states that

Theorem 1. Let σ ∈ Sm and π ∈ Sn be disjoint permutations, where des(σ) = r and

des(π) = s. Then

∑

α∈S(σ,π)
des(α)=k

qmaj(α) =

[

m− r + s

k − r

][

n− s+ r

k − s

]

qmaj(σ)+maj(π)+(k−s)(k−r). (1)

Here
[

n

m

]

=
(1− qn)(1− qn−1) · · · (1− qn−m+1)

(1− qm)(1− qm−1) · · · (1− q)

is the Gaussian polynomial (also called the q-binomial coefficient), see Andrews [2, Chap-

ter 1].

Stanley [12] obtained the above expression in light of the q-Pfaff-Saalschütz identity

in his setting of P -partitions. Bijective proofs of Stanley’s shuffling theorem have been

given by Goulden [6], Stadler [11], Ji and Zhang [10].

Recently, Adin, Gessel, Reiner and Roichman [1] introduced a cyclic version of qua-

sisymmetric functions with a corresponding cyclic shuffle operation. A cyclic permutation

[π] of length n is the set of all rotations of a permutation π = π1π2 · · · πn, i.e,

[π] = {π1π2 · · · πn, π2π3 · · · πnπ1, . . . , πnπ1 · · · πn−1}.

For example,

[4 2 3 1] = {4 2 3 1, 2 3 1 4, 3 1 4 2, 1 4 2 3} (2)
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is a cyclic permutation of length 4, where

[4 2 3 1] = [2 3 1 4] = [3 1 4 2] = [1 4 2 3].

Let πl be the largest element in [π]. The linear permutation π̂ = πlπl+1 · · · πnπ1 · · · πl−1

corresponding to the cyclic permutation [π] is called the representative of the cyclic per-

mutation [π]. For the example above, 4 2 3 1 is the representative of the cyclic permutation

[4 2 3 1]. Here and in the sequel, we use the representative to represent each cyclic permu-

tation [π]. For example, we use [4 2 3 1] to represent the cyclic permutation given in (2).

In this way, all cyclic permutations of {1, 2, 3, 4} are listed as follows:

[4 1 2 3], [4 3 1 2], [4 1 3 2], [4 2 1 3], [4 2 3 1], [4 3 2 1].

Let Sc

n
denote the set of all cyclic permutations of length n. Suppose that [σ] ∈ S

c

n
and

[π] ∈ S
c

m
are disjoint cyclic permutations, that is, cyclic permutations with no numbers

in common. We say that [α] ∈ S
c

n+m
is a cyclic shuffle of [σ] and [π] if both [σ] and [π]

are circular subsequences of [α]. Recall that a cyclic permutation [π] is called a circular

subsequence of [α] if there exists a rotation of [α], which contains π linearly. The set of

cyclic shuffles of [σ] and [π] is denoted Sc([σ], [π]). For example,

Sc([6 3], [4 1]) = {[6 31 4], [6 341], [614 3], [641 3], [61 34], [64 31]}. (3)

The elements of [π] in [α] are in boldface to distinguish them from the elements of [σ].

Figure 1 lays out the circular representations of cyclic shuffles of [6 3] and [4 1].
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Figure 1: The circular representations of cyclic shuffles of [6 3] and [4 1].
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It’s not hard to show that

#Sc([σ], [π]) = (m+ n− 1)

(

m+ n− 2

m− 1

)

(4)

for two disjoint cyclic permutations [σ] ∈ S
c

n
and [π] ∈ S

c

m
, see [5, Eq. (7)].

In order to study Solomon’s descent algebra, Cellini [3, 4] introduced the cyclic descent

set. Let π = π1π2 . . . πn be a linear permutation. We say that 1 6 i 6 n is a cyclic descent

of π if πi > πi+1 with the convention πn+1 = π1. The set of cyclic descents of π is called

the cyclic descent set of π, denoted cDes(π). To wit,

cDes(π) = {1 6 i 6 n : πi > πi+1}

with the convention πn+1 = π1. The number of its cyclic descents is called the cyclic

descent number, denoted cdes(π), viz.,

cdes(π) := #cDes(π).

Note that all linear permutations corresponding to a cyclic permutation [π] have the

same number of cyclic descents. In this sense, the cyclic descent number of [π], denoted

cdes ([π]), can be define to be the cyclic descent number of any one linear permutation

corresponding to [π]. To wit,

cdes ([π]) = cdes (π) , (5)

where π is any one linear permutation corresponding to [π].

Based on their setting of cyclic quasi-symmetric functions, Adin, Gessel, Reiner and

Roichman [1] established the following enumerative formula for the cyclic shuffles with a

given cyclic descent number.

Theorem 2 (Adin-Gessel-Reiner-Roichman). Let [σ] ∈ S
c

m
and [π] ∈ S

c

n
be disjoint

cyclic permutations, where cdes([σ]) = r and cdes([π]) = s. Let Sc([σ], [π], k) denote the

set of cyclic shuffles of [σ] and [π] with cyclic descent number k. Then

#Sc([σ], [π], k) =
k(m− r)(n− s) + (m+ n− k)rs

(m− r + s)(n− s+ r)

(

m− r + s

k − r

)(

n− s+ r

k − s

)

. (6)

Summing (6) over all k gives (4) upon using the Chu-Vandermonde identity [13, p.

135, Ex. 100]. At the end of their paper, Adin, Gessel, Reiner and Roichman [1] asked

a question about looking for a notion of cyclic major index, which provides a bivariate

analogue of Theorem 2. This question has been posed by Domagalski, Liang, Minnich,

Sagan, Schmidt and Sietsema in [5, Question 4.1] again.

In this paper, we introduce the cyclic major index of a cyclic permutation [π]. Let

[π] ∈ S
c

n
. Suppose that the representative of [π] is π̂ = π̂1π̂2 · · · π̂n, where π̂1 is the largest
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element in [π]. The cyclic major index of [π], denoted maj([π]), is defined to be the major

index of π̂. Namely,

maj([π]) = maj(π̂). (7)

For example, the representative of [4 1 3 2] is π̂ = 41 3 2, so maj([4 1 3 2]) = maj(4 1 3 2) =

1 + 3 = 4.

In order to state the cyclic analogue of Stanley’s shuffling theorem, we will need to

introduce the cyclic descent-bottom set of a cyclic permutation and recall the splitting

map Si defined by Domagalski, Liang, Minnich, Sagan, Schmidt and Sietsema in [5],

which maps a cyclic permutation to a linear permutation. Let [π] ∈ S
c

n
. The cyclic

descent-bottom set cBd([π]) of [π] is defined to be {πi+1 : πi > πi+1, for 1 6 i 6 n} with

the convention πn+1 = π1. It should be mentioned that the descent-bottom set of a linear

permutation has been studied by Haglund and Visontai [7] and Hall and Remmel [8, 9].

For example,

cBd([6 4 1 3]) = {1, 4}.

It is easy to see that

#cBd([π]) = cdes([π]).

Let [π] be a cyclic permutation of length n. For i ∈ [π], Domagalski, Liang, Minnich,

Sagan, Schmidt and Sietsema [5] defined the map Si([π]) to be the unique permutation

corresponding to [π] which starts with i. For example,

S5([5 1 3 4]) = 5 1 3 4, S1([5 1 3 4]) = 1 3 4 5, S3([5 1 3 4]) = 3 4 5 1,

and

S4([5 1 3 4]) = 4 5 1 3.

We obtain the following generating function of the number of cyclic shuffles of two

disjoint cyclic permutations with a given cyclic descent number and a given cyclic major

index.

Theorem 3 (Cyclic Stanley’s shuffling theorem). Let [σ] ∈ S
c

m
and [π] ∈ S

c

n
be disjoint

cyclic permutations, where cdes([σ]) = r and cdes([π]) = s. Suppose that the largest

element of [σ] and [π] is in [σ]. Then

∑

[α]∈Sc([σ],[π])
cdes([α])=k

qmaj([α])

=

[

m− r + s

k − r

][

n− s+ r − 1

k − s− 1

]

qmaj([σ])+(k−s)(k−r)
∑

i 6∈cBd([π])

qmaj(Si([π]))

+

[

m− r + s− 1

k − r

][

n− s+ r

k − s

]

qmaj([σ])+(k−s+1)(k−r)
∑

i∈cBd([π])

qmaj(Si([π])). (8)
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Setting q → 1 in Theorem 3, we obtain (6), that is,

#Sc([σ], [π], k)

=
∑

i 6∈cBd[π]

(

m− r + s

k − r

)(

n− s+ r − 1

k − s− 1

)

+
∑

i∈cBd[π]

(

m− r + s− 1

k − r

)(

n− s+ r

k − s

)

= (n− s)

(

m− r + s

k − r

)(

n− s+ r − 1

k − s− 1

)

+ s

(

m− r + s− 1

k − r

)(

n− s+ r

k − s

)

=
k(m− r)(n− s) + (m+ n− k)rs

(m− r + s)(n− s+ r)

(

m− r + s

k − r

)(

n− s+ r

k − s

)

.

2 Proof of Theorem 3

This section is devoted to the proof of Theorem 3 with the aid of Stanley’s shuffling

theorem.

Proof of Theorem 3. Let [σ] ∈ S
c

m
and [π] ∈ S

c

n
be two disjoint cyclic permutations,

where cdes([σ]) = r and cdes([π]) = s. Suppose that the largest element of [σ] and [π] is

in [σ]. Let σ̂ = σ̂1σ̂2 · · · σ̂m be the representative of [σ], that is, σ̂1 is the largest element

of [σ]. Under the hypothesis of this theorem, we see that σ̂1 is greater than all elements

in [π]. Define

σ̂′ = σ̂2 · · · σ̂m. (9)

By definition, we see that

cdes([σ]) = des(σ̂′) + 1 (10)

and

maj([σ]) = maj(σ̂′) + des(σ̂′) + 1. (11)

Recall that Sc([σ], [π]) denotes the set of cyclic shuffles of [σ] and [π]. Let S(σ̂′, Si([π]))

denote the set of linear shuffles of σ̂′ and Si([π]), where σ̂
′ is defined in (9) and Si([π]) is

the permutation corresponding to [π] which starts with i ∈ [π]. We claim that there is

a bijection ψ between the set Sc([σ], [π]) and the set
⋃

i∈[π] S(σ̂
′, Si([π])). Moreover, for

[α] ∈ Sc([σ], [π]), we have ψ(α) = α̂′ such that

cdes([α]) = des(α̂′) + 1 (12)

and

maj([α]) = maj(α̂′) + des(α̂′) + 1. (13)

Let [α] ∈ Sc([σ], [π]) and let α̂ = α̂1α̂2 · · · α̂n+m be the representative of [α], where α̂1 is

the largest element in [α]. Since σ̂1 is the largest element in [σ] and [π], we deduce that

α̂1 = σ̂1 and cdes([α]) = des(α̂). Define

α̂′ = α̂2α̂3 · · · α̂n+m.
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From the construction of α̂′, it is evident that α̂′ ∈
⋃

i∈[π] S(σ̂
′, Si([π])) and [α] and α̂′

satisfy (12) and (13). Moreover, this process is clearly reversible. This proved the claim.

We therefore obtain
∑

[α]∈Sc([σ],[π])
cdes([α])=k

qmaj([α])

=
∑

i∈[π]

∑

α̂′∈S(σ̂′,Si([π])

des(α̂′)=k−1

qmaj(α̂′)+k

=
∑

i 6∈cBd([π])

∑

α̂′∈S(σ̂′,Si([π])

des(α̂′)=k−1

qmaj(α̂′)+k +
∑

i∈cBd([π])

∑

α̂′∈S(σ̂′,Si([π])

des(α̂′)=k−1

qmaj(α̂′)+k. (14)

By (10) and (11), we see that

des(σ̂′) = cdes([σ])− 1 = r − 1 and maj(σ̂′) = maj([σ])− r. (15)

Observe that des(Si([π])) = cdes([π]) = s if i 6∈ cBd([π]). Hence, by Theorem 1, we obtain
∑

i 6∈cBd([π])

∑

α̂′∈S(σ̂′,Si([π])

des(α̂′)=k−1

qmaj(α̂′)+k

=
∑

i 6∈cBd([π])

[

m− r + s

k − r

][

n− s+ r − 1

k − s− 1

]

qmaj(σ̂′)+maj(Si([π]))+(k−s−1)(k−r)+k

(15)
=

[

m− r + s

k − r

][

n− s+ r − 1

k − s− 1

]

q(k−s)(k−r)+maj([σ])
∑

i 6∈cBd([π])

qmaj(Si([π])). (16)

Since des(Si([π])) = cdes([π])− 1 = s− 1 for i ∈ cBd([π]), it follows from Theorem 1 that
∑

i∈cBd([π])

∑

α̂′∈S(σ̂′,Si([π])

des(α̂′)=k−1

qmaj(α̂′)+k

=
∑

i∈cBd([π])

[

m− r + s− 1

k − r

][

n− s+ r

k − s

]

qmaj(σ̂′)+maj(Si([π]))+(k−s)(k−r)+k

(15)
=

[

m− r + s− 1

k − r

][

n− s+ r

k − s

]

q(k−s+1)(k−r)+maj([σ])
∑

i∈cBd([π])

qmaj(Si([π])). (17)

Substituting (16) and (17) into (14), we obtain (8). This completes the proof.
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