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Abstract

For a field F and functions f, g, h, j : F→ F, we define ΓF(f(X)h(Y ), g(X)j(Y ))
to be a bipartite graph where each partite set is a copy of F3, and a vertex (a, a2, a3)
in the first partite set is adjacent to a vertex [x, x2, x3] in the second partite set if
and only if

a2 + x2 = f(a)h(x) and a3 + x3 = g(a)j(x).

In this paper, we completely classify all such graphs by girth in the case h = j
(subject to some mild restrictions on h). We also present a partial classification
when h 6= j and provide some applications.

Mathematics Subject Classifications: 05C25, 05C38

1 Introduction

A three-dimensional algebraically defined graph ΓR(f2(X, Y ), f3(X, Y )), or simply an alge-
braically defined graph, is a bipartite graph constructed using a ring R and two bivariate
functions f2, f3 : R2 → R. Each partite set is a copy of R3, where vertices are labeled as
(a, a2, a3) in the first partite set and [x, x2, x3] in the second. Two vertices are adjacent, de-
noted by (a, a2, a3) ∼ [x, x2, x3], if their coordinates satisfy the equations ai +xi = fi(a, x)
for i ∈ {2, 3}.

The graphs ΓR(f2, . . . , fn), in the case when R is a finite field, were introduced in
Viglione [26] and Lazebnik and Viglione [21], where their connectivity was studied. For
the definition of graphs defined by systems of equations, their origins, properties and nu-
merous applications, see Lazebnik and Woldar [22] and references therein. Subsequently,
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Dmytrenko, Lazebnik, and Williford [5] studied algebraically defined graphs where R is
a finite field Fq of odd order and f2 and f3 are monomials (such graphs are aptly named
monomial graphs). They conjectured that all such monomial graphs of girth at least eight
are isomorphic to ΓFq(XY,XY

2). This work was expanded upon by Kronenthal [16], and
the conjecture was ultimately proven by Hou, Lappano, and Lazebnik [10]. In addition,
Kronenthal and Lazebnik [17] and Kronenthal, Lazebnik, and Williford [18] studied fami-
lies of polynomial graphs over algebraically closed fields of characteristic zero and applied
some of their techniques to graphs over finite fields; these results were recently extended
by Cheng, Tang, and Xu [2]. Moreover, Kodess, Kronenthal, Manzano-Ruiz, and Noe [12]
classified monomial graphs over the real numbers, and Ganger, Golden, Kronenthal, and
Lyons [6] studied a two-dimensional analogue. A number of questions related to con-
nectivity, diameter, and isomorphisms of similarly constructed directed graphs, as well
as a peculiar result on the number of roots of certain polynomials in finite fields, were
considered by Kodess [11], Kodess and Lazebnik [13, 14], Kodess, Lazebnik, Smith, and
Sporre [15], and Coulter, De Winter, Kodess, and Lazebnik [3]. For more related results,
see the survey paper by Lazebnik, Sun, and Wang [19].

In this paper, as in many of the aforementioned articles, we study three-dimensional
undirected algebraically defined graphs ΓR(f2(X, Y ), f3(X, Y )); but here, we extend our
investigation to arbitrary multiplicatively separable bivariate functions f2 and f3, and we
also allow R to be an arbitrary field F. By multiplicatively separable functions, we mean
f2(X, Y ) = f(X)h(Y ) and f3(X, Y ) = g(X)j(Y ) for some functions f, g, h, j : F→ F. We
now summarize our main results as follows:

• When h = j, we completely classify graphs ΓF(f(X)h(Y ), g(X)h(Y )) by girth under
some mild restrictions on h (see Theorem 5 for F = R and Theorem 7 for general
F).

• In a more general setting, we partially classify graphs ΓF(f(X)h(Y ), g(X)j(Y )) by
girth (see Theorem 8 for F = R and Theorem 10 for general F).

• We characterize graphs ΓFq(f(X)h(Y ), g(X)h(Y )) of girth greater than four (see
Theorem 12); for odd q, we also characterize such graphs of girth greater than six
(see Theorem 13 and Corollary 14).

In Section 4, we discuss some applications of these results to several families of graphs
over R: ΓR(X

m
n h(Y ), aXh(Y )), ΓR(f(X)h(Y ), (sinX)h(Y )), and ΓR(XmY n, aX+Y ).

It is important to note that all results in this paper can be extended. Indeed,
due to isomorphisms (I1) and (I2) in Lemma 2 (see Section 2), results about graphs
ΓF(f(X)h(Y ), g(X)j(Y )) can be restated to apply to graphs ΓF(h(X)f(Y ), j(X)g(Y )),
ΓF(g(X)j(Y ), f(X)h(Y )), and ΓF(j(X)g(Y ), h(X)f(Y )). Furthermore, isomorphisms
(I3) and (I4) allow us to generalize our class of functions beyond those that are mul-
tiplicatively separable. For example, applying Theorem 17 and these four isomorphisms
yields that ΓR(aX+Y − 2XmY n + 6 cosY − 1, XmY n + 5X3) has girth six for any positive
integers m and n and any a ∈ R such that a > 0 and a 6= 1.
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There is another important extension that we can apply. In Section 3, all statements
specifically about R can be generalized to any ordered field K. We have written statements
using R instead of K to parallel results in the literature.

While Theorems 5 and 8 subsume the classification obtained in [12], those results are
still useful. Indeed, since the results of [12] deal specifically with monomials, [12] features
a classification in which the girth of any monomial graph can be instantly determined by
examination. In contrast, the results of this paper are of importance because they apply
to a substantially broader family of graphs, but due to this generality, determining which
category a given graph falls under may require a bit of analysis.

The study of algebraically defined graphs can be motivated by incidence geometry. In
two dimensions, it is known (see Dmytrenko [4] and Lazebnik and Thomason [20]) that
every graph ΓFq(f) with girth greater than four can be completed to a projective plane of
order q (although not all projective planes of order q can be constructed in this way). The
three-dimensional analogue is motivated by the construction of generalized quadrangles;
for additional details, see e.g., [17, 2].

2 Preliminary tools and notation

We shall soon see that the existence of a 2k-cycle depends only on the first coordinates
of its vertices. We say that a 2k-cycle is of type

(a1, a2, . . . , ak;x1, x2, . . . , xk)

provided the first coordinates of its consecutive vertices are given by a1, x1, a2, x2, . . . ,
ak, xk. Note that there are many 2k-cycles of each prescribed type.

The following result gives necessary and sufficient conditions for the existence of a
2k-cycle in a three-dimensional algebraically defined graph.

Lemma 1. ([4]; see also [12]) A 2k-cycle exists in ΓR(f2, f3) if and only if there exist
aj, xj ∈ R, 1 6 j 6 k, such that aj 6= aj+1 and xj 6= xj+1 for all 1 6 j 6 k (here,
ak+1 = a1 and xk+1 = x1), and for i ∈ {2, 3},

∆k(fi)(a1, a2, . . . , ak;x1, x2, . . . , xk) :=
k∑

j=1

fi(aj, xj)− fi(aj+1, xj) = 0. (1)

For example, a 6-cycle of type (a, b, c;x, y, z) exists in ΓR(f2, f3) if and only if there
exist distinct a, b, c ∈ R and distinct x, y, z ∈ R such that for i ∈ {2, 3},

∆3(fi)(a, b, c;x, y, z) = fi(a, x)− fi(b, x) + fi(b, y)− fi(c, y) + fi(c, z)− fi(a, z) = 0. (2)

We end this section with the following isomorphisms between algebraically defined
graphs. For the proof of these results, see, e.g., [20, p. 1549] or [17, Proposition 2.2 on
p. 190].
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Lemma 2. Let F be a field and f2, f3 : F2 → F. Further, let c ∈ F \ {0}, d ∈ F, and
u, v : F→ F. Then

ΓF(f2(X, Y ), f3(X, Y )) ∼= ΓF(f2(Y,X), f3(Y,X)), (I1)
ΓF(f2(X, Y ), f3(X, Y )) ∼= ΓF(f3(X, Y ), f2(X, Y )), (I2)
ΓF(f2(X, Y ), f3(X, Y )) ∼= ΓF(f2(X, Y ), cf3(X, Y ) + df2(X, Y )), and (I3)
ΓF(f2(X, Y ), f3(X, Y )) ∼= ΓF(f2(X, Y ), f3(X, Y ) + u(X) + v(Y )). (I4)

3 Main results

In this section, we present our main results. Theorems 5 and 8 discuss the girths of
ΓR(f(X)h(Y ), g(X)h(Y )) and ΓR(f(X)h(Y ), g(X)j(Y )), respectively. Although both
theorems are restricted to R, they can be generalized to any ordered field. Moreover,
they can be easily generalized to an arbitrary field F with suitable changes to the condi-
tion on the function h; such changes are specified in Theorems 7 and 10. We finish this
section with several theorems when the field is Fq. We also remind the reader that results
in this section can be extended using Lemma 2 as described in Section 1.

We begin with a lemma that applies to all fields F.

Lemma 3. Let f, g : F→ F and let a, b, c ∈ F be distinct. Then

(f(b)− f(a))(g(c)− g(b)) = (f(c)− f(b))(g(b)− g(a)) (3)

if and only if g(a) = g(b) = g(c) or there exist k, ` ∈ F such that a, b, and c are roots of
R(X) := f(X)− kg(X)− `.

Proof. If (3) holds and g(a) = g(b) = g(c) fails, then assume without loss of generality
that g(a) 6= g(b). Let

k =
f(b)− f(a)

g(b)− g(a)
and ` =

f(a)g(b)− f(b)g(a)

g(b)− g(a)
=

f(c)g(b)− f(c)g(a)− f(b)g(c) + f(a)g(c)

g(b)− g(a)
,

(4)

where the last equality follows from (3). We can easily verify that R(a) = R(b) = 0
and R(c) = 0 by using the first representation for ` and the second representation for `,
respectively.

Conversely, if g(a) = g(b) = g(c), then (3) trivially holds. If g(a) = g(b) = g(c)
fails and R(X) = f(X) − kg(X) − ` has a, b, and c as roots, then assume without
loss of generality again that g(a) 6= g(b). From R(a) = R(b) and R(b) = R(c), we obtain

k = f(b)−f(a)
g(b)−g(a) and f(c)−f(b) = k(g(c)−g(b)), respectively. Substituting the representation

for k into the last equation yields (3).

Remark 4. Although (3) is symmetric with respect to f and g, the corresponding necessary
and sufficient condition in Lemma 3 is not. A result similar to Lemma 3 holds if one swaps
the roles of f and g in the statement of the lemma: (3) holds if and only if f(a) = f(b) =

f(c) or there exist k̂, ̂̀∈ F such that a, b, and c are roots of R̂(X) := g(X)− k̂f(X)− ̂̀.
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The proof is analogous, and the expressions for k̂ and ̂̀are obtained from (4) by swapping
the roles of f and g:

k̂ =
g(b)− g(a)

f(b)− f(a)
and ̂̀=

g(a)f(b)− g(b)f(a)

f(b)− f(a)
=

g(c)f(b)− g(c)f(a)− g(b)f(c) + g(a)f(c)

f(b)− f(a)
.

In the following, we temporarily restrict our field to R. A function d : R → R is said
to satisfy the intermediate value property on a subset A ⊆ R if for any a, b ∈ A and
any y strictly between d(a) and d(b), there exists x ∈ A such that d(x) = y. It is clear
that d satisfies the intermediate value property on some subset of R if and only if the
image of d contains a nonempty open interval; in this paper, we use the latter more explicit
description in lieu of “intermediate value property”. By Darboux’s theorem, the derivative
of a function differentiable on a closed interval has the intermediate value property on that
interval. (Functions with this property are therefore also called Darboux functions.) We
note that a function enjoying the intermediate value property need not be continuous; in
fact, J.H. Conway constructed a function with this property that is discontinuous at every
point of R. See Oman [24] for more examples of such functions and a related discussion.

Theorem 5. Let f, g, h : R→ R, and let Γ = ΓR(f(X)h(Y ), g(X)h(Y )).

1. Γ has girth four if and only if at least one of the following two conditions is satisfied:

(a) h is not injective;

(b) there exist distinct a, b ∈ R such that f(a) = f(b) and g(a) = g(b).

2. Assume that the image of h contains a nonempty open interval I. Then Γ has girth
six if and only if conditions 1a and 1b fail, and at least one of the following two
conditions is satisfied:

(a) there exist distinct a, b, c ∈ R such that f(a) = f(b) = f(c) or g(a) = g(b) =
g(c);

(b) there exist k, ` ∈ R such that f(X)− kg(X)− ` has at least three distinct roots
in R.

3. Assume that the image of h contains a nonempty open interval. Then Γ has girth
at most eight.

Proof. Since Γ is a bipartite graph, Γ has no cycles of length less than four. The graph
Γ contains a 4-cycle of type S1 = (a, b;x, y) if and only if ∆2(f(X)h(Y ))(S1) = 0 and
∆2(g(X)h(Y ))(S1) = 0, which yield (h(x)−h(y))(f(a)−f(b)) = 0 and (h(x)−h(y))(g(a)−
g(b)) = 0, respectively. Statement 1 now follows immediately.

Statement 3 follows from the observation that Γ contains an 8-cycle of type S3 =
(a, b, a, b;x, y, z, w). This can be shown by choosing distinct x, y, z, w ∈ R such that
h(x)− h(y) = h(w)− h(z) to obtain

∆4(f(X)h(Y ))(S3) = (f(a)− f(b))(h(x)− h(y) + h(z)− h(w)) = 0 and

∆4(g(X)h(Y ))(S3) = (g(a)− g(b))(h(x)− h(y) + h(z)− h(w)) = 0.
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To complete the proof, we now focus on statement 2.
If Γ has girth six, then clearly, conditions 1a and 1b fail. Furthermore, as Γ contains

a 6-cycle of type S2 = (a, b, c;x, y, z), we have

∆3(f(X)h(Y ))(S2) = (f(a)− f(b))h(x) + (f(b)− f(c))h(y) + (f(c)− f(a))h(z) = 0 (5)

and

∆3(g(X)h(Y ))(S2) = (g(a)− g(b))h(x) + (g(b)− g(c))h(y) + (g(c)− g(a))h(z) = 0. (6)

If f(a) = f(b), then (5) reduces to (f(a)− f(c))(h(y)− h(z)) = 0, which implies f(a) =
f(c) since h is injective by the negation of condition 1a. Similarly, if g(a) = g(b), then (6)
implies g(a) = g(c). Hence, condition 2a holds. If f(a) 6= f(b) and g(a) 6= g(b), then (5)
yields

h(x) =
(f(b)− f(c))h(y) + (f(c)− f(a))h(z)

f(b)− f(a)
,

which can be substituted into (6). After some algebra, we obtain

(h(y)− h(z))
(
(f(b)− f(a))(g(c)− g(b))− (f(c)− f(b))(g(b)− g(a))

)
= 0.

Since h is injective, we have (3), and condition 2b follows by Lemma 3.
Conversely, if conditions 1a and 1b fail and at least one of conditions 2a and 2b hold,

then Γ has girth greater than four, and it remains to show that Γ has a 6-cycle. If
condition 2a holds, then by (I2), we may assume without loss of generality that g(a) =
g(b) = g(c), so (6) holds for any choice of x, y, and z. By the negation of condition 1b,
f(a), f(b), and f(c) are distinct, and hence

t :=
f(b)− f(c)

f(b)− f(a)
∈ R \ {0, 1}. (7)

If 0 < t < 1, then by choosing distinct y, z ∈ R such that h(y), h(z) ∈ I, there exists
x ∈ R \ {y, z} such that

h(x) = t · h(y) + (1− t)h(z), (8)

which implies (5). Similarly, if t < 0, by choosing distinct x, y ∈ R such that h(x), h(y) ∈
I, there exists z ∈ R \ {x, y} such that h(z) = t′h(x) + (1− t′)h(y), where t′ = (1− t)−1 ∈
(0, 1); if t > 1, after choosing distinct x, z ∈ R for which h(x), h(z) ∈ I, we will find
y ∈ R \ {x, z} with h(y) = t′′h(x) + (1− t′′)h(z), where t′′ = t−1 ∈ (0, 1). In all cases, we
obtain (8) and thus (5). Therefore, Γ has a 6-cycle of type (a, b, c;x, y, z).

If condition 2a fails and condition 2b holds, then by Lemma 3, there exist distinct
a, b, c ∈ R such that (3) holds. We claim that f(a), f(b), and f(c) are distinct. If not,
assume that f(a) = f(b). Then (3) reduces to (f(c)−f(b))(g(b)−g(a)) = 0, which implies
f(b) = f(c) or g(a) = g(b), contradicting the negation of condition 2a or the negation of
condition 1b, respectively. A similar argument rules out f(b) = f(c) and f(c) = f(a).
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Hence, (7) holds and, as shown in the previous paragraph, there exist distinct x, y, z ∈ R
such that (8) and thus (5) are satisfied. Furthermore, (3) implies that

s :=
g(a)− g(b)

f(a)− f(b)
=
g(b)− g(c)

f(b)− f(c)
, and so s =

g(a)− g(c)

f(a)− f(c)
.

Hence, (6) follows from multiplying (5) by s, and therefore Γ has a 6-cycle of type
(a, b, c;x, y, z).

Remark 6. Let Γ have girth greater than four. Then the image H = h(R) must be
uncountable since h is injective. If H does not contain a nonempty open interval, then
neither condition in statement 2 of Theorem 5 necessarily implies that Γ has girth six.
For instance, suppose that H =

{
0.a1a2a3 . . . ∈

[
1
9
, 2
3

]
: ai ∈ {1, 6} for all i ∈ N

}
and at

least one of the conditions 2a and 2b is true. Suppose further that f(a) 6= f(b) and

t := f(b)−f(c)
f(b)−f(a) = 1

5
. Then there do not exist distinct x, y, z ∈ R that satisfy (8), implying

that (5) fails and Γ has no cycle of length six. This can be seen by the following argument.
For any distinct y, z ∈ R, denote h(y) = 0.a1a2a3 . . . and h(z) = 0.b1b2b3 . . . . Define
c = 0.c1c2c3 . . . := t · h(y) + (1 − t)h(z). As h is injective, there exists j ∈ N such that
aj 6= bj. Then cj ∈ {2, 5}, and thus c 6∈ H. An example of a much “larger” H is considered
in the Appendix.

As mentioned at the beginning of this section, we can broaden the scope of Theorem 5
by replacing R with an arbitrary field F. The proof of statements 1 and 3 is identical
to the one given above, and the proof of statement 2 can be slightly simplified once we
assume that h is surjective.

Theorem 7. Let f, g, h : F→ F, and let Γ = ΓF(f(X)h(Y ), g(X)h(Y )).

1. Γ has girth four if and only if at least one of the following two conditions is satisfied:

(a) h is not injective;

(b) there exist distinct a, b ∈ F such that f(a) = f(b) and g(a) = g(b).

2. Assume that h is surjective. Then Γ has girth six if and only if conditions 1a and
1b fail, and at least one of the following two conditions is satisfied:

(a) there exist distinct a, b, c ∈ F such that f(a) = f(b) = f(c) or g(a) = g(b) =
g(c);

(b) there exist k, ` ∈ F such that f(X)− kg(X)− ` has at least three distinct roots
in F.

3. Assume that there exist distinct x, y, z, w ∈ F such that h(x)− h(y) = h(w)− h(z).
Then Γ has girth at most eight.

In the following theorem, we consider the graphs ΓR(f(X)h(Y ), g(X)j(Y )), removing
the requirement that h = j. A function d : R→ R is said to satisfy the weak intermediate
value property on a subset A ⊆ R if for any a, b ∈ A, there exists x ∈ A such that d(x) is
strictly between d(a) and d(b).
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Theorem 8. Let f, g, h, j : R→ R, and let Γ = ΓR(f(X)h(Y ), g(X)j(Y )).

1. Γ has girth four if and only if at least one of the following four conditions is satisfied:

(a) h and g are not injective;

(b) j and f are not injective;

(c) there exist distinct x, y ∈ R such that h(x) = h(y) and j(x) = j(y);

(d) there exist distinct a, b ∈ R such that f(a) = f(b) and g(a) = g(b).

2. Γ has girth six if conditions 1a through 1d all fail, and at least one of the following
two conditions is satisfied:

(a) the image of h contains a nonempty open interval, and there exist distinct
a, b, c ∈ R such that g(a) = g(b) = g(c);

(b) the image of h is a nonempty interval, f satisfies the weak intermediate value
property, and j and g are not injective.

3. Γ has girth at most twelve.

Remark 9. Similar to Lemma 3, statement 2 of this theorem can be “symmetrically
reflected” by using (I2) to swap the roles of f and g and those of h and j, or by using (I1)
to swap the roles of f and h and those of g and j. Also, note that statement 2 only
provides sufficient conditions which are not necessary; see Theorem 17.

Proof of Theorem 8. Since Γ is a bipartite graph, Γ has no cycles of length less than four.
The graph Γ contains a 4-cycle of type S1 = (a, b;x, y) if and only if ∆2(f(X)h(Y ))(S1) =
0 and ∆2(g(X)j(Y ))(S1) = 0, which yield (h(x) − h(y))(f(a) − f(b)) = 0 and (j(x) −
j(y))(g(a)− g(b)) = 0, respectively. Statement 1 now follows immediately.

It is straightforward to check that for any functions f, g, h, j : R → R, Γ contains a
closed walk of length 12 whose first coordinates of its consecutive vertices are given by
a, u, b, v, a, w, b, u, a, v, b, w (also see [4, p. 15–16]), which proves statement 3. To complete
the proof, we now focus on statement 2.

If conditions 1a through 1d all fail and at least one of conditions 2a and 2b hold,
then Γ has girth greater than four, and it remains to show that Γ has a 6-cycle of type
S2 = (a, b, c;x, y, z). If condition 2a holds, then the equation

∆3(g(X)j(Y ))(S2) = (g(a)− g(b))j(x) + (g(b)− g(c))j(y) + (g(c)− g(a))j(z) = 0 (9)

holds for any choice of x, y, and z. By the same argument as given in the proof of
Theorem 5 statement 2, (5) holds and Γ has a 6-cycle of type S2.

If condition 2b holds instead, then there exist distinct a, b ∈ R and distinct y, z ∈ R
such that g(a) = g(b) and j(y) = j(z), which again implies (9). By the negation of
conditions 1a and 1b, f and h are injective. Since f satisfies the weak intermediate
value property, there exists c ∈ R such that f(c) is strictly between f(a) and f(b), thus

t := f(b)−f(c)
f(b)−f(a) ∈ (0, 1). As the image of h is a nonempty interval, there exists x ∈ R\{y, z}

such that (8) holds. Therefore, (5) holds and Γ has a 6-cycle of type S2.
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Similar to Theorems 5 and 7, Theorem 10 broadens the scope of Theorem 8 with an
analogous proof by replacing R with an arbitrary field F. In particular, under condition 2b,
due to the negation of conditions 1a and 1b, f and h are injective. Hence, for all c ∈
F \ {a, b}, the assumption under statement 2 that h is surjective implies the existence of

x ∈ F \ {y, z} such that (8) holds for t := f(b)−f(c)
f(b)−f(a) .

Theorem 10. Let f, g, h, j : F→ F, and let Γ = ΓF(f(X)h(Y ), g(X)j(Y )).

1. Γ has girth four if and only if at least one of the following four conditions is satisfied:

(a) h and g are not injective;

(b) j and f are not injective;

(c) there exist distinct x, y ∈ F such that h(x) = h(y) and j(x) = j(y);

(d) there exist distinct a, b ∈ F such that f(a) = f(b) and g(a) = g(b).

2. Assume that h is surjective. Then Γ has girth six if conditions 1a through 1d all
fail, and at least one of the following two conditions is satisfied:

(a) there exist distinct a, b, c ∈ F such that g(a) = g(b) = g(c);

(b) j and g are not injective.

3. Γ has girth at most twelve.

Remark 11. The assumption that h is surjective in Theorems 7 and 10 for a general field
F seems very strong. However, if Γ has girth greater than four, then without loss of
generality due to isomorphisms (I1) and (I2), h is injective. Hence, if F is a finite field,
then it follows immediately that h is surjective, meaning that this assumption does not
impose any additional restriction.

Building off of Remark 11, we conclude our section with two theorems regarding the
case when F is a finite field.

Theorem 12. Let Fq be a finite field and let f, g, h : Fq → Fq. Assume that there do
not exist distinct a, b ∈ Fq satisfying f(a) = f(b) and g(a) = g(b) simultaneously. Then
Γ = ΓFq(f(X)h(Y ), g(X)h(Y )) has girth greater than four if and only if Γ is isomorphic to
ΓFq(f(X)Y, g(X)Y ).

Proof. By Theorem 7, Γ has girth greater than four if and only if h is injective and there
do not exist distinct a, b ∈ Fq such that f(a) = f(b) and g(a) = g(b). Note that the
injectivity of h implies its bijectivity. The result follows by noticing that

(a1, a2, a3) 7→ (a1, a2, a3)

[x1, x2, x3] 7→ [h(x1), x2, x3]

defines a graph isomorphism from Γ to ΓFq(f(X)Y, g(X)Y ).
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Theorem 13. Let Fq be a finite field, where q is odd, and let f, g, h : Fq → Fq. If
Γ = ΓFq(f(X)h(Y ), g(X)h(Y )) has girth greater than six, then at least one of f and g is
not injective.

Proof. Assume by contradiction that both f and g are injective. Since Γ has girth greater
than six, we claim that for all a ∈ Fq,

f(a)−f(b)
g(a)−g(b) and f(a)−f(c)

g(a)−g(c) are distinct in Fq \ {0} for

all distinct b, c ∈ Fq \ {a}. First, the injectivity of f and g guarantees that both fractions
are well-defined nonzero values in Fq. Next, if

f(a)− f(b)

g(a)− g(b)
=
f(a)− f(c)

g(a)− g(c)
= k

for some k ∈ Fq, then f(a) − kg(a) = f(b) − kg(b) = f(c) − kg(c). Hence, condition 2b
of Theorem 7 is satisfied, implying that Γ has girth at most six, which leads to a contra-
diction. Therefore, f(a)−f(b)

g(a)−g(b) forms a permutation of Fq \ {0} when b varies in Fq \ {a}.
As a result, there exists a unique b ∈ Fq \ {a} such that f(a)−f(b)

g(a)−g(b) = 1. In other words,

Fq can be partitioned into disjoint pairs {a, b} such that f(a)−f(b)
g(a)−g(b) = 1, meaning that the

cardinality of Fq is even, which contradicts the assumption that q is odd.

Corollary 14. Let Fq be a finite field, where q is odd, and let f, g, h : Fq → Fq. If
f is injective and Γ = ΓFq(f(X)h(Y ), g(X)h(Y )) has girth greater than six, then Γ is
isomorphic to ΓFq(XY, g̃(X)Y ) for some noninjective g̃ : Fq → Fq.

Proof. By Theorem 12, Γ is isomorphic to ΓFq(f(X)Y, g(X)Y ). Note that the injectivity
of f implies its bijectivity, and

(a1, a2, a3) 7→ (f(a1), a2, a3)

[x1, x2, x3] 7→ [x1, x2, x3]

defines a graph isomorphism from ΓFq(f(X)Y, g(X)Y ) to ΓFq(XY, g̃(X)Y ), where g̃ =
g ◦ f−1. Finally, the conclusion that g̃ is not injective follows from Theorem 13.

4 Applications to families of algebraically defined graphs over
R

As an application of Theorem 5, we consider a family of algebraically defined graphs over
R whose adjacency conditions involve exponential functions. We define x

m
n here as n

√
xm

when m and n are coprime and n is odd, so x
m
n exists for all x ∈ R.

Theorem 15. Let h : R→ R be an injective function whose image contains a nonempty
open interval. Let m and n be positive integers such that n is odd and gcd(m,n) = 1, and
let a ∈ R such that a > 0 and a 6= 1. Then Γ = ΓR

(
X

m
n h(Y ), aXh(Y )

)
has girth eight if

and only if m = n = 1. Otherwise, Γ has girth six.
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Proof. By Theorem 5, since g(X) = aX and h are injective, it follows that Γ has girth
greater than four. We now show that if m 6= n, then Γ has a 6-cycle, and we proceed by
considering cases. Our main tool is Theorem 5 statement 2b, i.e., we will determine in
each case the values of k, ` ∈ R for which R(X) := aX − kX m

n − ` has at least three real
roots.

Case 1: m is odd and m > n. If a > 1, take k = a and ` = 1. Then R(0) = 0. Also,
R′(0) = ln a > 0, R(1) < 0, and R(x) → ∞ as x → ∞, so there is a root in each
interval (0, 1) and (1,∞). If 0 < a < 1, take k = −a−1 and ` = 1. Then R(0) = 0.
Also, R(−1) < 0, R′(0) = ln a < 0, and R(x)→∞ as x→∞, so there is a root in
each interval (−1, 0) and (0,∞).

Case 2: m is odd and m < n. If a > 1, take k = 1 − a−1 and ` = 1. Then R(0) =
R(−1) = 0. Also, R′(x) → −∞ as x → 0+ and R(x) → ∞ as x → ∞, so there
exists another root in (0,∞). If 0 < a < 1, take k = a − 1 and ` = 1. Then
R(0) = R(1) = 0. Also, R(x) → ∞ as x → −∞ and R′(x) → ∞ as x → 0−, so
there exists another root in (−∞, 0).

Case 3: m is even and m 6= n. If a > 1, take k = a + 1 and ` = 0. Then R(x) → −∞
as x → −∞, R(0) > 0, R(1) < 0, and R(x) → ∞ as x → ∞, so we have a root in
each interval (−∞, 0), (0, 1), and (1,∞). If 0 < a < 1, take k = a−1 + 1 and ` = 0.
Then R(x) → ∞ as x → −∞, R(−1) < 0, R(0) > 0, and R(x) → −∞ as x → ∞,
so we have a root in each interval (−∞,−1), (−1, 0), and (0,∞).

Finally, if m = n = 1, then R(x) = aX − kX − `, which has at most two distinct real
roots. Therefore, Γ has girth eight by Theorem 5.

We also consider algebraically defined graphs whose adjacency conditions involve a
trigonometric function.

Theorem 16. Let f, h : R→ R, and assume that h is an injective function whose image
contains a nonempty open interval. Then Γ = ΓR(f(X)h(Y ), (sinX)h(Y )) has girth four
if and only if there exist distinct a, b ∈ R satisfying a−b = 2nπ or a+b = (2n+1)π for some
n ∈ Z such that f(a) = f(b). Otherwise, Γ has girth six. In particular, ΓR(XY, (sinX)Y )
has girth six.

Proof. Since h is injective, by Theorem 5 statement 1, Γ has girth four if and only if there
exist distinct a, b ∈ R such that f(a) = f(b) and sin a = sin b. If Γ has girth greater than
four, then Γ has girth six by Theorem 5 statement 2 since sin 0 = sin π = sin 2π. Finally,
since X − sinX has a unique root in R, ΓR(XY, (sinX)Y ) has girth six.

Another interesting family of algebraically defined graphs is ΓR(XmY n, aX+Y ) with
m,n ∈ N, a > 0, and a 6= 1. Since g(X) = aX and j(Y ) = aY are both injective, the
conditions given by Theorem 8 statement 2 do not apply. Nevertheless, all graphs in this
family have girth six, showing that the conditions in Theorem 8 statement 2 are only
sufficient but not necessary.
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Theorem 17. Let m and n be positive integers, and let a ∈ R be such that a > 0 and
a 6= 1. Then Γ = ΓR(XmY n, aX+Y ) has girth six.

Proof. Since g(X) = aX and j(Y ) = aY are both injective, by Theorem 8 statement 1,
Γ has girth greater than four. If m and n are both even, then it is a straightforward
verification that Γ has a 6-cycle of type (1,−1, 0; 0, 1,−1). If m and n are not both
even, then without loss of generality due to (I1), we may assume that n is odd. It is a
straightforward verification that Γ has a 6-cycle of type(

m
√

2, 1, 0;− loga

a
m√2 − a
a− 1

, loga

a
m√2 − a
a− 1

, 0

)
.

5 Concluding Remarks

We finish this paper with a few brief comments and open questions. First, we note that
Theorem 8 does not provide a complete classification, which leads to the following open
problem.

Open Problem 1. Complete the classification of graphs Γ = ΓR(f(X)h(Y ), g(X)j(Y ))
from Theorem 8. For instance, determine necessary and sufficient conditions for Γ to have
girth six. Also, is it possible for Γ to have girth greater than eight?

Of course, this problem only accounts for graphs using separable adjacency conditions.
Removing this condition would make for a more comprehensive classification.

Open Problem 2. Classify ΓR(f2(X, Y ), f3(X, Y )) by girth for all functions f2, f3 : R2 →
R.

On top of classification based on girth, we are also interested in proving or disproving
graph isomorphism between algebraically defined graphs with the same girth. As proved
in Theorem 15, ΓR(XY, aXY ) has girth eight. Also, certain monomial graphs have girth
eight [12], and we are curious whether they could possibly be isomorphic.

Open Problem 3. Do there exist a ∈ R and m,n ∈ Z, where a > 0, a 6= 1, and
0 6 m < n, such that the girth eight graphs ΓR(XY, aXY ) and ΓR(X2m+1Y,X2nY ) are
isomorphic?
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Appendix

We refer back to Remark 6 to comment on some properties of the set H. Note first of

all that H can be constructed as a Cantor-like set: H =
∞⋂
n=1

Hn, where H1 = (0.1, 0.2) ∪

(0.6, 0.7), H2 = (0.11, 0.12)∪(0.16, 0.17)∪(0.61, 0.62)∪(0.66, 0.67), and in general Hn+1 is
constructed by dividing each of the 2n intervals of Hn into ten subintervals, each of length
10−n−1, selecting the second and seventh subintervals from each interval (i.e., selecting
those 2n+1 subintervals in which all elements have all of their first n + 1 decimal digits
either 1 or 6), and taking their union. Clearly, the same set could be obtained by taking
the intersection of the unions of these intervals when their endpoints are included. We
note the following properties of H, which it shares with the “classical” Cantor set:

(i) It is an uncountable set, which is easily established by the diagonal argument.

(ii) It is a perfect set (and it particular, it is dense-in-itself), that is, every point of H
is a limit point. Given x = 0.a1a2a3 . . . ∈ H, let, for every n ∈ N, xn ∈ H be a
decimal fraction whose nth digit is 6 if an = 1, and 1 if an = 6, with all other digits
equal to those of x. Then for all n ∈ N, |x− xn| = 5 · 10−n, so xn → x as n→∞.

(iii) It is a nowhere dense set in R since it is closed, and any neighborhood of any point
contains a point not from H, so the interior of the closure of H is empty.

(iv) It is a set of Lebesgue measure zero. As {Hn}∞n=1 is a descending chain of measurable
sets, their intersection H is measurable, and for the measure m of H we have (by
continuity of measure)

m(H) = m

(
∞⋂
n=1

Hn

)
= lim

n→∞
m(Hn) = lim

n→∞
(0.2)n = 0.

(v) Finally we note that each of the intervals in the definition of Hn contains a maximal
and minimal element that is an element of H, e.g., 1

6
= 0.16 is the maximal element

of (0.1, 0.2)∩H, and 11
18

= 0.61 is the minimal element of (0.6, 0.7)∩H. It is therefore
clear that there are points in H between which there is no other point of H. Also,
even for a pair of points x and y of H between which there is a point of H, there
exists a point between x and y that is not in H, so H is totally disconnected. It is
remarkable that for any x, y ∈ H, the point that is one-fifth of the way from y to x
is never in H.

We now give another example demonstrating that the condition of Theorem 5 state-
ment 2, which states that the image H of h contains a nonempty open interval, is not
overly strong. This time the set H will be uncountable, dense in R (and so dense-in-
itself), and will have the “betweenness property” (the property that strictly between any
two points of the set there is another point of the set.) Unlike the situation of Remark 6,
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there will be uncountably many values of the weight t for which (8) fails for all x, y, z ∈ R.
This means that statement 2 of Theorem 5 does not imply that Γ has girth six.

An easy argument utilizing Zorn’s lemma shows that if all proper subfields of a given
field are countable, then the field itself is countable (see Butcher, Hamilton, and Mil-
cetich [1]). The field R of real numbers therefore contains an uncountable proper subfield
K. A somewhat more constructive approach would be to consider subfields of R generated
over Q by a transcendency basis, a maximal subset S of R that is algebraically independent
over Q with the property that R/Q(S) is an algebraic extension. In fact, for any maximal
algebraically independent set S ⊆ R, the extension R/Q(S) is algebraic. For a proof of
the existence of transcendency bases (which also uses Zorn’s lemma) and uniqueness of
their cardinality, see Hähl, Löwen, Grundhöfer, and Salzmann [8, p. 355], and references
therein; see also Milne [23, Chapter 9] and the Stacks Project [25, Section 9.26]. Clearly
a transcendency basis S over Q is uncountable, for otherwise Q(S) is countable, which
would violate the condition that R/Q(S) is algebraic since the set of elements algebraic
over a countable field is itself countable. Thus if S is a transcendency basis of R over Q,
then Q(S) is easily seen to be a proper uncountable subfield of R since for any x ∈ S,
Q(S) contains neither the square root of x, nor the square root of −x. Now let h be such
that h(R) = H = K, a proper uncountable subfield of R, and let t ∈ R \K, where R \K
is clearly uncountable. Then for any distinct x, y ∈ K, c := t · h(x) + (1− t)h(y) 6∈ h(R),
for otherwise, by the injectivity of h, t = (c−h(y))/(h(x)−h(y)) ∈ h(R). Clearly H ⊇ Q
is dense in R and has the property that strictly between any distinct x, y ∈ H, there is
another point from H. We note that there may exist uncountable subfields of R that are
non-measurable or of measure zero (see Hamkins [9] and Goldstern [7]).
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