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Abstract

The strong Hanani-Tutte theorem states that a graph is planar if and only
if it can be drawn such that any two edges that do not share an end cross an
even number of times. Fulek et al. (2013, 2016, 2017) have presented Hanani-
Tutte results for (radial) level-planarity where the y-coordinates (distances to the
origin) of the vertices are prescribed. We show that the 2-Sat formulation of level-
planarity testing due to Randerath et al. (2001) is equivalent to the strong Hanani-
Tutte theorem for level-planarity (2013). By elevating this relationship to radial
level planarity, we obtain a novel polynomial-time algorithm for testing radial level-
planarity in the spirit of Randerath et al.

Mathematics Subject Classifications: 05C10, 68R10

1 Introduction

Planarity of graphs is a fundamental concept for graph theory as a whole, and for graph
drawing in particular. Naturally, variants of planarity tailored specifically to directed
graphs have been explored. A planar drawing is upward planar if all edges are drawn
as monotone curves in the upward direction. A special case are level-planar drawings of
level graphs, where the input graph G = (V,E) comes with a level assignment ` : V →
{1, 2, . . . , k} for some k ∈ N that satisfies `(u) < `(v) for all (u, v) ∈ E. One then asks
whether there is an upward planar drawing such that each vertex v is mapped to a point
on the horizontal line y = `(v) representing the level of v. Level-planar drawings have
also been considered on the standing and rolling cylinder and on the torus [5, 3, 4, 1].
Level-planarity on the standing torus is also considered as radial level-planarity, where
edges are drawn as curves that are monotone in the outward direction in the sense that a
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curve and any circle centered at the origin intersect in at most one point. Here the levels
are represented as concentric circles around the origin.

Despite the similarity, the variants with and without levels differ significantly in their
complexity. Whereas testing upward planarity and radial planarity are NP-complete [14],
level-planarity and radial level-planarity can be tested in polynomial time. In fact, linear-
time algorithms are known for both problems [17, 16, 2]. However, both algorithms are
quite complicated, and subsequent research has led to slower but simpler algorithms for
these problems [15, 24]. Recently also constrained variants of the level-planarity problem
have been considered [6, 18].

The simpler algorithm by Randerath et al. [24] only considers proper level graphs,
where each edge connects vertices on adjacent levels. This is not a restriction, because
each level graph can be subdivided to make it proper, potentially at the cost of increasing
its size by a factor of k. It is not hard to see that in this case a drawing is fully specified
by the vertex ordering on each level. To represent this ordering, define a set of Boolean
variables V = {uw | u,w ∈ V, u 6= w, `(u) = `(w)} where uw being true means u is left
of w on level `(w). Randerath et al. observe that there is a simple way of specifying the
existence of a level-planar drawing by the following consistency (1), transitivity (2) and
planarity constraints (3):

∀uw ∈ V : uw ⇔ ¬wu (1)

∀uw,wy ∈ V : uw ∧ wy ⇒ uy (2)

∀uw, vx ∈ V with (u, v), (w, x) ∈ E independent : uw ⇔ vx (3)

The surprising result due to Randerath et al. [24] is that the satisfiability of this system of
constraints (and thus the existence of a level-planar drawing) is equivalent to the satisfia-
bility of a reduced constraint system obtained by omitting the transitivity constraints (2).
That is, transitivity is irrelevant for the satisfiability. Note that a satisfying assignment
of the reduced system is not necessarily transitive. Rather Randerath et al. prove that
a solution can be made transitive without invalidating the other constraints. Since the
remaining conditions 1 and 3 can be easily expressed in terms of 2-Sat, which can be
solved efficiently [19], this yields a quadratic-time algorithm for level-planarity.

A recent trend in planarity research are Hanani-Tutte style results. The (strong)
Hanani-Tutte theorem [7, 25] states that a graph is planar if and only if it can be drawn
so that any two independent edges (i.e., not sharing an endpoint) cross an even number of
times. One may wonder for which other drawing styles such a statement is true. Pach and
Tóth [20, 21] showed that the weak Hanani-Tutte theorem (which requires even crossings
for all pairs of edges) holds for a special case of level-planarity and asked whether the
result holds in general. This was shown in the affirmative by Fulek et al. [13], who also
established the strong version for level-planarity. Both the weak and the strong Hanani-
Tutte theorem have been established for radial level-planarity [11, 10]. Further, the weak
version has been shown for all surfaces [23] and the strong version on the Torus [12]
and the projective plane [22]. A counterexample for the strong version is known on the
orientable surface of genus 4 [9].
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Contribution. We show that the result of Randerath et al. [24] from 2001 is equivalent
to the strong Hanani-Tutte theorem for level-planarity by Fulek et al. [13]. A key difference
is that Randerath et al. consider proper level graphs, whereas Fulek et al. [13] work with
graphs with only one vertex per level. For a graph G we define two graphs G? and G+

that are equivalent to G with respect to level-planarity. Graph G? has only one vertex
per level and graph G+ is the proper subdivision of G?. We show how to transform a
Hanani-Tutte drawing of graph G? into a satisfying assignment for the constraint system
of G+ and vice versa. Since this transformation does not make use of the Hanani-Tutte
theorem nor of the result by Randerath et al., this establishes the equivalence of the two
results. Fulek et al. [13] indicate that the proof of Randerath et al. may contain a gap.
In light of this, one can consider our result as an alternative proof of that result.

Moreover, we show that the transformation can be adapted to the case of radial
level-planarity. This results in a novel polynomial-time algorithm for testing radial level-
planarity by testing satisfiability of a system of constraints that, much like the work of
Randerath et al., is obtained from omitting all transitivity constraints from a constraint
system that trivially models radial level-planarity. Currently, we deduce the correctness
of the new algorithm from the strong Hanani-Tutte theorem for radial level planarity [10].
However, also this transformation works both ways, and a new correctness proof of our
algorithm in the style of the work of Randerath et al. [24] may pave the way for a simpler
proof of the Hanani-Tutte theorem for radial level-planarity. We leave this as future work.

2 Preliminaries

A level graph is a directed graph G = (V,E) together with a level assignment ` : V →
{1, 2, . . . , k} for some k ∈ N that satisfies `(u) < `(v) for all (u, v) ∈ E. If `(u)+1 = `(v)
for all (u, v) ∈ E, the level graph G is proper. For any level graph G let G be the graph
obtained by subdividing the edges of G so that the graph becomes proper; see G+ in
Figure 1.

Two independent edges (u, v), (w, x) are critical if `(u) 6 `(x) and `(v) > `(w). Note
that only pairs of critical edges can cross. Throughout this paper, we consider drawings
that may be non-planar, but we assume at all times that no two distinct vertices are
drawn at the exact same point, no edge passes through a vertex, no three (or more) edges
cross in a single point, and any two edges have only finitely many points in common. If
any two independent edges cross an even number of times in a drawing Γ of G, it is called
a Hanani-Tutte drawing of G [8].

We now describe graphs G∗ and G+ for a given level graph G that are level-planar if
and only if G is level-planar. We will show that one can translate between Hanani-Tutte
drawings and satisfying assignments of the constraint system by switching between G?

and G+. Note that a level graph with only one vertex per level can be considered as
an ordered graph (where the vertices are ordered as their levels are ordered), and vice
versa. For any k-level graph G we define a narrow form G? that is an ordered graph. The
construction is similar to the one used by Fulek et al. [13]. Let n(i) denote the number of
vertices on level i for 1 6 i 6 k. Further, let v1, v2, . . . , vn(i) denote the vertices on level i.
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Figure 1: A level graph G (a) modified to graph G? so as to have only one vertex per
level; stretch edges are bold (b) and its proper subdivision G+ = G? (c).

u w = w′

v = v′ x
x′
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y1

(b)

ϕ(u′w′) = true

ϕ(u1w1) = true

ϕ(u2w2) = true

ϕ(u3w3) = true

ϕ(v′x′) = true

ϕ(u′w′) = trueψ(u′w′) = true

ψ(u1w1) = true

ψ(u2w2) = false

ψ(u3w3) = true

ψ(v′x′) = true ψ(yu1) = true

ψ(yw1) = true

ψ(y1u
′) = false

ψ(y1w
′) =true

ϕ(yu1) = true

ϕ(yw1) = true

ϕ(y1u
′) = true

ϕ(y1w
′) =true

Figure 2: (a) A Hanani-Tutte drawing and the induced truth assignment ψ; (b) the
deduced truth assignment ϕ. The value where ϕ differs from ψ is highlighted in red.

Subdivide every level i into 2n(i) intermediate levels (i, 1), (i, 2), . . . , (i, 2n(i)) and order
them all lexicographically. For 1 6 j 6 n(i), replace vertex vj by two vertices bot(vj),
top(vj) with `(bot(vj)) = (i, j) and `(top(vj)) = (i, j + n(i)) and connect them by an
edge (bot(vj), top(vj)), referred to as the stretch edge e(vj). Connect all incoming edges
of vj to bot(vj) and connect all outgoing edges of vj to top(vj). Let e = (u, v) be
an edge of G. Then let e′ denote the edge of G? that connects the endpoint of e(u)
with the starting point of e(v); see Figure 1. Note that a Hanani-Tutte drawing of
G induces a Hanani-Tutte drawing of G? (where stretch edges do not cross). Define
G+ = G? as the graph obtained by subdividing the edges of G? so that the graph becomes
proper; see Figure 1(c). For any vertex u in G we say the vertices bot(u), top(u) and all
subdivision vertices of (bot(u), top(u)) originate from u. Let (u, v), (w, x) be critical edges
in G?. Define their limits in G+ as (u′, v′), (w′, x′) where u′, v′ are endpoints or subdivision
vertices of (u, v), the vertices w′, x′ are endpoints or subdivision vertices of (w, x) and it
is `(u′) = `(w′) = max(`(u), `(w)) and `(v′) = `(x′) = min(`(v), `(x)); see Figure 2(a).
Finally, we define the function L that maps each level (i, j) of G? or G+ to the level i
of G.

Lemma 1. Let G be a level graph. Then

G is level-planar ⇔ G? is level-planar ⇔ G+ is level-planar.

Proof. The first equivalence is due to Fulek et al. [13]. The forward direction holds
trivially. For the reverse direction, the key insight is that, for every level i of G, there
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is a level i′ of G? so that for each vertex v with `(v) = i its stretch edge e(v) crosses
level i′ in G?. The order in which the stretch edges cross level i′ then determines a
vertex ordering for level i. The second equivalence is obvious, because G+ is the proper
subdivision of G?.

3 Level-Planarity

Recall from the introduction that Randerath et al. formulated level planarity of a proper
level graph G as a Boolean satisfiability problem S ′(G) on the variables V = {uw | u 6=
w, `(u) = `(w)} and the clauses given by Eq. (1)–(3).

It is readily observed that G is level-planar if and only if S ′(G) is satisfiable. Now
let S(G) denote the Sat instance obtained by removing the transitivity clauses (2)
from S ′(G). Note that S(G) is an instance of 2-Sat, which can be solved efficiently [19].
The key claim of Randerath et al. is that S ′(G) is satisfiable if and only if S(G) is satisfi-
able, i.e., dropping the transitivity clauses does not change the satisfiability of S ′(G). In
this section, we show that S(G) is satisfiable if and only if G

?
has a Hanani-Tutte level

drawing (Theorem 6). Of course, we do not use the equivalence of both statements to

level-planarity of G. Instead, we show that S(G) and S(G
+

) are equivalent (Lemma 4)
and construct a satisfying truth assignment of S(G+) from a given Hanani-Tutte level
drawing of G? (Lemma 3, with G? = G+), and vice versa (Lemma 5). This implies the
equivalence of the results of Randerath et al. and Fulek et al. (Corollary 7).

The common ground for our constructions is the constraint system S ′(G+). Here a
Hanani-Tutte drawing implies a variable assignment that does not necessarily satisfy the
planarity constraints (3), though in a controlled way. On the other hand, a satisfying as-
signment of S(G) induces an assignment for S ′(G+) that satisfies the planarity constraints
but not necessarily the transitivity constraints (2). Thus, in a sense, our transformation
trades planarity for transitivity and vice versa.

A (not necessarily planar) drawing Γ of G induces a truth assignment ϕ of V by
defining for all uw ∈ V that ϕ(uw) is true if and only if u lies to the left of w in Γ.
Note that this truth assignment must satisfy the consistency and transitivity clauses, but
does not necessarily satisfy the planarity constraints. The following lemma describes a
relationship between certain truth assignments of S(G) and crossings in Γ that we use to
prove Lemmas 3 and 5.

Lemma 2. Let G be a level graph. Let (u, v), (w, x) be two critical edges of G and
let (u′, v′), (w′, x′) be their limits in G. Further, let Γ be a drawing of G, let Γ be the
drawing of G induced by Γ and let ϕ be the truth assignment of S

(
G
)

induced by Γ.
Then (u, v) and (w, x) intersect an even number of times in Γ if and only if ϕ(u′w′) =
ϕ(v′x′).

Proof. We may assume without loss of generality that any two edges cross at most once
between consecutive levels by introducing intermediate levels if necessary. Let X be a
crossing between (u, v) and (w, x) in G; see Figure 2 (a). Further, let u1, w1 and u2, w2

be the subdivision vertices of (u, v) and (w, x) on the levels directly below and above X
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in G, respectively. It is ϕ(u1w1) = ¬ϕ(u2w2). Conversely, ϕ(u1w1) = ¬ϕ(u2w2) implies
that (u, v) and (w, x) cross between the levels `(u1) and `(u2). Due to the definition of
limits, any crossing between (u, v) and (w, x) in G must occur between the levels `(u′) =
`(w′) and `(v′) = `(x′). Therefore, it is ϕ(u′w′) = ϕ(v′x′) if and only if (u, v) and (w, x)
cross an even number of times.

We obtain that, if Γ? is a Hanani-Tutte drawing, then for any two critical edges
(u, v), (w, x) the limits u′, w′ are ordered the same way as the limits v′, x′. To obtain a
satisfying assignment for S(G), we then choose on each level the same ordering for the
corresponding subdivision vertices. For any vertex v of G? we use for every subdivision
vertex on level `(v) the ordering induced by Γ? with regards to v. Note that these orderings
are only assigned for pairs of vertices and may be non-transitive on some layers.

Lemma 3. Let G be a level graph and let Γ be a Hanani-Tutte drawing of G. Then S
(
G
)

is satisfiable.

Proof. We use Γ to define a truth assignment ϕ that satisfies all clauses of S(G). Let Γ be
the drawing of G induced by Γ and let ψ denote the truth assignment induced by Γ; see
Figure 2(a). Note that ψ does not necessarily satisfy the planarity constraints. Define ϕ
so that it satisfies all clauses of S(G) as follows; see Figure 2(b). Let u′′, w′′ be two
vertices of G with `(u′′) = `(w′′). If one of them is a vertex in G, then set ϕ(u′′, w′′) =
ψ(u′′, w′′). Otherwise u′′, w′′ are subdivision vertices of two edges (u, v), (w, x) ∈ E(G).
If they are independent, then they are critical. In that case their limits (u′, v′), (w′, x′)
are already assigned consistently by Lemma 2 since Γ is a Hanani-Tutte drawing. Then
set ϕ(u′′w′′) = ψ(u′w′). If (u, v) and (w, x) are adjacent, then u = w or v = x. In the
first case, we set ϕ(u′′w′′) = ψ(v′x′). In the second case, we set ϕ(u′′w′′) = ψ(u′w′).

Thereby, we have for any critical pair of edges (u′′, v′′), (w′′, x′′) ∈ E(G) that ϕ(u′′w′′) =
ϕ(v′′x′′) and clearly ϕ(u′′w′′) = ¬ϕ(w′′u′′). Hence, assignment ϕ satisfies S(G).

Lemma 4. Let G be a level graph. Then S(G) is satisfiable if and only if S(G
+

) is
satisfiable.

Proof. First assume there is a satisfying assignment ϕ for S(G). We define a mapping

O : V (G
+

)→ V (G) that maps each vertex of V (G
+

) to the vertex in G that it originates

from. This will allow us to describe ϕ+ in relation to ϕ. For each vertex v ∈ V (G
+

) that
is part of a stretch edge e(w) of G

?
for some vertex w of G, we set O(v) = w. Each other

vertex v ∈ V (G
+

) is a subdivision vertex of an edge (x, x′) of G
?

that is not a stretch
edge. We then map v to vertex w ∈ {x, x′} with L(`(v)) = L(`(w)). Now, for distinct

x, y ∈ V (G
+

) with O(x) 6= O(y), we set ϕ+(xy) = ϕ(O(x)O(y)). If O(x) = O(y), then x,
y are subdivision vertices of non-stretch edges ex, ey in G

?
. Then let vx, vy be the disjoint

ends of ex, ey and we set ϕ+(xy) = ϕ(O(vx), O(vy)).
We obtain directly that ϕ+ satisfies the consistency constraints, since ϕ satisfies the

consistency constraints. Next, consider the planarity constraint. Let (u, v), (w, x) ∈
E(G

+
) with `(u) = `(w) be independent edges. If L(`(u)) = L(`(v)), then O(u) = O(v)
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Figure 3: Using the subdivided stretch edges of G
?

(a), translate ϕ+ to a satisfying
assignment ϕ of S(G) (b).

and O(w) = O(x) and thus ϕ+(uw) = ϕ(O(u)O(w)) = ϕ(O(v)O(x)) = ϕ+(vx). Other-
wise, L(`(u)) 6= L(`(v)). Then (u, v), (w, x) are subdivision edges of non-stretch edges eu,
ew in G

?
. If eu and ew are not independent, then ϕ+(uw) = ϕ(yz) = ϕ+(vx) where

y, z are the distinct ends of eu, ew. Otherwise, eu and ew are independent. Then
ϕ+(uw) = ϕ(O(u)O(w)) = ϕ(O(v)O(x)) = ϕ+(vx) since ϕ satisfies the planarity con-
straints.

For the reverse direction, assume there is a satisfying assignment ϕ+ of S(G
+

). Let u,
w be two vertices of G with `(u) = `(w). Then the stretch edges e(u), e(w) in G

?
are

critical by construction. Let (u′, u′′), (w′, w′′) be their limits in G
+

. Set ϕ(uw) = ϕ+(u′w′);

see Figure 3. Because ϕ+ is a satisfying assignment, all planarity constraints of S(G
+

) are
satisfied, which implies ϕ+(u′w′) = ϕ+(u′′w′′). The same is true for all subdivision vertices

of e(u), e(w) in G
+

. Because ϕ+ also satisfies the consistency clauses of S(G
+

), this means
that ϕ satisfies the consistency clauses of S(G). Note that the resulting assignment is not
necessarily transitive, e.g., it could be ϕ(uv) = ϕ(vw) = ¬ϕ(uw).

Consider two edges (u, v), (w, x) in G with `(u) = `(w). Because G is proper, we do not
have to consider other pairs of edges. Let (u′, u′′), (w′, w′′) be the limits of e(u), e(w) in G+.
Further, let (v′, v′′), (x′, x′′) be the limits of e(v), e(x) in G+. Because there are disjoint
directed paths from u′,w′ to v′,x′ and ϕ+ is a satisfying assignment, it is ϕ+(u′w′) =
ϕ+(v′x′). Due to the construction of ϕ described in the previous paragraph, this means
that it is ϕ(uw) = ϕ(vx). Therefore, ϕ is a satisfying assignment of S(G).

Lemma 5. Let G be a level graph together with a satisfying truth assignment ϕ+ of S(G+).
Then there exists a Hanani-Tutte drawing Γ? of G?.

Proof. We construct a drawing Γ+ of G+ from ϕ+ as follows; see Figure 4. Recall that
by construction, every level of G+ contains exactly one non-subdivision vertex. Let u
denote the non-subdivision vertex of level i. Draw a subdivision vertex w on level i to
the right of u if ϕ+(uw) is true and to the left of u otherwise. The relative ordering of
subdivision vertices on either side of u can be chosen arbitrarily. Let Γ? be the drawing
of G? induced by Γ+. To see that Γ? is a Hanani-Tutte drawing, consider two critical
edges (u, v), (w, x) of G?. Let (u′, v′), (w′, x′) denote their limits in G+. One vertex of u′

and v′ (w′ and x′) is a subdivision vertex and the other one is not. The planarity constraint
gives ϕ+(u′w′) = ϕ+(v′x′) and by construction u′, w′ and v′, x′ are placed consistently on
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(c)(b)(a)

Figure 4: (a) A proper level graph G. Let ϕ be the truth assignment induced by the
drawing (for easy readability). (b) A drawing Γ+ of G+ corresponding to ϕ, (c) the
Hanani-Tutte drawing of G? induced by Γ+.

their respective levels. Moreover, Lemma 2 yields that (u, v) and (w, x) cross an even
number of times in Γ?.

Theorem 6. Let G be a level graph. Then

1. S(G
+

) is satisfiable ⇔ G
?

has a Hanani-Tutte level drawing,

2. G has a Hanani-Tutte level drawing ⇒ S(G) is satisfiable,

3. S(G) is satisfiable ⇔ G
?

has a Hanani-Tutte level drawing.

Proof. The first statement follows from Lemmas 5 and 3. The second statement is im-
mediate from Lemma 3. The third statement follows by applying Lemmas 4 and 5 in one
direction and Lemmas 3 and 4 in the other.

With Lemma 1 we obtain the claimed equivalence of the result of Randerath et al. [24]
and the strong Hanani-Tutte Theorem. Namely, on the one hand, if every level graph
with a Hanani-Tutte level drawing is level-planar, then we obtain for every level graph G
where S(G) is satisfied that G

?
has a Hanani-Tutte level drawing and is thus level-planar.

This implies that G is level-planar. On the other hand, for every level-planar graph G
with a Hanani-Tutte level drawing, S(G) is satisfiable. If every level graph H where S(H)
is satisfiable is level-planar, this implies G is level-planar and thus G is also level-planar.

Corollary 7. The level-planar graphs are exactly the level graphs with a Hanani-Tutte
level drawing if and only if they are exactly the level graphs G where S(G) is satisfiable.

4 Radial Level-Planarity

In this section we present an analogous construction for radial level planarity. In contrast
to level-planarity, we now have to consider cyclic orderings on the levels, and even those
may still leave some freedom for drawing the edges between adjacent levels. In the fol-
lowing we first construct a constraint system of radial level planarity for a proper level
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graph G, which is inspired by the one of Randerath et al. (Section 4.1). Afterwards, we
slightly modify the construction of G? (Section 4.2). Finally, in analogy to the level-planar
case, we show that a satisfying assignment of our constraint system defines a satisfying
assignment of the constraint system of G+ (Section 4.3), and that this in turn corresponds
to a Hanani-Tutte radial level drawing of G? (Section 4.4) and vice versa (Section 4.5).

4.1 A Constraint System for Radial Level-Planarity

To deal with the increased complexity in the radial case, we state the constraints aiming for
a linear equation system over F2, the field over {0, 1}. First, observe that we can formulate
the constraints for level-planarity as follows. We again use the set of variables V = {uw |
u,w ∈ V, u 6= w, `(u) = `(w)} with possible values in {0, 1} where now uw ≡ 0 means u
is left of w on level `(w).

∀uw ∈ V : uw ≡ wu+ 1

∀uw,wy ∈ V : uw ≡ 0 ∧ wy ≡ 0⇒ uy ≡ 0

∀uw, vx ∈ V with (u, v), (w, x) ∈ E independent : uw ≡ vx

To obtain a constraint system for the radial case, we start with a special case that
bears a strong similarity with the level-planar case. Namely, assume that G is a proper
level graph that contains a directed path P = α1, . . . , αk that has exactly one vertex αi

on each level i. We now express the cyclic ordering on each level as linear orderings whose
first vertex is αi. To this end, we introduce for each level the variables Vi = {αiuv | u, v ∈
Vi \ {αi}}, where αiuv ≡ 0 means αi, u, v are arranged clockwise in this oder on the
circle representing level i. We further impose the following necessary and sufficient linear
ordering constraints LG(αi).

∀ distinct u, v ∈ V \ {αi} : αiuv ≡ αivu+ 1 (4)

∀ pairwise distinct u, v, w ∈ V \ {αi} : αiuv ≡ 0 ∧ αivw ≡ 0⇒ αiuw ≡ 0 (5)

It remains to constrain the cyclic orderings of vertices on adjacent levels so that the
edges between them can be drawn without crossings. For two adjacent levels i and i+ 1,
let εi = (αi, αi+1) be the reference edge. Let Ei be the set of edges (u, v) of G with `(u) = i
that do not share an endpoint of εi. Further let E+

i = {(αi, v) ∈ E \ {εi}} and E−i =
{(u, αi+1) ∈ E \{εi}} denote the edges between levels i and i+1 adjacent to the reference
edge εi.

In the context of the constraint formulation, we only consider drawings of the edges
between levels i and i+ 1 where any pair of edges crosses at most once and, moreover, εi
is not crossed. Note that this can always be achieved, independently of the orderings
chosen for levels i and i + 1. Then, the cyclic orderings of the vertices on the levels i
and i + 1 determine the drawings of all edges in Ei. In particular, two edges (u, v),
(u′, v′) ∈ Ei do not intersect if and only if αiuu

′ ≡ αi+1vv
′; see Figure 5 (a). Therefore,

we introduce constraint (6) below. For each edge e ∈ E+
i ∪ E−i it remains to decide

whether it is embedded locally to the left or to the right of εi (i.e., whether in some small

the electronic journal of combinatorics 29(4) (2022), #P4.22 9



αi u u′

αi+1 v v′

εi

i

i+ 1

αi u′

αi+1 v′v′′

εi

i

i+ 1

αi

αi+1

εi

i

i+ 1e f

(a) (c)(b)

e

Figure 5: Illustration of the planarity constraints for radial planarity for the case of two
edges in Ei (a), constraint (6); the case of an edge in e ∈ E−i and an edge f ∈ E+

i with
l(e) ≡ 0 and l(f) ≡ 1 (b), constraint (7); and the case of an edge in Ei and an edge e ∈ E+

i

with l(e) ≡ 1 (c), constraint (8).

environment of α+
i or α−i , e precedes εi in clockwise order or not). For each such edge e,

we introduce a variable l(e) where l(e) ≡ 0 represents the case where e is to the left of εi.
Two edges e ∈ E−i , f ∈ E+

i do not cross if and only if l(e) ≡ l(f) + 1; see Figure 5 (b).
This gives us constraint (7) below. It remains to forbid crossings between edges in Ei

and edges in E+
i ∪ E−i . An edge e = (αi, v

′′) ∈ E+
i and an edge (u′, v′) ∈ Ei do not

cross if and only if l(e) ≡ αi+1v
′v′′; see Figure 5 (c). Crossings with edges (v, αi+1) ∈ E−i

can be treated analogously. This yields constraints (8) and (9). We denote the planarity
constraints (6)–(9) by PG(εi), where εi = (αi, αi+1).

∀ independent (u, v), (u′, v′) ∈ Ei : αiuu
′ ≡ αi+1vv

′ (6)

∀e ∈ E+
i , f ∈ E−i : l(e) ≡ l(f) + 1 (7)

∀ independent (αi, v
′′) ∈ E+

i , (u, v) ∈ Ei : l(αi, v
′′) ≡ αi+1vv

′′ (8)

∀ independent (u′′, αi+1) ∈ E−i , (u, v) ∈ Ei : l(u′′, αi+1) ≡ αiuu
′′ (9)

It is not difficult to see that the transformation between Hanani-Tutte drawings and
solutions of the constraint system without the transitivity constraints (5) can be performed
as in the previous section. The only difference is that one has to deal with edges that
share an endpoint with a reference εi.

In general, however, such a path P from level 1 to level k does not necessarily exist.
Instead, we use an arbitrary reference edge between any two consecutive levels. If there
is no edge between two consecutive levels with vertices u, v, we can insert the edge (u, v)
into every radial drawing of G without creating new crossings. We therefore assume from
now on that between any two consecutive levels there is at least one edge. Formally, we
call a pair of sets A+ = {α+

1 , . . . , α
+
k }, A− = {α−1 , . . . , α−k } reference sets for G if we have:

(i) α−1 = α+
1 and α+

k = α−k , (ii) for 1 6 i 6 k the reference vertices α+
i , α−i lie on level i

and (iii) for 1 6 i < k graph G contains the reference edge εi = (α+
i , α

−
i+1).

To express radial level-planarity, we express the cyclic orderings on each level twice,
once with respect to the reference vertex α+

i and once with respect to the reference
vertex α−i . To express planarity between adjacent levels i and i + 1, we use the pla-
narity constraints with respect to the reference edge εi. It only remains to specify that,
if α+

i 6= α−i , the linear ordering with respect to these reference vertices must be lin-
earizations of the same cyclic ordering. This is expressed by the following cyclic ordering
constraints CG(α+

i , α
−
i ); see Figure 6. Here constraint (10) means that each vertex lies in
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α−2 v2u2

ε1

2

3

α+
2

α+
3u3 v3α−3

Figure 6: Illustration of the cyclic ordering constraints with α−2 u2v2 ≡ α+
2 u2v2 on level

2 and with α−3 u3v3 6≡ α+
3 u3v3 on level 3. Regarding constraint (10), we have for example

α−3 u3α
+
3 and α+

3 α
−
3 u3.

both linar orderings on the same side of α−i , α+
i . Constraint (11) means that the ordering

of two vertices is different in the two linear orderings if and only if they are not on the
same side of α−i , α+

i .

∀ v ∈ Vi \ {α−i , α+
i } : α−i vα

+
i + α+

i α
−
i v ≡ 0 (10)

∀ distinct u, v ∈ Vi \ {α−i , α+
i } : α−i uv + α+

i uv + α−i uα
+
i + α−i vα

+
i ≡ 0 (11)

The constraint set S ′(G,A+, A−) consists of the linear ordering constraints LG(α+
i ) and

LG(α−i ) and the cyclic ordering constraints CG(α+
i , α

−
i ) for i = 1, 2, . . . , k if α+

i 6= α−i , plus
the planarity constraints PG(εi) for i = 1, 2, . . . , k − 1. This completes the definition of
our constraint system.

Theorem 8. Let G be a proper level graph with reference sets A+ and A−. Then the con-
straint system S ′(G,A+, A−) is satisfiable if and only if G is radial level-planar. Moreover,
the radial level planar drawings of G correspond bijectively to the satisfying assignments
of S ′(G,A+, A−).

Proof. Clearly, the radial level-planar drawings of G correspond injectively to the sat-
isfying assignments of S ′(G,A+, A−). For the reverse direction, consider a satisfying
assignment ϕ of S ′(G,A+, A−). Start by observing that the constraints (4) and (5) en-
sure that the orderings defined for all u, v ∈ Vi by the variables α−i uv and α+

i uv (with
α−i , α

+
i 6∈ {u, v}, respectively) are linear. Let σ−i , σ

+
i denote the cyclic orderings of the

vertices on level i induced by the assignments for variables starting with a reference vertex
in A− and A+, respectively. We next show σ−i = σ+

i . Let w−, w+, w′−, w′+ be words over V
such that the words α−i w−α

+
i w+ and α+

i w
′
+α
−
i w
′
− correspond to σ−i and σ+

i . First observe
that constraint (10) ensures that w− and w′− contain the same vertices (and likewise, w+

and w′+ contain the same vertices). Then constraint (11) ensures that the ordering of any
two vertices u, v in w− is the same in w′− and thus w− = w′−. Similarly, we get w+ = w′+
and thus σ−i = σ+

i .
Therefore, ϕ induces well-defined cyclic orderings of the vertices on all levels. It remains
to show that no two edges cross. Recalling that G is proper, it is sufficient to show that
no two edges e, f ∈ (Ei ∪ E−i ∪ E+

i ) cross for i = 1, 2, . . . , k. We distinguish five cases
based on how the edges e, f are distributed across the sets Ei, E

−
i and E+

i .
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top(α+
i )

bot(α+
i )

top(α+
i+1)

bot(α+
i+1)

top(α−
i+1)

bot(α−
i+1)

mi

mi+1

(c)

(b)
α−
i+1 α+

i+1

α+
i = α−

i

(a)

Figure 7: Illustration of the modified construction of the stretch edges for G? for graph G
in (a). The stretch edges for level i+1 where α+

i+1 6= α−i+1 (b) and for level i where α+
i = α−i

(c).

1. e, f ∈ Ei. Then constraint (6) together with the fact that no edge may cross εi
implies that e and f do not cross.

2. e ∈ Ei, f ∈ E−i . Let e = (u, v) and f = (u′′, α−i+1) and suppose l(f) ≡ 0 (the case
l(f) ≡ 1 works symmetrically). Then constraint (9) ensures that e and f do not
cross.

3. e ∈ Ei, f ∈ E+
i ; works symmetrically to case 2 with constraint (8).

4. e ∈ E−i , f ∈ E+
i . Then constraint (7) ensures that e and f are embedded locally to

the left and right of εi, respectively, or vice versa. Together with the fact that no
edge may cross εi, this means that e and f do not cross.

5. e, f ∈ E−i or e, f ∈ E+
i . Because e and f share an endpoint they do not cross.

Thus, no two edges cross, which means that ϕ induces a radial level-planar drawing.

Similar to Section 3, we define a reduced constraints system S(G,A+, A−) obtained from
S ′(G,A+, A−) by dropping constraint (5). Our main result is that S(G,A+, A−) is satis-
fiable if and only if G is radial level-planar. The proof works by showing equivalence to
the existence of a Hanani-Tutte drawing of G?.

4.2 Modified Narrow Form

We slightly modify the construction of the narrow form G? of G. This is necessary since
we need a special treatment of the reference vertices α+

i ,α−i on each level i. Namely, we
want that the endpoint of the stretch edge of α+

i lies on the highest level and that the
starting point of the stretch edge of α−i lies at the lowest level replacing level i. Further,
for α−i 6= α+

i we want the starting point of the stretch edge of α+
i and the endpoint of

the stretch edge of α−i to lie on the middle level mi. In each case, we want level mi to
intersect all stretch edges of level i; see Figure 7.

Consider the level i containing the ni vertices v1, . . . , vni
. If α+

i 6= α−i , then we choose
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the numbering of the vertices such that v1 = α−i and vni
= α+

i and arbitrary for the other
vertices. We replace i by 2ni − 1 levels (i, 1), (i, 2), . . . , (i, 2ni − 1), which is one level
less than previously. Similar to before, we replace each vertex vj by two vertices bot(vj)
and top(vj) with `(bot(vj)) = (i, j) and `(top(vj)) = (i, ni− 1 + j) and the corresponding
stretch edge (bot(vj), top(vj)); see Figure 7 (b). This ensures that the construction works
as before, except that the middle level mi = (i, ni) contains two vertices, namely bot(α+

i )
and top(α−i ).

If, on the other hand, α+
i = α−i , then we choose v1 = α+

i . But now we replace
level i by 2ni + 1 levels (i, 1), . . . , (i, 2ni + 1). Replace v1 by vertices bot(v1), top(v1)
with `(bot(v1)) = (i, 1) and `(top(v1)) = (i, 2ni + 1). Replace all other vj by ver-
tices bot(vj), top(vj) with `(bot(vj)) = (i, j) and `(top(vj)) = (i, ni + 1 + j). For all j,
we add the stretch edge (bot(vj), top(vj)) as before; see Figure 7 (c). This construction
ensures that the stretch edge of α+

i = α−i starts in the first new level (i, 1) and ends in
the last new level (i, 2ni + 1), and the middle level mi = (i, ni + 1) contains no vertex.

As before, we replace each original edge (u, v) of the input graph G by the edge
(top(u), bot(v)) connecting the upper endpoint of the stretch edge of u to the lower
endpoint of the stretch edge of v. Observe that the construction preserves the property
that for each level i the stretch edges of all its vertices are intersected by the middle
level mi and no other edge crosses mi if G is proper. Therefore, we obtain the following
result analogously to Lemma 1.

Lemma 9. Let G be a level graph. Then

G is radial level-planar ⇔ G? is radial level-planar ⇔ G+ is radial level-planar.

For each vertex v of G we use e(v) = (bot(v), top(v)) to denote its stretch edge. Again,
we use the function L that maps each level (i, j) of G? or G+ to the level i of G. We order
the tuples of levels lexicographically and consider them as natural numbers as suitable.
For an edge e of G? and a level i that intersects e, we denote by ei the subdivision vertex
of e at level i in G+. For two levels i and j that both intersect an edge e of G?, we denote
by eji the path from ei to ej in G+.

4.3 Constraint System and Assignment for G+

Let G be a proper level graph with reference sets A+, A−. We now choose reference sets
B+, B− for G+ that are based on the reference sets A+, A−. Let j be any level of G?

and let L(j) = i be the corresponding level of G. Define two vertices β+
j ,β−j as follows.

If α−i = α+
i , set β−j = β+

j = e(α−i )j; see Figure 8 (c). Otherwise, the choice is based on
whether j is the middle level m = mi of the levels L−1(i) that replace level i of G, or
whether j lies above or below m. Choose β−m = top(α−i ) and β+

m = bot(α+
i ).For j < m,

choose β−j = β+
j = e(α−i )j and for j > m, choose β−j = β+

j = e(α+
i )j; see Figure 8 (b).

We set B+ to be the set containing all β+
j and likewise for B−. Our next step is

to construct from a satisfying assignment ϕ of S(G,A+, A−) a corresponding satisfying
assignment ϕ+ of S(G+, B+, B−). The construction follows the approach from Lemma 5
and makes use of the fact that G+ is essentially a stretched and perturbed version of G.

the electronic journal of combinatorics 29(4) (2022), #P4.22 13



α−
i+1 α+

i+1

α+
i = α−

i

(a) β+
(i+1,5) = β−

(i+1,5)

β+
mi+1

β−
mi+1

β+
(i+1,1) = β−

(i+1,1)

mi+1

(b)

β+
(i,7) = β−

(i,7)

β+
(i,1) = β−
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Figure 8: Definition of β+, β− in the assignment for G+ for the same graph as in
Figure 7 (a). Vertices β+ (β−) are drawn in green (red), or in blue if they coincide.

Lemma 10. If S(G,A+, A−) is satisfiable, then S(G+, B+, B−) is satisfiable.

For the proof of this result, we consider a satisfying assignment ϕ for S(G,A+, A−).
We now derive an assignment ϕ+ for S(G+, B+, B−) from ϕ. Afterwards, we show that
ϕ+ satisfies S(G+, B+, B−).

Construction of ϕ+. Let e = (u, u′) and f = (v, v′) be two edges between level i and
level i+ 1 of G and let εi = (α+

i , α
−
i+1) denote the reference edge between these levels. We

introduce a function ψ(εi, e, f) to deduce the ordering of the edges εi, e, f in a drawing
that corresponds to ϕ by setting:

ψ(εi, e, f) ≡


ϕ(α+

i uv) if α+
i , u, v are pairwise distinct,

ϕ(α−i+1u
′v′) if α−i+1, u

′, v′ are pairwise distinct,

ϕ(l(f)) if α+
i = v 6= u or α−i+1 = v′ 6= u′,

ϕ(l(e)) + 1 if α+
i = u 6= v or α−i+1 = u′ 6= v′.

Note that if α+
i , u, v and α−i+1, u

′, v′ are pairwise distinct, then by Eq. (6) it fol-
lows ϕ(α+

i uv) ≡ ϕ(α−i+1u
′v′). Similarly, if α+

i = v and α−i+1 = u′ (or α+
i = u and α−i+1 = v′),

then by Eq. (7) it is ϕ(l(f)) ≡ ϕ(l(e)) + 1. Therefore ψ is well-defined.
Based on this, we can now define the orderings of triples of subdivision vertices of G+,

which leads to an assignment ϕ+ for S(G+, B+, B−). To this end, we define a map-
ping O : V (G+)→ V that maps each vertex of V (G+) to a vertex in G that it originates
from. For each vertex v of G+ that is part of a stretch edge e(w) of G? for some vertex w
of G, we set O(v) = w. For an example, see the orange vertex w of G in Figure 9.
The encircled orange vertices in G+ are mapped to w. It remains to define O(v) for
vertices v ∈ V (G+) that are subdivision vertices of an edge (x, x′) of G? that its not a
stretch edge. Then the original levels satisfy L(`(x′)) = L(`(x)) + 1, and we map v to the
vertex w with x = top(w) if L(`(v)) = L(`(x)) and to the vertex w′ with x′ = bot(w′),
otherwise. For an example, see the edge (x, x′) of G in Figure 9. The encircled purple
(green) subdivision vertices in G+ are mapped to x (to x′).
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u′ x′w′

u xw

G+G

Figure 9: Definition of the mapping O : V (G+)→ V . Vertices of G+ are mapped to the
vertex of G with the matching color.

We are now ready to define the assignment ϕ+ for S(G+, B+, B−) for a satisfying
assignment ϕ of S(G,A+, A−). Let x, y, z ∈ Vj be three distinct vertices on level (i, j)
and such that x ∈ {β−j , β+

j }. Observe that O(x) ∈ {α+
i , α

−
i+1}. If the vertices O(x), O(y),

O(z) are pairwise distinct, we set

ϕ+(xyz) = ϕ (O(x)O(y)O(z)) .

Otherwise, two of the corresponding vertices are the same. Hence, two vertices of
x, y, z are subdivision vertices of original edges in G. Note that x can by definition of G?

not be such a subdivision vertex. Hence, vertex y is a subdivision vertex of an edge e ∈ G
and vertex z is a subdivision vertex of an edge f ∈ G, both of which connect a vertex of
level i to a vertex on level i+ 1. Then we set

ϕ+(xyz) ≡ ψ(εi, e, f),

where εi = (α+
i , α

−
i+1) is the reference edge between these levels. Moreover, we set

ϕ+(l(e)) ≡ ϕ(l(O(u), O(v))) for each edge e = (u, v) of G+ with u = β+
j or v = β−j+1

but not both for some level j of G+.

Lemma 11. The assignment ϕ+ satisfies S(G+, B+, B−).

Proof. We check that ϕ+ satisfies each part of the constraint system. We denote by Vj
the vertices of G+ on level j.

ϕ+ satisfies L′
G+(β+

j ). Let β+
j ∈ B+. We aim to show that ϕ+ satisfies L′G+(β+

j ).

Let y, z ∈ Vj \ {β+
j } be distinct. If O(β+

j ), O(y), O(z) are distinct, then ϕ+(β+
j yz) ≡

ϕ(O(β+
j )O(y)O(z)) as well as ϕ+(β+

j zy) ≡ ϕ(O(β+
j )O(z)O(y)). Note that O(β+

j ) ∈
{α+

L(j), α
−
L(j)}. Since ϕ satisfies L′G(α+

L(j)) and L′G(α−L(j)), it is ϕ+(β+
j yz) ≡ ϕ+(β+

j zy) + 1.

If O(β+
j ), O(y), O(z) are not distinct, then O(y) = O(z), since β+

j cannot be a sub-
division vertex of an edge that is not a stretch edge. Hence, the vertices y, z are sub-
division vertices of edges e, f of G? connecting vertices on levels i and i + 1. Note that
this also implies O(β+

j ) 6= O(y). We obtain ϕ+(β+
j , y, z) ≡ ψ(εi, e, f) and ϕ+(β+

j , z, y) ≡
ψ(εi, f, e). Since O(y) = O(z) 6= O(β+

j ), we have with the definition of ψ that ψ(εi, e, f) ≡
ψ(εi, f, e) + 1. This yields ϕ+(β+

j , y, z) ≡ ϕ+(β+
j , z, y) + 1.

the electronic journal of combinatorics 29(4) (2022), #P4.22 15



ϕ+ satisfies L′
G+(β−j ). This can be argued analogously to L′G+(β+

j ).

ϕ+ satisfies CG+(β+
j , β

−
j ). We next show that ϕ+ satisfies the constraints CG+(β+

j , β
−
j )

for all j with β−j 6= β+
j . By definition of G? and B+, B−, these constraints are non-trivial

only for levels j = mi for a level i of G with α+
i 6= α−i .

Note that due to the construction of G?, level mi is only crossed by stretch edges,
which implies that the restriction of O to the vertices of G+ on level mi is injective.
Moreover, O(β+

j ) = α+
i and O(β−j ) = α−i . Hence, the triple (x, y, z) ∈ Vj of distinct

vertices maps injectively to triples of distinct vertices of G on level i. Since the value
of ϕ+(xyz) is defined in terms of ϕ(O(x)O(y)O(z)), it follows that ϕ+ satisfies Eq. (11)
and (10) if ϕ does.

ϕ+ satisfies PG+(β+
j , β

−
j+1). We finally show that ϕ+ satisfies PG+(β+

j , β
−
j+1) for any

two consecutive levels j and j + 1 of G+. We distinguish two cases, based on whether
L(j) = L(j + 1) or L(j + 1) = L(j) + 1.

1. L(j) = L(j + 1) = i. First observe that, except for (β+
j , β

−
j+1), the reference vertex

β+
j has no outgoing edges and β−j+1 has no incoming edges. Namely, vertex β+

j can
only have more outgoing edges if β+

j = top(α+
i ), and vertex β−j+1 can only have more

incoming edges if β−j+1 = bot(α−i ). But bot(α−i ) and top(α+
i ) occupy the first and

the last level of G+ corresponding to level i of G. Hence this is not possible since
L(j) = L(j + 1). Therefore the equations (7)–(9) are trivially satisfied.

Now consider two independent edges (y, y′), (z, z′) between levels j and j + 1 that
are different from (β+

j , β
−
j+1).

Since the vertices y, y′ are adjacent in G+, they either both subdivide the same edge
of G?, or one of them is a vertex of G? and the other one subdivides an incident
edge. As L(j) = L(j + 1), we obtain O(y) = O(y′) in both cases. Similarly, we
obtain O(z) = O(z′). If j > mi, then O(β+

j ) = O(β−j+1) = α+
i . If j < mi, then

O(β+
j ) = O(β−j+1) = α−i . In both cases O(β+

j ) = O(β−j+1).

Observe that O(y) = O(β+
j ) = α−i implies that j < mi, and hence y is a subdivision

vertex of an outgoing edge of bot(α−i ) in G?. This is, however, impossible since the
only outgoing edge of bot(α−i ) is the stretch edge of α−i . Symmetrically, O(y) =
O(β+

j ) = α+
i implies j > mi, and hence that y is a subdivision vertex of an incoming

edge of top(α+
i ), which is again impossible. Thus we find that O(β+

j ) 6= O(y).
Likewise, it is O(β+

j ) 6= O(z).

If O(y) 6= O(z), then the vertices O(β+
j ) = O(β−j ), O(y) = O(y′) and O(z) = O(z′)

are pairwise distinct. Thus O maps the triples t1 = β+
j yz and t2 = β−j+1y

′z′ to the
same triple t. Since ϕ+(ti) ≡ ϕ(t) for i = 1, 2, it follows that ϕ+(t1) ≡ ϕ+(t2),
i.e., ϕ+ satisfies Eq. (6).

If O(y) = O(z), then O(y′) = O(z′), and (y, y′), (z, z′) originate from edges e, f ∈ G.
Now, if j < mi, then e, f connect vertices on level i−1 to vertices on level i. In this
case, ϕ+(β+

j ef) and ϕ+(β−j ef) are both defined in terms of ψ(ε, e, f), where ε =
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(α+
i−1, α

−
i ). If j > mi, then e, f connect vertices on levels i and i + 1. Then ϕ+

of both triples is defined as ψ(ε, e, f) for ε = (α+
i , α

−
i+1). In both case Eq. (6) is

satisfied.

2. i = L(j) < L(j + 1) = i + 1. In this case β+
j = top(α+

i ) and β−j+1 = bot(α−i+1). Let
(x, x′) ∈ G+ be any edge between level j and level j + 1. Since L(j) 6= L(j + 1),
e = (O(x), O(x′)) is an edge of G. Further, we obtain

(x, x′) ∈ Ej(G
+) ⇔ e ∈ Ei

(x, x′) ∈ E+
j (G+)⇔ x = β+

j ⇔ O(x) = α+
i ⇔ e ∈ E+

i

(x, x′) ∈ E−j (G+)⇔ x′ = β−j+1 ⇔ O(x′) = α−i+1 ⇔ e ∈ E−i .

Let (y, y′), (z, z′) be distinct edges between levels j and j+1 in G+ that are different
from (β+

j , β
−
j+1). We have that e = (O(y), O(y′)) and f = (O(z), O(z′)) are edges

of G. We further distinguish cases based on whether e and f are independent.

(a) e and f are independent. If e, f ∈ Ei, then (y, y′), (z, z′) ∈ Ei(G
+) and, by

the definition of ϕ+, it is ϕ+(β+
j yz) ≡ ϕ(α+

i O(y)O(z)) and ϕ+(β−j+1y
′z′) ≡

ϕ(α−i+1O(y′)O(z′)). Since ϕ satisfies PG(α+
i , α

−
i+1), it follows that ϕ+ satisfies

Eq. (6) for G+ and edges (y, y′), (z, z′).

If e ∈ E+
i and f ∈ E−i , then (y, y′) ∈ E+

j (G+) and (z, z′) ∈ E−i (G+). By
the definition of ϕ+, it is ϕ+(l(y, y′)) ≡ ϕ(l(α+

i O(y′))) and ϕ+(l(z, z′)) ≡
ϕ(l(O(z)α−i+1)). Since ϕ satisfies PG(εi), it follows that ϕ+ satisfies Eq. (7)
for G+ and edges (y, y′), (z, z′).

If e ∈ E+
i and f ∈ Ei, then (y, y′) ∈ E+

i (G+) and (z, z′) ∈ Ei(G
+). By

the definition of ϕ+ it is ϕ+(l(β+
j , y

′)) ≡ ϕ(l(α+
i , O(y′))) and ϕ+(β−j+1z

′y′) ≡
ϕ(α−i+1O(z′)O(y′)). Since ϕ satisfies PG(εi), it follows that ϕ+ satisfies Eq. (8)
for G+ and edges (y, y′), (z, z′). The case e ∈ E−i and f ∈ Ei can be argued
analogously.

(b) e, f are dependent. If O(y) = O(z), then y, z are subdivision vertices of two
edges e′, f ′ in G? that share their source, which hence lies on a level strictly
below j. In particular, it is y, z 6= top(α+

i ) = β+
j . Moreover, it is O(y′) 6=

O(z′). Thus, by definition, ϕ+(β+
j yz) ≡ ϕ+(β−j+1y

′z′) ≡ ψ(εi, e, f), where εi =
(α+

i , α
−
i+1).

If the vertices O(β+
j ) = α−i+1, O(y′), O(z′) are pairwise distinct, then we have

(y, y′), (z, z′) ∈ Ei(G
+). This implies ϕ+(β+

j yz) ≡ ϕ(α−i+1O(y′)O(z′)) and
ϕ+(β−j+1y

′z′) ≡ ϕ(α−i+1O(y′)O(z′)). Therefore ϕ+ satisfies Eq. (6) for G+ and
edges (y, y′), (z, z′).

If α−i+1 = O(y′) 6= O(z′), then (y, y′) ∈ E−i (G+) and (z, z′) ∈ Ei(G
+). Then

ϕ+(β+
j yz) ≡ ϕ(l(e)) and ϕ+(β−j+1y

′z′) ≡ ϕ(l(e)). Therefore ϕ+ satisfies Eq. (8)
for G+ and edges (y, y)′, (z, z′).

Analogously, we obtain for α−i+1 = O(z′) 6= O(y′) that ϕ+ satisfies Eq. (8) for
G+ and edges (y, y′) and (z, z′).
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α−
i+1 α+

i+1

(a) (b)

mi+1

(c)

mi+1

Figure 10: Let ϕ+ be the truth assignment induced by the drawing in (a) for
S(G+, B+, B−). We only consider level i+1. (b) A drawing Γ+ of G+ for level i + 1
corresponding to ϕ+ and (c) the induced Hanani-Tutte drawing of G?. Curve γ is drawn
in blue.

Finally, the case O(y′) = O(z′) can be handled analogously to the case O(y) =
O(z).

This concludes the proof that ϕ+ satisfies S(G+, B+, B−).

4.4 From a Satisfying Assignment to a Hanani-Tutte Drawing

Let G be a proper level graph with reference sets A+, A− and let B+, B− be corresponding
reference sets for G+. Finally, let ϕ+ be a satisfying assignment for S(G+, B+, B−).
We construct a radial drawing Γ+ of G+, from which we obtain the drawing Γ? of G?

by smoothing the subdivision vertices. Afterwards we show that Γ? is a Hanani-Tutte
drawing.

We construct Γ+ as follows. Consider a level j of G+ and let i = L(j) be the original
level of G. First assume j = mi. If β−j = β+

j , then we place all vertices of Vj(G
+)

in arbitrary order. Otherwise, we place β−j ,β+
j arbitrarily on the circle representing the

level mi. We then place each vertex v ∈ Vj(G+)\{β−j , β+
j } such that β−j , v, β

+
j are ordered

clockwise if and only if ϕ(β−j vβ
+
j ) ≡ 0, i.e., we place v on the correct side of β−j and β+

j

and arrange the vertices on both sides of β−j and β+
j arbitrarily; see Figure 10.

Next assume j 6= mi. Then there is exactly one vertex ξ ∈ Vj(G+)∩V (G?). If ξ ∈ B−,
then we place all vertices of Vj(G

+) in arbitrary order on the circle representing the level j.
Otherwise, we place β−j and ξ arbitrarily. We then place any vertex v ∈ Vj(G+) \ {β−j , ξ}
such that β−j , ξ, v are ordered clockwise if and only if ϕ+(β−j ξv) ≡ 0. Again, we arrange
the vertices on either side of β−j and ξ arbitrarily. We have now fixed the positions of all
vertices and it remains to draw the edges.

Consider two consecutive levels j and j+ 1 of G+. We draw the edges in Ej(G
+) such

that they do not cross the reference edges in E(G+) ∩ (B+ ×B−). We draw an edge e =
(β+

j , x
′) ∈ E+

j (G+) such that it is locally left of (β+
j , β

−
j ) if and only if ϕ+(l(e)) ≡ 0. By

smoothing the subdivision vertices of the edges in G+ we obtain G? and along with that
we obtain a drawing Γ? of G? from Γ+.

Let a, b, c be curves or edges in a drawing. Then we write cr(a, b) for the number of
crossings between a, b and set cr(a, b, c) = cr(a, b) + cr(a, c) + cr(b, c). We consider any
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number of crossings modulo 2. The following lemma is the radial equivalent to Lemma 2
and constitutes our main tool for showing that edges in our drawing cross evenly. Note
that cyclic orderings consider triples of points instead of pairs and that one can have
e.g. cr(a, b) ≡ 1 while cr(a, b, c) ≡ 0.

Lemma 12. Let C1,C2 be distinct concentric circles and let a, b, c be radially monotone
curves from C1 to C2 with pairwise distinct start- and endpoints that only intersect at a
finite number of points. Then the start- and endpoints of a, b, c have the same ordering
on C1 and C2 if and only if cr(a, b, c) ≡ 0.

Proof. If there are no crossings, then both sides hold. Hence, assume there is at least one
crossing. By perturbations, we achieve that every crossing has a distinct distance to the
center m of the circles. We order the crossings by distance to m. We add a concentric
circle CY

X between any two consecutive crossings X, Y such that CY
X intersects each of

a, b, c once.
Then, the ordering of the intersection points of a, b, c must change between every two

consecutive circles. Thus, that ordering is the same in C1 and C2, if and only if we added
an odd number of circles. This in turn holds if and only if we have an even number of
crossings.

Lemma 13. The drawing Γ? is a Hanani-Tutte drawing of G?.

Proof. We show that each pair of independent edges of G? crosses evenly in Γ?. Of course
it suffices to consider critical pairs of edges, since our drawing is radial by construction,
and therefore non-critical independent edge pairs cannot cross. Every edge (α+

i , α
−
i+1) is

subdivided into edges of the form (β+
j , β

−
j+1) and therefore it is not crossed.

Let e, f be two independent edges in E(G?) \ (A+ × A−) that are critical. Let a and
b be the innermost and outermost level shared by e and f . We seek to use Lemma 12 to
analyze the parity of the crossings between e and f . To this end, we construct a curve
γ along the edges of the form (β+

j , β
−
j+1) as follows. For every level j we add a curve cj

going counterclockwise from β−j to β+
j on the circle representing the level j (a point for

β−j = β+
j ; chosen arbitrarily otherwise). The curve γ is the union of these curves cj and

the curves for the edges of the form (β+
j , β

−
j+1); see Figure 10. Note that γ spans from the

innermost level 1 to the outermost level (k, 2nk +1) with endpoints bot(α+
1 ) and top(α−k ).

For any edge g ∈ G?, we denote its curve in Γ? by c(g). For any radial monotone curve
c we denote its subcurve between level i and level j by cji (using only one point on circle
i and circle j each). We consider the three curves g′ = γba, e

′ = c(e)ba, f
′ = c(f)ba. We now

distinguish cases based on whether one of the edges e, f starts at the bottom end or ends
at the top end of the reference edges on level a or b.

1. ea, fa 6= β+
a and eb, fb 6= β−b . Then for a 6 j 6 b− 1:

ϕ+(β+
j+1ej+1fj+1)

(11)
≡ ϕ+(β−j+1ej+1fj+1) + ϕ+(β−j+1ej+1β

+
j+1) + ϕ+(β−j+1fjβ

+
j+1)

≡ ϕ+(β−j+1ej+1fj+1) + cr(e, cj+1) + cr(f, cj+1)

(6)
≡ ϕ+(β+

j ejfj) + cr(e, cj+1) + cr(f, cj+1)
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Note that the second equivalence follows from the definition of cj+1. This implies

ϕ+(β+
a eafa) + ϕ+(β−b ebfb) ≡

b−1∑
j=a

cr(cj+1, e) +
b−1∑
j=a

cr(cj+1, f) ≡ cr(e, γ) + cr(f, γ)

where the third equation holds since edges of the form (β+
j , β

−
j+1) are not crossed.

On the other hand, by Lemma 12 we have ϕ+(β+
a eafa) + ϕ+(β−b ebfb) ≡ cr(e, f, γ)

since β+
a , ea, fa and β−b , eb, fb are the endpoints of g′, e′, f ′. This yields cr(e, f) ≡

cr(e, f, γ) + cr(e, γ) + cr(f, γ) ≡ 0.

2. We do not have ea, fa 6= β+
a and eb, fb 6= β−b . For example, assume ea = β+

a ; the
other cases work analogously. Then β+

a = top(α+
i ). This means e originates from

an edge in G. Since such edges do not cross middle levels, g′ is a subcurve of an
original edge εi. In particular, there are only three vertices per level between a and
b that correspond to γ, e, f .

Let H ⊆ G+ be the subgraph induced by the vertices of (εi)
b
a, e

b
a, f

b
a. Then ϕ+

satisfies all the constraints of S(H,V ((εi)
b
a), V ((εi)

b
a)). However, each level of H

contains only three vertices, and therefore the transitivity constraints are trivially
satisfied, i.e., ϕ+ satisfies all the constraints of S ′(H, V ((εi)

b
a), V ((εi)

b
a)). Thus, by

Theorem 8, a drawing ΓH of H according to ϕ+ is planar. I.e., cr((εi)
b
a, e

b
a, f

b
a) = 0

with regards to ΓH . Let Ca, Cb be ε-close circles to levels a and b, respectively, that
lie between levels a and b. With Lemma 12 we obtain that εi, e, f intersect Ca and
Cb in the same order.

Note that Γ+ is drawn according to ϕ+ on level a and on level b. We obtain that
the curves for εi, e, f intersect Ca in the same order in Γ+ and in ΓH . The same
holds for Cb. Hence, the curves intersect Ca and Cb in the same order in Γ+. With
Lemma 12 cr((εi)

b
a, e

b
a, f

b
a) ≡ 0 with regards to Γ+. Since γ is a subcurve of εi and

thus not crossed in Γ+, this yields cr(eba, f
b
a) ≡ 0 with regards to Γ+.

Thus any two independent edges have an even number of crossings.

4.5 From a Hanani-Tutte Drawing to a Satisfying Assignment

As in the level-planar case the converse also holds.

Lemma 14. Let G be a level graph with reference sets A+, A− for G. If G admits a
Hanani-Tutte drawing, then there exists a satisfying assignment ϕ of S(G,A+, A−).

For the proof of the lemma we first construct the assignment ϕ and then show that it
satisfies S(G,A+, A−). Let G = (V,E) have k levels and a radial Hanani-Tutte drawing
Γ. For three distinct vertices x, y, z on level j with x = α−j or x = α+

j , we set ψ(xyz) = 0
if and only if x, y, z appear clockwise on the circle representing level j. If two edges e,
f are adjacent in a vertex v with cr(e, f) ≡ 1, then we say they have a phantom crossing
at v. We denote by cr? the function counting crossings and additionally adding 1 if there
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is a phantom crossing. With the phantom crossings, any two edges in G cross an even
number of times, even if they are not independent. For any edge e = uv in G between
level j and j + 1 with u = α+

j or v = α−j+1 we set ψ(l(e)) = 0 if and only if e is locally
left of εj. We further set ϕ(l(e)) ≡ ψ(l(e)) + cr(e, εj) to switch that value in case of a
phantom crossing.

Let v ∈ V (G) be a vertex. If v is a subdivision vertex of an edge e, then we set
e(v) = e. Otherwise we set e(v) = ∅. We say ∅ has no crossings with anything but
stretches over all levels. This helps to avoid case distinctions. For an edge e = (u, v) of
G we write ej for the subdivision path of e that starts at u and ends on level j. We set
∅j = ∅. Let x, y, z ∈ Vj(G) be disjoint with x = α−j or x = α+

j . We set

ϕ(xyz) ≡ ψ(xyz) + cr?(e(x)j, e(y)j, e(z)j) .

We thereby switch the ordering of x, y, z if and only if at least two of them are subdivision
vertices and the corresponding edges cross an odd number of times up to level j. This
finishes the construction of ϕ.

Lemma 15. The assignment ϕ satisfies S(G,A+, A−).

Proof. First note that ψ satisfies L(α+
j ),L(α−j ) and C(α+

j , α
−
j ) for 1 6 j 6 k.

ϕ satisfies L(α+
j ),L(α−j ). For three distinct vertices x, y, z ∈ Vj(G), by definition of

ϕ, ϕ(xyz) + ϕ(xzy) ≡ ψ(xyz) + ψ(xzy). Since ψ satisfies Eq. (4), so does ϕ.

ϕ satisfies C(α+
j , α

−
j ). For Eq. (11) let 1 6 j 6 k such that α−j 6= α+

j . Let u, v ∈
Vj(G) \ {α−j , α+

j } be distinct. By definition of ϕ:

(ϕ(α−j uv) + ϕ(α+
j uv)) + (ϕ(α−j uα

+
j ) + ϕ(α−j vα

+
j ))

≡ (ψ(α−j uv) + ψ(α+
j uv)) + (ψ(α−j uα

+
j ) + ψ(α−j vα

+
j ))

+ 2
(

cr?(e(α−j ), u) + cr?(e(α−j ), v) + cr?(e(α+
j ), u) + cr?(e(α+

j ), v)

+ cr?(u, v) + cr?(e(α−j ), e(α+
j ))
)

≡ (ψ(α−j uv) + ψ(α+
j uv)) + (ψ(α−j uα

+
j ) + ψ(α−j vα

+
j ))

Thereby Eq. (11) holds.
For Eq. (10) let u ∈ Vj(G) \ {α+

j , α
−
j }. With the definition of ϕ we obtain

ϕ(α−j uα
+
j ) + ϕ(α+

j α
−
j u) ≡ ψ(α−j uα

+
j ) + ψ(α+

j α
−
j u) .

Thereby Eq. (10) holds.
It remains to argue that ϕ satisfies P(εj) for all levels.

ϕ satisfies Eq. (6) of P(εj). Let 1 6 j 6 k − 1 and let (u, u′), (v, v′) ∈ Ej(G) be
independent. Then we argue that

ϕ(α+
j uv) + ϕ(α−j+1u

′v′)

≡ ψ(α+
j uv) + ψ(α−j+1u

′v′) + cr?((u, u′), (v, v′), εj)
(12)
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This means we change the ordering of the ends of (u, u′), (v, v′), εj on exactly one of the
levels j and j + 1 if and only if they cross an odd number of times. With Lemma 12 we
then obtain that Eq. (6) holds for (u, u′), (v, v′).

With the definition of ϕ it suffices to show the following three equations

cr?(e(α−j+1)
j+1, e(u′)j+1) + cr?(e(α+

j )j, e(u)j) ≡ cr?(εj, (u, u
′)) (13)

cr?(e(α−j+1)
j+1, e(v′)j+1) + cr?(e(α+

j )j, e(v)j) ≡ cr?(εj, (v, v
′)) (14)

cr?(e(u′)j+1, e(v′)j+1) + cr?(e(u)j, e(v)j) ≡ cr?((u, u′), (v, v′)) (15)

We show Eq. (15). Eq. (13) and Eq. (14) can be shown analogously noting that
εj = (α+

j , α
−
j+1) is independent from (u, u′), (v, v′). We distinguish cases where u, u′, v, v′

are vertices of different kinds.

1. u, u′ or v, v′ are original vertices. Then e(u) = e(u′) = ∅ or e(v) = e(v′) = ∅. Then
the left side equals 0. The right side also equals 0, since (u, u′) or (v, v′) is an edge
of G.

2. u, u′ or v, v′ are subdivision vertices. Without loss of generality assume u, u′

are subdivision vertices. Then we obtain e(u) = e(u′) and the left side reduces to
cr?(e(u)j+1, e(v′)j+1) + cr?(e(u)j, e(v)j).

(a) The case where v, v′ are original vertices is already covered.

(b) If v, v′ are subdivision vertices, then cr?(e(u)j+1, e(v′)j+1)+ cr?(e(u)j, e(v)j)
≡ cr?(e(u)j+1, e(v)j+1) + cr?(e(u)j, e(v)j) ≡ cr?(e(u)j+1

j , e(v)j+1
j )

≡ cr?((u, u′), (v, v′))

(c) If v is an original vertex and v′ is a subdivision vertex, we get

cr?(e(u)j+1, e(v′)j+1) + cr?(e(u)j, e(v)j) ≡ cr?(e(u)j+1, vv′) + 0 ≡ cr?(uu′, vv′)

(d) If v is a subdivision vertex and v′ is an original vertex, then

cr?(e(u′)j+1, e(v′)j+1) + cr?(e(u)j, e(v)j) ≡ cr?(e(u)j, e(v)j) ≡ cr?(e(u), e(v)) +
cr?(e(u)j, e(v)j) ≡ cr?((u, u′), (v, v′)). Note that e(u), e(v) are edges of G.

3. u, v are original vertices and u′, v′ are subdivision vertices. Then e(u) = e(v) = ∅
and e(u′)j+1 = uu′ and e(v′)j+1 = vv′ and the equivalence holds.

4. u′, v′ are original vertices and u, v are subdivision vertices. Noting cr?(e(u)j, e(v)j)+
cr?(e(u)kj , e(v)kj ) = cr?(e(u), e(v)) ≡ 0 we can argue analogously.

5. u, v′ are original vertices and u′, v are subdivision vertices. Then e(u) = e(v′) = ∅
and the left side equals 0. Further, cr?((u, u′), (v, v′)) = cr?(e(u′), e(v)) ≡ 0. I.e.,
both sides are even.

6. u′, v are original vertices and u, v′ are subdivision vertices. Then we can argue
analogously to the previous case.

Hence, ϕ satisfies Eq. (6).
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ϕ satisfies Eq. (7) of P(εj). Let e = (u, u′) ∈ E+
j (G) and let f = (v, v′) ∈ E−j (G).

Then we adjust the drawing by perturbing possible phantom crossings of e, f with εj at
α+
j and α−j+1 to the space between circle j and circle j + 1. Thereby, the states of e, f

being locally left of εj change if and only if they have a phantom crossing. This is the
case if and only if ψ and ϕ differ for l of the corresponding edge. I.e., ϕ(l(e)), ϕ(l(f))
describe, whether e, f are locally left of εj. Consider the closed curve c that is the union
of c(e), c(εj) and the part d of circle j + 1 between u′ and α−j+1, such that circle j is on
the outside of c. Then the edge f is outside of c at circle j. Note that εj has to be an
original edge. Since f crosses e, εj an even number of times each (as their corresponding
original edges cross only between level j and j+ 1), and it does not cross d, edge f has to
be outside of c at ε-close distance to circle j+1. We thereby obtain ϕ(l(e)) ≡ ϕ(l(f))+1.

ϕ satisfies Eq. (8) of P(εj). Let (u, u′) ∈ E+
j and let (v, v′) ∈ Ej be independent.

Note that e(α−j+1)
j+1 = εj and that e(u′)j+1 = (u, u′) since α+

j = u must be an original
vertex. Let circle a be a circle that is ε-close outside of circle j. Then if v′ is a subdivision
vertex:

ϕ(α−j+1v
′u′)− ψ(α−j+1v

′u′)

≡ cr?(e(v′)j+1, e(u′)j+1) + cr?(e(α−j+1)
j+1, e(v′)) + cr?(e(α−j+1)

j+1, e(u′))

≡ cr?((v, v′), (u, u′)) + cr?(εj, (v, v
′)) + cr?(εj, (u, u

′))

≡ cr?(εj, (v, v
′), (u, u′))

≡ cr(εj, (v, v
′), (u, u′)) + cr?((u, u′)a, (v, v

′)a, (εj)a)

≡ (ψ(l(u, u′))− ψ(α−j+1v
′u′)) + cr?((u, u′)a, (v, v

′)a, (εj)a)

≡ ϕ(l(u, u′))− ψ(α−j+1v
′u′) .

If v′ is an original vertex:

ϕ(α−j+1v
′u′)− ψ(α−j+1v

′u′)

≡ cr?(e(v′)j+1, e(u′)j+1) + cr?(e(α−j+1)
j+1, e(v′)) + cr?(e(α−j+1)

j+1, e(u′))

≡ cr?(εj, (u, u
′))

≡ cr(εj, (u, u
′)) + cr?((u, u′)a, (εj)a)

≡ (ψ(l(u, u′))− ψ(α−j+1v
′u′)) + cr?((u, u′)a, (εj)a)

≡ ϕ(l(u, u′))− ψ(α−j+1v
′u′) .

We obtain ϕ(l(u, u′)) = ϕ(α−j+1v
′u′).

ϕ satisfies Eq. (9) of P(εj). Can be argued similarly to the previous case.

We obtain the following implications.

Theorem 16. Let G be a level graph and let A+, A− be reference sets of G. Let B+, B−

be corresponding reference sets of G
+

. Then
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1. S(G
+
, B+, B−)is satisfiable⇔ G

?
has a Hanani-Tutte radial level drawing,

2. G has a Hanani-Tutte radial level drawing⇒ S(G,A+, A−)is satisfiable,

3. S(G,A+, A−) is satisfiable ⇒ G
?

has a Hanani-Tutte radial level drawing.

Proof. The first statement follows by Lemmas 13, 14. The second statement is immediate
from Lemma 14. For the third statement apply Lemma 10 and use the first statement.

Note that in contrast to Theorem 6, we do not provide the reverse for the third

statement. This would require showing S(G
+
, B+, B−)⇒ S(G,A+, A−). We still obtain

the equivalence of the two radial level-planarity characterizations as follows. Assume all
level graphs with a Hanani-Tutte radial level drawing are radial level-planar. Then for
every level graph G with reference sets A+, A− for G where S(G,A+, A−) is satisfiable, G

?

has a Hanani-Tutte radial level drawing by the third statement. Thus G
?

is radial level-
planar. It follows that G and G are also radial level-planar. On the other hand, assume
each level graph G with reference sets A+, A− for G where S(G,A+, A−) is satisfiable is
radial level-planar. Then for every level graph G with reference sets A+, A− for G and
a Hanani-Tutte radial level drawing, S(G,A+, A−) is satisfiable by the second statement
and thus G is radial level-planar. Note that we did not actually use the Hanani-Tutte
result for the radial case [10].

Corollary 17. The radial level-planar graphs are exactly the level graphs with a Hanani-
Tutte radial level drawing if and only if they are exactly the level graphs G for which
S(G,A+, A−) is satisfiable.

With the known Hanani-Tutte result for the radial case [10], we conclude that radial
level-planarity can be characterized in the spirit of Randerath et al. [24].

Corollary 18. Let G be a level graph with reference sets A+, A−. Then S(G,A+, A−) is
satisfiable if and only if G is radial level-planar.

5 Conclusion

We have established an equivalence of two results on level-planarity that have so far been
considered as independent. The novel connection has further led us to a new testing
algorithm for radial level planarity. Can similar results be achieved for level-planarity on
a rolling cylinder or on a torus [1]? It would be interesting to establish the equivalence of
the two results for single instances. That is, it would be interesting to prove the reverse
of statement two of Theorem 6 or Theorem 16 without using planarity. This would be
achieved by obtaining a Hanani-Tutte drawing of G from a Hanani-Tutte drawing of G

?
.
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