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Abstract

This paper develops methods to study the distribution of Eulerian statistics
defined by second-order recurrence relations. We define a random process to de-
compose the statistics over compositions of integers. It is shown that the numbers
of descents in random involutions and in random derangements are asymptotically
normal with rates of convergence O(n−1/2) and O(n−1/3) respectively.

Mathematics Subject Classifications: 11B37, 60C05, 60F05

1 Introduction

In an earlier work [Özd22], we studied the distribution of the number of descents in random
permutations by decomposing the statistic into martingale differences. The technique
relied on a submartingale construction by using the first order recurrence relations that
the Eulerian numbers satisfy. Then a well-known martingale limit theorem applies and
further techniques give rates of convergence in the central limit theorem. The rest of the
introduction gives a background to the work and outlines the arguments and results in
the paper.

Let Dn be the random variable counting the number of descents in a random per-
mutation of length n. One of the early results on the asymptotic normality of Dn is by
Harper’s method [Har67], which applies to statistics whose distribution agrees with the
coefficients of a real-rooted polynomial. In particular, Dn can be written as a sum of in-
dependent Bernoulli random variables where the probabilities are obtained from the roots
of the Eulerian polynomial. Then Lindeberg’s condition implies the asymptotic normal-
ity, whereas the martingale techniques give the following symmetric decomposition of the
same statistic. It was shown in [Özd22] that

Dn = E(Dn) +
1

n

n∑
i=1

Xi
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where the distribution of Xi+1 conditioned on D1, . . . , Di is{
Di − i, with prob. Di+1

i+1
,

Di + 1, with prob. i−Di

i+1
.

The martingale techniques also allow us to infer the rates of convergence in the limit
theorem matching the rates in classical Berry-Esseen theorems at a cost of calculating
the fourth moment compared to the third moment condition of the latter. Nevertheless,
the main advantage of the martingale method is that it can be applied to other Eulerian
statistics, including those of polynomials that are not real-rooted, with no further difficulty
as long as they are defined by a triangular array with a first-order recurrence relation. So
we were able to extend our result in various directions, such as to the number of peaks
in random permutations, descents in certain conjugacy classes of the symmetric group,
descents in Coxeter groups and to vector descent statistics.

This paper addresses Eulerian statistics associated with triangular arrays satisfying
second-order recurrence relations. Our first example is the number of descents in random
involutions of the symmetric group, which is described in Section 2. Then, in Section 3, we
show that it can be written as a martingale difference sequence conditioned on an integer
composition. Let In be the number of descents in random involutions on n elements. We
have

E
[
In
∣∣C62(n) = a

]
= E(In) +

1

n

∑
i

Xai
(1.1)

where C62(n) = (a1, a2, . . .) is a random (non-uniform) composition of a1 + a2 + · · · = n
with ai = 1 or 2, ai = (

∑i
j=1 aj, ai) and {Xai

}i is a martingale difference sequence.
The second example is the number of descents in random derangements, which is non-
palindromic (asymmetrically distributed about its middle term) unlike In, but it still
admits a similar decomposition.

In Section 3, in order to derive the decompositions of the statistics and investigate
their asymptotic behavior, we define a random process that allows us to decompose them
into serially uncorrelated random variables over random compositions of parts of size at
most of order of the recurrence relation. Then we study an illustrative example, the
number of descents in Fibonacci permutations, and prove various identities that can be
of independent interest.

In Section 4, we state the limit theorem for martingale difference sequences and prove
our main result, which can be combined in the following theorem.

Theorem 1. Let In be the number of descents in random involutions and Rn be the
number of descents in random derangements. Then

sup
x∈R

∣∣∣∣∣P
(
In −E[In]√

Var(In)
6 x

)
− Φ(x)

∣∣∣∣∣6 C√
n

and sup
x∈R

∣∣∣∣∣P
(
Rn −E[Rn]√

Var(Rn)
6 x

)
− Φ(x)

∣∣∣∣∣6 C ′

3
√
n

where Φ is the standard normal distribution and C,C ′ are constants independent of n.
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In Section 5, we provide the extension of the method to recurrences of higher order,
which yields martingale difference sequences indexed by compositions with summands of
size at most the order of the recurrence relation. Then we give examples of both Eulerian
and non-Eulerian statistics defined by second-order recurrence relations that still elude
our asymptotic analysis. We conclude with a comment on a possible connection of our
work to autoregressive processes.

2 Eulerian statistics and recurrence relations

We first introduce the statistic of interest of the paper, then the subsets of permutations
on which we study it. Let Sn be the symmetric group. A permutation π ∈ Sn is said to
have a descent at position i if π(i) > π(i+ 1), and an excedance at position i if π(i) > i.
A statistic that is equidistributed with the number of descents or excedances is called an
Eulerian statistic. In fact, the number of descents is equidistributed with the number of
excedances over uniformly random permutations.

The number of permutations with a given number of descents are counted by Eulerian
numbers. Let An,k be the number of permutations of n elements with k descents. We
define

An(t) =
∑
π∈Sn

tdes(π) =
∑
k>0

An,kt
k,

where des(π) is the number of descents in π ∈ Sn. An(t) is called the Eulerian polynomial
and has the rational generating function

An(t)

(1− t)n+1
=
∑
k>0

(k + 1)ntk.

Elementary manipulations in the sum on the right-hand side will give the following re-
cursive relation on the Eulerian numbers.

An+1,k = (k + 1)An,k + (n− k + 1)An,k−1.

The transition probabilities for the martingale associated with Dn are obtained from these
recursive relations, which is elaborated in Section 5 of [Özd22] with examples in Section
6 of the same article. We will use those techniques in the following two examples.

2.1 Involutions

A permutation π is called an involution if its inverse is itself; in other words, π2 = 1.
Involutions consist of combinations of fixed points and transpositions. They do not form
a conjugacy class, but can be thought of as the union of conjugacy classes of permutations
that only consist of fixed points and 2−cycles. Before turning to the number of descents
in random involutions, we first consider the involutions themselves.

Let in denote the number of involutions of length n. We observe that the number of
involutions of length n where n is a fixed point is in−1, and the number of involutions
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where (i n) is a cycle is in−2 for 1 6 i 6 n−1. Therefore we have the following second-order
recursive relation

in = in−1 + (n− 1)in−2, (2.1)

which is employed by Rothe to list i1 to i10 [Hin00]. A comphrehensive account on
involutions can be found in [Knu73], which includes the asymptotic formula

in =
1

4
√

4e

(n
e

)n/2
e
√
n
(
1 +O

(
n−1/2

))
.

It was shown earlier in [CHM51] that the growth rate in+1

in
is asymptotically of order

√
n,

more precisely
√
n+ 1 6

in+1

in
6
√
n+ 1 + 1. (2.2)

An interesting fact is that the number of involutions in the symmetric group Sn is equal
to the number of standard Young tableaux of size n. A standard Young tableau of size n
is a diagram with n boxes of left-justified rows of non-increasing lengths, such that each
box is filled with a number in increasing order from both left to right and top to bottom.
Each irreducible representation of Sn is represented by a diagram and the number of ways
to fill it in the described way gives the dimension of the representation,

in =
∑
λ irr.

dim(λ). (2.3)

See, for instance, [Sag13]. In fact, the dimensions of irreducible representations of any
group add up to the number of involutions if Frobenius-Schur indicators of its characters
are equal to 1, which is the case for Coxeter groups of type A (symmetric groups), B and
D [GP00]. We do not examine this topic further here except two identities (3.6) and (3.7)
in the following section, but note that our results are easily extendible to Coxeter groups
of type B.

n = 1: 1

n = 2: 1 1

n = 3: 1 2 1

n = 4: 1 4 4 1

n = 5: 1 6 12 6 1

n = 6: 1 9 28 28 9 1

Figure 1: The number of involutions of length n with k descents, In,k.

The generating function for the number of involutions with a given number of descents
is obtained in [DF85] by identities involving Schur functions and Robinson-Schensted
correspondence between involutions and standard Young tableaux. It is also derived
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in [GR93] from quasisymmetric functions of descent compositions as a result of a more
general formula including major indices. It satisfies the folowing rational form.∑

n>0

In(t)
un

(1− t)n+1
=
∑
k>0

tk

(1− u)k+1(1− u2)(
k+1
2 )
,

where

In(t) =
∑

{π:π2=1}

tdes(π) =
n−1∑
k=1

In,kt
k.

The coefficient of un is given by

In(t)

(1− t)n+1
=
∞∑
r=0

bn/2c∑
s=0

((r+1
2

)
+ s− 1

s

)(
n− r − 2s

n− 2s

)
tr. (2.4)

It is further studied in [GZ06] to show the unimodalty of In(t). It fails to be a log-
concave sequence, see [BBS09]. The gamma-positivity of the polynomial is proved in
[Wan19]. Applying Zeilberger’s algorithm to the coefficient of tr in (2.4), the following
formula is obtained in [GZ06]. For n > 1,

nIn(t) = (t− t2)I ′n−1(t) + [1 + (n− 1)t]In−1(t) + t2(1− t)2I ′′n−2(t)

+ t(1− t)[3 + (2n− 5)t]I ′n−2(t) + (n− 1)[1 + t+ (n− 2)t2]In−2(t).
(2.5)

Observe that In(1) is equal to the number of involutions, in, and (2.1) can also be verified
by the formula above. Comparing the coefficients in (2.5), the second-order recurrence
relation below is shown in [GZ06].

In+2,k =
k + 1

n+ 2
In+1,k +

n− k + 2

n+ 2
In+1,k−1

+
(k + 1)2 + n

n+ 2
In,k +

2k(n− k + 1)− n+ 1

n+ 2
In,k−1 +

(n− k + 2)2 + n

n+ 2
In,k−2.

(2.6)

By the symmetry of the coefficients, In+2,k = In+2,n+1−k. Therefore In(t) is a palindromic
polynomial, which implies E(In) = n−1

2
.

Next, we invoke the method in [Özd22] to obtain martingales from the recursive re-
lations. Let In be the random variable counting the number of descents in random invo-
lutions. Observe that I1 = 0. Fixing k, we first write down the recursive expansions of
In+2,k+1 and In+2,k+2 in addition to (2.6) as they include the terms In,k or In+1,k, whose
coefficients will be the transition probabilities.

In+2,k+1 = · · ·+ n− k + 1

n+ 2
In+1,k + · · ·+ 2(k + 1)(n− k)− n+ 1

n+ 2
In,k

In+2,k+2 = · · ·+ (n− k)2 + n

n+ 2
In,k.
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We replace k by In and In+1 in the coefficients of In,k and In+1,k respectively to obtain
the following process.

In+2 =



In, with prob. (n+1)in
in+2

(In+1)2+n
(n+1)(n+2)

,

In + 1, with prob. (n+1)in
in+2

2(In+1)(n−In)−n+1
(n+1)(n+2)

,

In + 2, with prob. (n+1)in
in+2

(n−In)2+n
(n+1)(n+2)

,

In+1, with prob. in+1

in+2

In+1+1
n+2

,

In+1 + 1, with prob. in+1

in+2

n−In+1+1
n+2

.

(2.7)

2.2 Derangements

A derangement π is a permutation with no fixed points; in other words π(i) 6= i for all
i. A standard method to count the derangements is the inclusion-exclusion principle. See
[Cam11] for two other methods and a short algebraic survey on them. The number of
derangements is defined recursively by

dn = ndn−1 + (−1)n = (n− 1)(dn−1 + dn−2). (2.8)

It has the closed-form expression

dn = n!
n∑
i=0

(−1)i

i!
, (2.9)

which is asymptotically n!
e
. In fact, dn is the closest integer to n!

e
since the error term

in the Taylor expansion of et evaluated at t = −1 is factorially small. The generating
function for the number of descents in derangements is∑

n>0

Dn(t)
zn

(1− t)n+1
=
∑
k>1

(1− z)ktk

(1− kz)

where

Dn(t) =
∑

{π: ∀i π(i) 6=i}

tdes(π) =
n−1∑
k=1

Dn,kt
k.

The generating function is derived in the same paper of Gessel and Reutenauer [GR93]
mentioned in the preceding section. Evaluating the coefficient of zn on the right-hand
side, we have

Dn(t)

(1− t)n+1
=
∑
k>0

(
n∑
i=0

(−1)i
(
k

i

)
kn−i

)
tk (2.10)

The above expression is studied in [FLZ18], and they obtained

Dn(t) = (−1)ntn−1 + (1 + (n− 1)t)Dn−1(t) + t(1− t)D′n−1(t), (2.11)
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for n > 2. Although Dn(t) is not palindromic as displayed in Figure 2, it is unimodal and
the maximum coefficient appears in the middle, which is shown in [FLZ18]. The same
properties were obtained earlier in [Zha96] for the number of excedances in derangements.

n = 2: 1

n = 3: 2 0

n = 4: 4 4 1

n = 5: 8 24 12 0

n = 6: 16 104 120 24 1

n = 7: 32 392 896 480 54 0

Figure 2: The number of derangements of length n with k > 1 descents, Dn,k.

In order to eliminate the alternating term, we expand tDn−1(t) according to (2.11) to
have

Dn(t) = (1 + (n− 2)t)Dn−1(t) + t(1− t)D′n−1(t) + (1 + (n− 2)t)Dn−2(t) + t(1− t)D′n−2(t).

Equating the coefficients on both sides, we obtain

Dn,k = (k + 1)Dn−1,k + (n− k − 1)Dn−1,k−1 + kDn−2,k−1 + (n− k)Dn−2,k−2. (2.12)

As in the case with the involutions, we define the following random process that gives the
number of descents in random derangements of permutations of length n at its nth stage.
We denote it by Rn in order to avoid confusion with the number of descents in random
permutations, and note that R1 = 0. The random sequence satisfies

Rn+2 =



Rn + 1, with prob. (n+1)dn
dn+2

Rn+1
(n+1)

,

Rn + 2, with prob. (n+1)dn
dn+2

n−Rn

(n+1)
,

Rn+1, with prob. (n+1)dn+1

dn+2

Rn+1+1
(n+1)

,

Rn+1 + 1, with prob. (n+1)dn+1

dn+2

n−Rn+1

(n+1)

(2.13)

Having defined In and Rn as random processes, we are able to treat them in a general
setting.

3 Random decompositions

The aim of this section is twofold. It is to lay the groundwork for the study of the statistics
described in Section 2 and to deliver the intuition for the recursive methods of the next
section by an example. Regarding the former, here and in Section 3.1, we show how
to transform the recursive relations defined by second-order recurrences as in (2.7) and
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(2.13) to a forward moving process. This can be compared to the martingale derivation
for descent statistics from the first-order recurrences in Chapter 5 of [Özd22]. In the
second part, Section 3.2 and 3.3, we give a simple example for the process, and develop
an approximation method by demonstrating its use on the example, which is then to be
used in Chapter 4. We also derive some combinatorial identities of independent interest.

Consider a stochastic process {Zn}n>1 obeying the following rule.

Zn =

{
Zn−2 + f(Zn−2), with prob. qn,

Zn−1 + f(Zn−1), with prob. 1− qn,
(3.1)

where f is some measurable function. This process can be viewed as a general form of
(2.7) and (2.13). The martingale methods do not immediately apply to {Zn}n>1, since it
is non-Markovian,

E[Zn|Fn−1] = (1− qn)Zn−1 + qnZn−2

where Fi is the σ−field generated by Z1, . . . , Zi and assuming that the increments f(Zn−2)
and f(Zn−1) have zero mean. The process can be updated from Zn−2 besides Zn−1; we
call an update a two− jump in the former case and a one− jump in the latter.

3.1 Binary words to compositions

We now describe how to split the random variable Zn once we keep track of the jumps of
Zn as whether it is updated from Zn−2 by a two-jump with probability qn or from Zn−1 by
a one-jump with probability 1−qn. We assume that the first update is always a one-jump.
What we end up with is a binary word w of n letters which starts with 1. This does not
directly give us the decomposition of Zn. But if we discard all entries left to 2s starting
from the rightmost letter of the word by disregarding the already discarded 2s, we can
label the indices of the decomposition by the remaining ones. Let ψ denote the mapping
of the discard operation, for example

w : 1 2 1 2 2 1 2 1 1 2 2 2

ψ(w) : 2 1 2 2 1 2 2
(3.2)

The latter string is indeed a composition of n of summands of size at most 2. We denote
the set of compositions of n consisting of only 1 and 2 by C62(n).

Next, we formalize the idea by defining a process that generates integer compositions,
which will allow us to decompose Zn over its outcomes and express it in the martingale
setting. We first generate a step-ahead copy of the process and then couple two processes
in the following way to retain the information from the previous stage and to define the
two types of jumps at every stage. Consider a vector ζn = (Zn, Zn−1) of random variables
with the update rule

ζn+1 =

{
(Zn−1 +Xn+1,2, Zn) with prob. qn+1,

(Zn +Xn+1,1, Zn) with prob. 1− qn+1

(3.3)
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where Xn+1,1 and Xn+1,2 may depend on ζn. We take ζ0 = Z0. One-jump means that
the particles move one step forward together, while two-jump means that the particle in
the back moves two steps forward and the particle in the front stays at its position. See
Figure 3 and the accompanying explanation below.

•
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •

Starting from the bottom, we move
along the diagonal path on the right in
the north-west direction to obtain the
decomposition. If the color alters, it
means that process is updated by a two-
jump, X∗,2, otherwise it is updated by
X∗,1. For instance, if we take the un-
paired particle Z0 = 0 and update the
positions of the others according to the
rule (3.3), then we end up with Z12

which decomposes as Z12 = X12,2 +
X10,2 + X8,1 + X7,2 + X5,2 + X3,1 + X2,2

where the color indicates the particle on
which the update is based.

Figure 3: An example of an update rule to obtain the decomposition of {Zn}n>1. The
rows of particles in the figure represent ζ0, ζ1, . . . , ζ12.

We denote the composition obtained from ζn by the random variable C62(n), which
is recorded by the secondary subindices of differences. For the example above,

P(C62(12) = (2, 1, 2, 2, 1, 2, 2)) = q2(1− q3)q5q7(1− q8)q10q12.

We color the summands in Figure 3 to indicate the dependence of the jumps on
the preceding stage. However, if the jumps form a martingale difference sequence, i.e.,
E[Xi,1|Fi−1] = E[Xi,2|Fi−1] = 0 for all i, then the random variable from which the differ-
ence is obtained has no correlation with it, thus no color is needed. In Section 4, either
the jumps are already in that form (in the case of involutions), or will be shown to be
close enough to that form (in the case of derangements) for the asymptotic analysis.

3.2 A deterministic example and some identities

In order to explain the idea in the previous section with a simple example, for which f in
(3.1) is deterministic, we consider the Fibonacci permutations. A permutation π is called
a Fibonacci permutation if |π(i) − i| 6 1. The restriction implies that π consists only
of fixed points and pairwise adjacent transpositions, which makes it an involution. For
instance,

π = 1 (2 3) 4 5 (6 7) 8 (9 10)

is a Fibonacci permutation. If we take 2s as transpositions and 1s as fixed points in the
second line of (3.2), we have a bijection between Fibonacci permutations of length n and
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C62(n). They are counted by the (n− 2)nd Fibonacci number. Fibonacci numbers satisfy
the simplest second-order recurrence relation,

fn = fn−1 + fn−2

with the initial condition that f0 = f1 = 1. This recursion can be verified for the number of
Fibonacci permutations by the process of either adding n as a fixed point to a permutation
of size n− 1 or adding the transposition (n n− 1) to a permutation of size n− 2.

Let Fn be the number of descents in random Fibonacci permutations. Observe that
the number of descents agrees with the number of transpositions in these permutations.
Moreover, the short proof of the recursion above defines a descent counting process; the
former case has no contribution to the number of descents while the latter contributes by
1. This gives

Fn+2 =

Fn + 1, with prob. fn
fn+2

,

Fn+1, with prob. fn+1

fn+2
.

(3.4)

Each jump takes value either 0 or 1 with probabilities independent of Fn.
We can directly compute the mass function of Fn+2 by using the map in (3.2). By

(3.4), Fn+2 is equal to k if and only if there are k gaps, associated with k two-jumps, in
the second line of (3.2). The following sum for P(Fn+2 = k) is over all possible locations
of gaps, denoted by (j1, . . . , jk). We also need to consider the all possibilities for discarded
jumps in the first line for w in (3.2). There are two possibilities for each gap, either a one-
jump or a two-jump. In the first line of the sum below, these probabilities are respectively
fj−2

fj−1
and

fj−3

fj−1
which immediately precede the probability of the two-jump,

fj−2

fj
.

P(Fn+2 = k) =
∑

1<j1<···<j<···<jk

· · ·
· · · fj−2

(
fj−2
fj−1

fj−2
fj

+
fj−3
fj−1

fj−2
fj

)
· · ·

fj+1 · · ·

=
∑

1<j1<···<j<···<jk

f1 · · · (fj−3 + fj−2)fj−2 · · · fn+1

f2 · · · fj−2fj−1fjfj+1 · · · fn+2

=
1

fn+2

∑
1<j1<···<jk

1

=

(
n−k
k

)
fn+2

.

See [DGH01] for a shorter argument for the above result and the use of the following
generating function

f(t) =

bn/2c∑
k=0

(
n− k
k

)
tk =

1√
1 + 4t

((
1 +
√

1 + 4t

2

)n+1

−
(

1−
√

1 + 4t

2

)n+1
)

to calculate

E(Fn) =
5−
√

5

10
n+

1−
√

5

10
+O(e−n) and Var(Fn) =

n

5
√

5
+O(1). (3.5)
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The asymptotic normality can be obtained by the methods listed in [DGH01]. A par-
ticularly interesting one is an application of Harper’s method to the number of edges in
random matchings of graphs, where Fn is associated with (n− 1)-path [God81]. Further-
more, observing that the number of edges in the matchings of the complete graph Kn on
n vertices is equidistributed with the number of transpositions in random involutions, the
author of [God81] shows the asymptotic normality of the latter as a corollary.

Next, we apply the same idea for the computation of P(Fn+2 = k) to obtain identities
from the recurrence relations that the number of involutions and derangements obey.
Considering the jump probabilities (n+1)in

in+2
and in+1

in+2
in the case of involutions, we sum

over the number of 2-jumps (or, equivalently, the number of gaps in (3.2)), which we
denote by k, to have

1 =

bn+2
2
c∑

k=1

∑
1<j1<···<j<···<jk

· · ·
· · · ij−2

(
ij−2
ij−1

(j − 1)ij−2
ij

+
(j − 2)ij−3

ij−1

(j − 1)ij−2
ij

)
· · ·

ij+1 · · ·

=

bn+2
2
c∑

k=1

∑
1<j1<···<j<···<jk

k∏
s=1

(js − 1)
i1 · · · [(j − 2)ij−3 + ij−2]ij−2 · · · in+1

i2 · · · ij−2ij−1ijij+1 · · · in+2

=
1

in+2

bn+2
2
c∑

k=1

∑
1<j1<···<j<···<jk

k∏
s=1

(js − 1).

Thus, by (2.3), we obtain∑
a∈C62(n)

∏
{i:ai=2}

(1 + a1 + · · ·+ ai−1) = in+1 =
∑
λ`n+1

dim(λ) (3.6)

where λ runs over the partitions of n+1, which in fact label the irreducible representations
of the symmetric group. If we take n! instead of in above and observe that n! = (n−1)!+
(n− 1)2(n− 2)!, we have∑

a∈C62(n)

∏
{i:ai=2}

(1 + a1 + · · ·+ ai−1)
2 = (n+ 1)! =

∑
λ`n+1

dim(λ)2 (3.7)

by the well-known fact in representation theory that the sum of the squares of the di-
mensions of irreducible representations of a group is equal to its size. The formulas (3.6)
and (3.7) (communicated to Persi Diaconis by Richard Stanley [Dia18]) in terms of bits
of binary strings with no two consecutive ones are already stated in [Dia18].
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Similarly, using (2.8) in the case of derangements,

1 =

bn+2
2 c∑

k=1

∑
2<j1<···<j<···<jk

· · ·
· · · dj−2

(
(j − 2)dj−2

dj−1

(j − 1)dj−2
dj

+
(j − 2)dj−3

dj−1

(j − 1)dj−2
dj

)
· · ·

dj+1 · · ·

=

bn+2
2 c∑

k=1

∑
2<j1<···<j<···<jk

d1 · · · [(j − 2)(dj−3 + dj−2)](j − 1)dj−2j · · · (n+ 1)dn+1

d2 · · · dj−2dj−1djdj+1 · · · dn+2

=
(n+ 1)!

dn+2

bn+2
2 c∑

k=1

∑
2<j1<···<j<···<jk

k∏
s=1

1

js − 2
.

We then obtain the following identity by (2.9).

1

n+ 2

∑
a∈C62(n)

∏
{i:ai=2}

1

a1 + · · ·+ ai
=

n+2∑
k=0

(−1)k

k!
,

recalling that a = (a1, a2, . . .) is a composition of n with parts of size 1 or 2.

3.3 Approximated distributions

We have discussed how the randomness is inherited from binary words to compositions
over several examples. The exact expressions for statistics over compositions are usually
difficult to derive. In the remainder of this section, we discuss how to approximate those
expressions with the help of binary word statistics. We start with the Fibonacci permu-
tations. The ratio fn+1

fn
, which defines the probabilities in (3.4), is well-known to converge

to ϕ := 1+
√
5

2
and satisfy the equation ϕ2 = 1 + ϕ. The error term in the ratio is∣∣∣∣fn+1

fn
− ϕ

∣∣∣∣ 6 1

ϕnfn+2

, (3.8)

see Section 1.35 of [Vor12]. The expected value of Fn can be estimated by the expected
number of two-jumps minus the expected number of adjacent two-jumps since only two-
jumps contribute to Fn. Then to compensate for the case with three two-jumps in a row,
we add its expected value and so on. This will give us an inclusion-exclusion argument.
Considering that the probability of a two-jump is approximately 1

ϕ2 by (3.8), we have

E(Fn) ≈
n∑
i=0

(−1)i(n− i)
ϕ2i+2

=
5−
√

5

10
n+O(1).

In general, we consider a binary random variable B(p, α, β) that is equal to α with
probability p and equal to β otherwise. If the mean of B(p, α, β) is zero, we will write it
as B(p, α). Let Tn =

∑n
k=1 B(qk, βk,1, βk,2). Now, we associate the summands of Tn with

letters of a binary word and define a new statistic. Let w be a binary word of length n.
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By an abuse of notation, we define the random variable ψ(Tn) induced by the function in
(3.2),

ψ(Tn)(w) =
∑
i

βai
(3.9)

where ψ(w) = (a1, a2, . . . ) and ai =
(∑i

j=1 aj, ai

)
. For instance, if we take Tn to be∑n

i=2 B (fi−2/fi, 0, 1), then ψ(Tn) = Fn. Although we will derive more indirect bounds for
ψ(Tn) in our two main examples, we provide the following upper bound on the variance
of ψ(Tn) that could be useful in the study of different examples.

Lemma 2. Let Tn =
∑n

i=1 B(pi, βi) where the summands are independent zero-mean
random variables. Then Var(ψ(Tn)) 6 Var(Tn).

Proof: By the conditional variance formula,

Var(Tn) = E[Var(Tn|C62(n))] + Var(E[Tn|C62(n)]). (3.10)

Since the summands of Tn have zero mean,

E[Tn|C62(n)] = E[ψ(Tn)|C62(n)].

Observing that ψ(Tn) is deterministic conditioned on the composition C62(n),

Var(E[Tn|C62(n)]) = Var(ψ(Tn))

The result follows from (3.10). �

Remark 3. If we take Tn to be the sum of Bernoulli random variables with an identical
success probability and 1 assigned to two-jumps, such as in the approximation to E(Fn)
with p = 1/ϕ, the conclusion of Lemma 2 holds true, which can be shown by conditioning
on the number of two-jumps.

4 Limit theorem and the rate of convergence

In this section, we study the asymptotic distributions of the processes defined in Section
2 by martingale limit theorems. We already mentioned that these processes do not yield
martingales; however, we can write them as random sums of martingale differences as
outlined in Section 3.1. For each statistic, we first study the moments, then apply the
theorem stated below, and finally address the randomness of the martingale difference
sequences.

Let us start with the statement of a Berry-Esseen type limit theorem, which can be
found in [Özd22]. Suppose {Xi}i>1 is a martingale difference sequence. Let us denote
E(X2

i ) by σ2
i and observe that s2n = E(S2

n) =
∑n

i=1 σ
2
i , which follows from the fact that

E(XiXj) = 0 for i 6= j as Xi and Xj are martingale differences. Our first assumption

the electronic journal of combinatorics 29(4) (2022), #P4.24 13



below is rather a technical condition. It imposes the variance of martingale differences to
grow polynomially.

1 6 lim inf
n

√
n
σn+1

sn
6 lim sup

n

√
n
σn+1

sn
<∞ (4.1)

Then the theorem is as follows.

Theorem 4. Let {Fn}n>1 be an increasing sequence of σ-fields in F for a probability
space (Ω,F ,P). Suppose that Sn is a sum of martingale differences Xi that satisfy (4.1)
and Yi = Xi/σi. If

sup
i

√
i ‖E(Y 2

i |Fi−1)− 1‖p <∞ (4.2)

sup
i

2p′
√
i ‖E(Y 3

i |Fi−1)‖p′ <∞, (4.3)

sup
i
‖E(Y 4

i |Fi−1)‖∞ <∞, (4.4)

for some p, p′ > 1, then

sup
t∈R
|P (Sn/sn 6 t)− Φ(t)| 6 C√

n

where C is a constant independent of n and Φ is the standard normal distribution.

The idea is to show that the theorem applies for any decomposition determined by the
outcomes of the particle process defined in Section 3. We treat each statistic separately
as they have distinctive features.

4.1 The number of descents in random involutions

Let us take Zn = n
(
In − n−1

2

)
, the zero-mean stochastic process for the number of de-

scents in random involutions. Define the central random variable Wi = Ii − i−1
2
. We use

the method described in Section 3 to write Zn as a random sum of martingale differences.
Taking i > 2, we denote by Xi,1 the martingale difference of the one-jump at the ith stage,
which is Zi − Zi−1 conditioned on Fi−1. From (2.7), we have

Xi,1 = iIi − (i− 1)Ii−1 − (i− 1) =

{
Wi−1 − i

2
, with prob. 1

2
+ Wi−1

i
,

Wi−1 + i
2
, with prob. 1

2
− Wi−1

i
.

(4.5)

On the other hand, the two-jump at the ith stage is denoted by Xi,2 and given by the
difference Zi − Zi−2 conditioned on Fi−2 as below.

Xi,2 = iIi−(i−2)Ii−2−2i+3 = 2


Wi−2 − i

2 , with prob.
(Wi−2+

i−1
2 )

2
+i−2

i(i−1) ,

Wi−2, with prob.
2(Wi−2+

i−1
2 )( i−1

2
−Wi−2)−i+3

i(i−1) ,

Wi−2 + i
2 , with prob.

( i−1
2
−Wi−2)

2
+i−2

i(i−1) .

(4.6)

We observe that both E[Xi,1|Fi−1] and E[Xi,2|Fi−2] are equal to zero. Therefore, any
additive combination of them forms a martingale difference sequence.
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4.1.1 Variance

We use the generating function (2.5) to bound the order of the variance by the falling
factorial moment formula below, see Section III.2.1 of [FS09].

E(X(X − 1) · · · (X − r + 1)) =
I
(r)
n (t)

In(t)

∣∣∣∣
t=1

(4.7)

where I
(r)
n (t) is the rth derivative of In(t) given in (2.5). We then have

nI ′n(t) = (n− 1)In(t) + (t− t2)I ′′n−1(t) + [2 + (n− 3)t]I ′n−1(t)

+ t2(1− t)2I ′′′n−2(t) + t(1− t)[5 + (2n− 9)t]I ′′n−2(t)

+ [3− 6t+ (2n− 5)(2t− 3t2) + (n− 1)(1 + t+ (n− 2)t2)]I ′n−2(t)

+ (n− 1)[1 + 2(n− 2)t]In−2(t),

(4.8)

and the second derivative is

nI ′′n(t) = (t− t2)I ′′′n−1(t) + [3 + (n− 5)t]I ′′n−1(t) + 2(n− 2)I ′n−1(t)

+ t2(1− t)2I(4)n−2(t) + t(1− t)[7 + (2n− 13)t]I ′′′n−2(t)

+ [8− 24t+ 12t2 + 2(2n− 5)(2t− 3t2) + (n− 1)(1 + t+ (n− 2)t2)]I ′′n−2(t)

+ [−6 + (2n− 5)(2− 6t) + 2(n− 1)(1 + 2(n− 2)t)]I ′n−2(t)

+ 2(n− 1)(n− 2)In−2(t).

(4.9)

Plugging in t = 1 in (4.8),

nI ′n(1) = (n−1)I ′n−1(1)+(n−1)In(1)+(n−2)(n−1)I ′n−2(1)+(n−1)(2n−3)In−2(1). (4.10)

We take qn = (n−1)in−2

in
, the probability of a two-jump at the nth stage. From (4.10), we

have

µn =

[
n− 1

n
µn−1 +

n− 1

n

]
(1− qn) +

[
n− 2

n
µn−2 +

2n− 3

n

]
qn. (4.11)

Using the formula µk =
I′k(1)

Ik(1)
for k = n − 1 and n − 2, it can be verified from the above

equation that µn = n−1
2
. Then the second equation (4.9) gives

nI ′′n(1) = (n− 2)I ′′n−1(1) + 2(n− 2)I ′n(t) + (n− 2)(n− 3)I ′′n−2(1)+

+ 2(2n− 5)(n− 2)I ′n−2(1) + 2(n− 1)(n− 2)In−2(1). (4.12)

Using the moment formula again, we have

λn =

[
n− 2

n
λn−1 +

(n− 2)2

n

]
(1− qn) +

[
(n− 2)(n− 3)

n(n− 1)
λn−2 +

2n2 − 11n+ 20

n

]
qn
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where λn := E[In(In−1)]. Recall that I1 = 0. Since the expression for the second moment is
a second-order recurrence relation, it is difficult to obtain the exact solution. Nonetheless,
we can view it as the expected value of the following stochastic process

Λn =


(n−2)(n−3)
n(n−1) Λn−2 + 2n2−11n+20

n
, with prob. qn,

n−2
n

Λn−1 + (n−2)2
n

, with prob. 1− qn,
(4.13)

with Λ1 = 0. The expectation E(Λn) = λn can inductively be shown from (4.13) by
assuming E(Λi) = λi. Next, we define another process below to bound E(Λn) = λn. Let

Λ̃n =
n− 2

n
Λ̃n−1 + n (4.14)

with Λ̃1 = Λ̃2 = 0. In order to compare it to the initial process, we write the latter as

Λ̃n =

{
(n−2)(n−3)
n(n−1) Λ̃n−2 + 2n2−3n+2

n
, with prob. qn,

n−2
n

Λ̃n−1 + n, with prob. 1− qn,

Since both the additive terms are larger compared to (4.13) for n > 3, the expected value

of Λ̃n is larger.
Defining λ̃n = E(Λ̃n), we have

λ̃n =
n− 2

n
λ̃n−1 + n (4.15)

from (4.14). Therefore, we can bound λn using the first order inhomogenous recursive
relation (4.15). For a recursive sum obtained from the form An = anAn−1 + bn, we have
the formula

An =

(
n∏
k=1

ak

)(
A0 +

n∑
i=1

bi∏i
j=1 aj

)
(4.16)

in Section 2.2 of [GKPL89]. Let us take an = n
n+2

, bn = n + 2 for n > 1, and set
A0 = a0 = b0 = 0. Then we have,

Λ̃n =

(
n−2∏
k=1

k

k + 2

)
n−2∑
i=1

j + 2
1

(j+1)(j+2)

=
1

n(n− 1)

n−1∑
j=0

j3 − j2 =
(3n+ 2)(n+ 1)

12
− 1

n(n− 1)
.

Therefore,

Var(In) 6
(3n+ 2)(n+ 1)

12
+
n− 1

2
− (n− 1)2

4
=

17n− 4

12
= O (n) . (4.17)
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4.1.2 A bound for the fourth moment

In order to apply Theorem 4, we need estimates on the moments up to the fourth degree.
Let us first write down the higher conditional moments of the martingale differences using
(4.5) and (4.6). For i > 2, the second moments of the martingale differences are

E[X2
i,1|Fi−1] =

i2

4
−W 2

i−1,

E[X2
i,2|Fi−1] =

i(i− 1)

2
+

2i(i− 2)

i− 1
− 2(i− 2)

i− 1
W 2
i−2.

(4.18)

The third moments of the martingale differences are calculated to be

E[X3
i,1|Fi−1] =

i2

2
Wi−1 − 2W 3

i−1,

E[X3
i,2|Fi−1] =

(
3

2(i− 1)
− 4

)
W 3
i−2 +

(
i2 + 9i− 12i

i− 1

)
Wi−2,

(4.19)

and the fourth conditional moments are

E[X4
i,1|Fi−1] =

i4

16
+
i2

2
W 2
i−1 − 3W 4

i−1,

E[X4
i,2|Fi−1] =

48

i− 1
W 4
i−2 − 2

(
i3 + 16i2 + 6i− 48

i− 1

)
W 2
i−2 + i3(i− 1) +

4i3(i− 2)

i− 1
.

(4.20)

Next, we use Rosenthal’s inequality, see Section 2.1 of [HH14], to bound the fourth
moment of the sum of the martingale differences. The inequality is as follows.

E

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣
p)
6 Cp

E

(
n∑
i=1

E[X2
i |Fi−1]

)p/2

+
n∑
i=1

E(|Xi|p)

 (4.21)

where Cp depends only on p and {Xi}i>1 is a martingale difference sequence. Relying on
the recursive structure of the martingale differences in our case, which is not a property of
martingales differences as such, we will bound the fourth moment of Wn recursively. For
the third moment condition in Theorem 4, we will use Lyapunov’s inequality in the proof
of the main theorem. Recalling that Wn = In − EIn, we denote the sum of martingale
differences for a given composition a as follows.

Sn,a := E[nWn

∣∣C62(n) = a] =
∑
i

Xai
(4.22)

Moreover, we note that

n4EW 4
n =

∑
a∈C62(n)

ES4
n,aP(C62(n) = a)

the electronic journal of combinatorics 29(4) (2022), #P4.24 17



by the law of total expectation. Taking p = 4 in (4.21), we have

ES4
n,a 6C4

E

(∑
i

E[X2
ai
|Fi−1]

)2

+
n∑
i=1

EX4
ai

 .

Therefore,

n4EW 4
n 6 C4 max

a∈C62(n)

E

(∑
i

E[X2
ai
|Fi−1]

)2

+
n∑
i=1

EX4
ai

 .

We then take X1,1 = X1,2 = 0 and apply (4.18) and (4.20) to have the following upper
bound:

EW 4
n 6

C4

n4

E

(
n∑
i=2

i2

3
+W 2

i

)2

+ E
n∑
i=2

48

i− 1
W 4
i + E

n∑
i=2

i2

2
W 2
i +

n∑
i=2

i4 +O(i3)


6
C5

n4

(
n6 + n3

n∑
i=2

EW 2
i + E

n∑
i=2

W 4
i + E

∑
26i<j

W 2
i W

2
j

)

6
C5

n4

(
n6 + n3

n∑
i=2

EW 2
i +

n∑
i=2

EW 4
i +

∑
26i<j

√
EW 4

i EW
4
j

)

where the last line is by the Cauchy-Schwarz inequality and C5 is a constant independent
of n. Assume that EW 4

i is an increasing function of i. Since EW 2
i = Var(Ii) 6 2i by

(4.17), we have

EW 4
n 6 C5n

2

(
1 +

1

n
+

(n+ 1)E(W 4
n)

n5

)
,

which implies
EW 4

n = O(n2). (4.23)

If Wi is not increasing, letting EW 4
κ = max16i6nEW

4
i , we find that EW 4

κ is smaller than
Cκ2 6 Cn2 for some constant C by running the same argument for κ in place of n. The
conclusion (4.23) holds true.

4.1.3 The asymptotic normality of the conditional distribution of In

We verify the conditions of Theorem 4 for In conditioned on a for all a in C62(n). Since,
below, the martingale differences will be treated in the same way regardless of whether
they are obtained from one-jump or two-jumps, we will use single subscript for the mar-
tingale differences for notational convenience. For instance, the example in (3.2) for Z12

would give
(X1, . . . , X7) = (X2,2, X3,1, X5,2, X7,2, X8,1, X10,2, X12,2). (4.24)
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Recall the definition σ2
i = E(X2

i ). Since E(X2
i ) is of order i2, the condition (4.1) is

satisfied. Then from the first case in (4.18), we have

E[X2
i |Fi−1]− σ2

i = −W 2
i−1 + E(W 2

i−1).

Thus,

‖E[X2
i |Fi−1]− σ2

i ‖22 = E
[∣∣W 2

i−1 − E(W 2
i−1)
∣∣2] .

Since E(W 2
i−1) < 2i for all i by (4.17),

‖E[X2
i |Fi−1]− σ2

i ‖22 = O(i2).

Taking the square root of the above expression and dividing by σ2
i , it is of order less

than
√
i. The same line of argument with different constants applies to the second case

in (4.18). Therefore, (4.2) is satisfied for p = 2.
For the next condition, we bound

‖E[X3
i |Fi−1]‖pp 6 E

[∣∣i2Wi−1 + 4W 3
i−1
∣∣p] . (4.25)

We take p = 4/3 in (4.25), then it is bounded by

E

[(
3
√
i2|Wi−1|+ 3

√
4 |Wi−1|

)4]
6C E(i8/3|Wi−1|4/3 + i2|Wi−1|2 + i4/3|Wi−1|8/3 + i2/3|Wi−1|10/3 + |Wi−1|4)
=O(i10/3),

where the last line follows from Lyapunov’s inequality,

r
√
E|Wi−1|r 6 s

√
E|Wi−1|s = O(

√
i) (4.26)

for 0 < r < s, and the bounds on the second and the fourth moment, (4.17) and (4.23) re-
spectively. The second case in (4.19) is treated similarly. Therefore, 8/3

√
i‖E[X3

i |Fi−1]‖4/3
is also uniformly bounded.

For the last condition, we have

‖E[X4
i |Fi−1]‖∞ =

∥∥∥∥i42 + 2i2W 2
i−1 + 3W 4

i−1

∥∥∥∥
∞

= O(i4)

as |Wi−1| 6 i−2
2
. Then since σi is of order i, ‖E[X4

i |Fi−1]‖∞ is uniformly bounded. The
two-jump case is essentially the same, thereby (4.4) is satisfied.

Thus, the asymptotic normality of Sn,a follows from Theorem 4 with an error term of
order less than or equal to n−1/2, i.e., for all a ∈ C62(n),∣∣∣∣P(Sn,asn,a

6 x

)
− Φ(x)

∣∣∣∣ 6 C√
n

(4.27)

where sn,a is the standard deviation of Sn,a. In the following part of the section, we will
have an explicit expression for s2n,a. We note that C is independent of n but depends on

the limiting values in (4.1); we refer to the proof of Theorem 4 in Section 7 of [Özd22] for
the details.
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4.1.4 Proof of Theorem 1 for In

We first define z2n := Var(Zn) recalling that Zn = n(In − E(In)). We will show that
the Kolmogorov distance between Zn

zn
and the standard normal distribution is smaller

than a constant times n−1/2. In other words, for any x in R, we will prove that the
distance between the probability below and Φ(x) is less than Cn−1/2 for some constant C
independent of x and n. By definition,

P(Zn 6 znx) =
∑

a∈C62(n)

P(Sn,a 6 znx)P(C62(n) = a)

=
∑

a∈C62(n)

P

(
Sn,a
sn,a
6

zn
sn,a

x

)
P(C62(n) = a)

(4.28)

We start with an estimate for sn,a to show that it is close enough to zn. Note that z2n is
the average value of s2n,a, i.e.,

z2n =
∑

a∈C62(n)

s2n,aP(C62(n) = a) (4.29)

by the law of total expectation. Since the summands of Sn,a are uncorrelated, its variance
decomposes as

s2n,a =
∑

σ2
ai

(4.30)

where σ2
ai

= E(X2
ai

). Now, considering the coefficients of i2 in both types of differences in
(4.18) and the bound (4.17), it follows that

bn/2c∑
i=1

(2i)2

2
+O(i) 6 s2n,a 6

n∑
i=1

(i)2

4
+O(i),

which implies

s2n,a =
n3

12
+O(n2).

Thus, |s2n,a − z2n| = O (n2) regardless of the composition of Sn,a. Then since sn,a and zn
are of order n

√
n, we have |sn,a − zn| = O(

√
n), or, in other words,∣∣∣∣ znsn,a

∣∣∣∣ 6 1 +
C ′

n
(4.31)

for some constant C ′.

Remark 5. In fact, Sn,a typically consists of two-jumps. If we define Tn =
∑n

i=1 B
(

1√
i
, 1, 0

)
as in Section 3.3, which gives a binary approximation to the number of one-jumps in
(2.7) and bound it from above by the estimate (2.2), then we can show by Chebyshev’s
inequality that the martingale difference sequence has less than 4

√
n one-jumps with

probability at least 1− n−1/2.
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Now, it follows from (4.28), (4.31) and (4.27) that

P(Zn 6 znx) 6
∑

a∈C62(n)

P

(
Sn,a
sn,a
6

(
1 +

C ′√
n

)
x

)

6

∣∣∣∣Φ(1 +
C ′

n

)
x

∣∣∣∣+ Cn−1/2.

Finally, we use the following estimate,

|Φ ((1 + a)x)− Φ (x)| 6 e−1/2√
2π

a (4.32)

for a ∈ R, to conclude that∣∣∣∣P(Znzn 6 x

)
− Φ(x)

∣∣∣∣ 6 (e−1/2C ′√
2πn

+ C

)
n−1/2.

4.2 The number of descents in random derangements

Let Zn = (n−1)(Rn−µn) where µn := E(Rn). We will show that Zn converges to the nor-
mal distribution as in the previous section. However, we have two major differences here.
We start with noting that neither Zi−Zi−1 nor Zi−Zi−2 render a martingale difference.
Although the conditional expectation for the former is deterministic, the latter cannot
even be corrected by an additive term. Yet, we observe that the conditional expectation
of Zi − i−2

i−3Zi−2 is constant. We thus need an adjustment factor in the decomposition of
Zn into martingale differences, which is the first major difference. For example, if the
composition is of the form (. . . , 2, 1, 1, 1, 2, 2, 1), then the differences are

Zn+2 =(n+ 1)Rn+2 − nRn+1+

nRn+1 − (n− 1)Rn−1+

n− 1

n− 2
[(n− 2)Rn−1 − (n− 3)Rn−3] +(

n− 3

n− 4

)(
n− 1

n− 2

)
[(n− 4)Rn−3 − (n− 5)Rn−4] +(

n− 3

n− 4

)(
n− 1

n− 2

)
[(n− 5)Rn−4 − (n− 6)Rn−5] + · · ·

Let us denote the product of adjustment factors down to the ith term by

Γa(i) =
∏

k>i:ak=2

k

k − 1
.

The following bound will be useful,

Γa(i) 6 Γ(2,...,2)(1) =

bn/2c∏
k=1

2k

2k − 1
6

√
πn

2

(
1 +O(n−1)

)
, (4.33)
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which is a consequence of Wallis’ product formula, see 6.1.49 of [AS64].
The second major difference is the deterministic additive term, denoted by αi,1 for

one-jumps and αi,2 for two-jumps below. From (2.13), we have

Zi − Zi−1 = Xi,1 + αi,1

where

Xi,1 =

Ri−1 − i+ 2, with prob. Ri−1+1
(i−1) ,

Ri−1 + 1, with prob. i−2−Ri−1

(i−1)

(4.34)

and αi,1 := i − 2 − (i − 1)µi + (i − 2)µi−1. We split the difference in this particular way
to guarantee E[Xi,1|Fi−1] = 0. Similarly,

Zi −
i− 2

i− 3
Zi−2 = Xi,2 + αi,2 (4.35)

where

Xi,2 =

Ri−2 − i+ 2, with prob. Ri−2+1
(i−1) ,

Ri−2 + 1, with prob. i−2−Ri−2

(i−1)

(4.36)

and αi,2 := 2i− 3− (i− 1)µi + (i− 2)µi−2.
Thus, considering both differences, we have

E[Zn|C62(n) = a] =
∑
i

Γa(i) (Xai
+ αai

) (4.37)

compared to (1.1). Let us use the notation Sn,a and αn,a for
∑

i Γa(i)Xai
and

∑
i Γa(i)αai

respectively.

4.2.1 Moments

We use the factorial moment formula (4.7) to estimate the moments by the generating
function (2.10). The first derivative of Dn(t) is

D′n(t) =(−1)n(n− 1)tn−2 + (n− 1)Dn−1(t) + (1 + (n− 1)t)D′n−1(t) (4.38)

+ (1− 2t)D′n−1(t) + t(1− t)D′′n−1(t).

We denote D′n(1) by d′n for notational ease. We evaluate the above expression at t = 1,

d′n = (−1)n(n− 1) + (n− 1)dn−1 + (n− 1)d′n−1
= (−1)n(n− 1) + (n− 1)((n− 1)dn−2 + (−1)n−1) + (n− 1)d′n−1
= (n− 1)2dn−2 + (n− 1)d′n−1.

The following recurrence relation for the expected value follows from (4.7).

µn =
(n− 1)dn−1

dn
µn−1 +

(n− 1)2dn−2
dn

.
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By the recusive sum formula (4.16),

µn =

(
n−1∏
k=1

kdk
dk+1

)(
n−1∑
m=1

m2dm−1
dm+1

/
m∏
k=1

kdk
dk+1

)
=

(n− 1)!

dn

n−1∑
m=1

m2

m!
dm−1.

Then using the closed-form expression for the number of derangements (2.9), we have

n−1∑
m=1

m2

m!
dm−1 =

n−1∑
j=0

(
n−1∑
k=j+1

k

)
(−1)j

j!
=

n−1∑
j=0

(
n(n− 1)

2
− j(j + 1)

2

)
(−1)j

j!
.

The contribution of the first term in the paranthesis on the right-hand side is

n(n− 1)

2

n−1∑
j=0

(−1)j

j!
=
n(n− 1)

2

(
n∑
j=0

(−1)j

j!
+

(−1)n+1

n!

)

=
n(n− 1)

2

dn
n!

+O
(

1

(n− 2)!

)
.

considering the error term in the Taylor expansion of e−x. We then evaluate the second
term as follows.

−1

2

n−1∑
j=0

j(j + 1)
(−1)j

j!
=

1

2

d

dx

∣∣∣∣
x=1

n−2∑
j=0

(−1)j

j!
xj+2

=
d

dx

∣∣∣∣
x=1

x2e−x

2
− 1

2

∞∑
j=n

(j + 1)
(−1)j−1

(j − 1)!

=
e−1

2
+O

(
1

(n− 2)!

)
.

The error term estimate also implies e−1/
∑n

j=0
(−1)j
j!

= O
(

1
(n−2)!

)
. Therefore, we have

ERn =
n− 1

2
+

1

2n
+ o

(
e−n
)
. (4.39)

Regarding the second moment, we differentiate (4.38) to obtain

d′′n =(−1)n(n− 1)(n− 2) + (2n− 4)d′n−1 + (n− 2)d′′n−1,

where d′′n := Dn(1)′′. Then the recurrence relation

λn =
(n− 2)dn−1

dn
λn−1 +

(2n− 4)dn−1µn−1
dn

+
(−1)n(n− 1)(n− 2)

dn
(4.40)
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for λn = E(Rn(Rn − 1)) follows from (4.7). We apply the same formulas (4.16) and (2.9)
to (4.40) in this case.

λn =

(
n−1∏
k=2

(k − 1)dk
dk+1

)(
n−1∑
m=2

(2m− 2)dmµm + (−1)m+1m(m− 1)

dm+1

/
m∏
k=2

(k − 1)dk
dk+1

)

=
(n− 2)!

dn

(
n−1∑
m=2

(2m− 2)dmµm
(m− 1)!

+
(n− 2)!

dn

n−1∑
m=2

(−1)m+1m(m− 1)

(m− 1)!

)

=
(n− 2)!

dn

(
n−1∑
m=2

(2m− 2)m!

(m− 1)!

(
m− 1

2
+

1

2m
+ o

(
e−m

)) m∑
i=0

(−1)i

i!
− e−1 + o(e−n)

)

=
1

n(n− 1)

n−1∑
m=2

m(m− 1)2

(
m∑
i=0

(−1)i

i!

/
n∑
i=0

(−1)i

i!

)
+ o(n)

=
1

n(n− 1)

n−1∑
m=2

(m3 − 2m2 +m)

(
1 +O

(
1

(m− 2)!

))
+ o(n)

=
3n2 − 11n

12
+ o(n).

Finally, we obtain the order of the variance from the second factorial moment.

Var(Rn) =
3n2 − 11n

12
+
n− 1

2
− (n− 1)2

4
+ o(n) =

n

12
+ o(n). (4.41)

4.2.2 The deterministic term

We consider the sum of the deterministic terms in (4.37), αn,a, as a random variable over
the compositions in C62(n) and bound its moments. We will eventually show that it does
not change the asymptotic distribution but possibly affects the rate of convergence in the
limit. Define

αi =

{
αi,2 with prob. (i−1)di−2

di

αi,1 with prob. (i−1)di−1

di
.

From the formula (4.39) for µn,

αi =

{
i−1
2

+O(i−1) with prob. (i−1)di−2

di

−1
2

+O(i−1) with prob. (i−1)di−1

di
.

Since di−2

di−1
= 1

i−1 + o(e−i) by (2.9), αi is bounded above by B
(
1
i
, i
2
,−1

2

)
up to an exponen-

tially small error term. We then bound the adjustment factor for the ith term in the sum
(4.37),

Γa(i) 6

bn−k
2
c∏

i=1

n− 2i+ 1

n− 2i
6

√
n

i
(4.42)
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by (4.33). Let Bi =
∣∣B (1

i
, i
2
,−1

2

)∣∣ and define

Un =
n∑
i=1

√
n

i
Bi. (4.43)

Observe that

EBi = 1− 1

2i
and EBk

i =
ik−1 + 1

2k
+O(i−1) for all integer k > 2, (4.44)

which give

EUn 6
√
n

n∑
i=1

1√
i
6 2n+O(

√
n), (4.45)

EU2
n 6 n

 n∑
i=1

i+ 1

4i
+

∑
16i,j6n

1√
ij

 6 5n2, (4.46)

EU3
n 6 n

√
n

 n∑
i=1

i2 + 1

8i
√
i

+ 3
∑

16i,j6n

i+ 1

4i
√
j

+
∑

16i,j,k6n

1√
ijk

 6 10n3,

EU4
n 6 n

2

 n∑
i=1

i3 + 1

16i2
+ 4

∑
16i,j6n

i2 + 1

8i
√
ij

+ 6
∑

16i,j6n

(i+ 1)(j + 1)

16ij
+

∑
16i,j,k,l6n

1√
ijkl

 6 20n4

by expanding the powers of Un and using the independence of its summands. Since
|αn,a| 6 ψ(Un) 6 Un, we have

Eαkn,a = O(nk) (4.47)

for k = 1, 2, 3 or 4.

4.2.3 A bound for the fourth moment

Let us define Wi,1 = Ri−1− i−3
2

and Wi,2 = Ri−2− i−3
2

and also the central random variable

W i = Ri − E(Ri). It follows from (4.39) that

Wi,1 = W i −
1

2
+

1

2(i− 1)
+O(e−i),

Wi,2 = W i +
1

2(i− 2)
+O(e−i).

(4.48)

By (4.34) and (4.36), the second moments of the martingale differences are

E[X2
i,∗|Fi−1] =

(i− 1)2

4
−W 2

i,∗, (4.49)

for Wi,∗ = Wi,1 or Wi,2. Similarly, the third moments of the martingale differences are

E[X3
i,∗|Fi−1] =

(i− 1)2

2
Wi,∗ − 2W 3

i,∗ (4.50)
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and the fourth moments are

E[X4
i,∗|Fi−1] =

(i− 1)4

16
+

(i− 1)2

2
W 2
i,∗ − 3W 4

i,∗. (4.51)

The sum of martingale differences takes the form

Sn,a =
∑
i

Γa(i)Xai
= (n− 1)W n − αn,a, (4.52)

which is obtained from (4.37). Let us first show that αn,a is insignificant regarding the
order of the bound on the fourth moment. Denote the expectation with respect to com-
positions in C62(n) by Ea. Then

(n− 1)4EW
4

n =
∑

a∈C62(n)

E (Sn,a + αn,a)4P(C62(n) = a)

= Ea E (Sn,a + αn,a)4

= EEa (Sn,a + αn,a)4

6 E

(
4

√
Ea(S4

n,a) + 4

√
Ea

(
α4
n,a

))4

= E
(

4

√
Ea(S4

n,a) +O(n)
)4

(4.53)

where we used Minkowski’s inequality in the fourth line and (4.47) at the bottom.
Next, we bound the fourth moment of the sum of martingale differences. Taking p = 4

in (4.21), we have

ES4
n,a 6C4

E

(∑
i

Γa(i)2E[X2
ai
|Fi−1]

)2

+
n∑
i=1

Γa(i)4EX4
ai


for any composition a ∈ C62(n). By the upper bound on the adjustment factor (4.42),

ES4
n,a 6 max

a∈C62(n)
C4

E

(∑
i

n

i
X2

ai

)2

+
n∑
i=1

n2

i2
EX4

ai

 .

Then the conditional moments in (4.49) and (4.51) give

ES4
n,a 6C4n

2

E

(
n∑
i=1

(i− 1)2

4i
+
W 2
i,∗

i

)2

+
n∑
i=1

(i− 1)4

16i2
+

(i− 1)2EW 2
i,∗

2i2


62C4n

2

(
n4

64
+
n2

8
E

n∑
i=1

W 2
i,∗

i
+ E

n∑
i=1

W 4
i,∗

i2
+ 2E

∑
i<j

W 2
i,∗W

2
j,∗

ij

)

62C4n
2

n4

64
+
n2

8

n∑
i=1

EW 2
i,∗

i
+

n∑
i=1

EW 4
i,∗

i2
+ 2

∑
i<j

√
EW 4

i,∗EW
4
j,∗

ij

 .
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We observe that E(W 2
i,∗) is less than 2i from the definition of Wi,∗ and (4.41). We then

make the assumption that E(W 4
i,∗) is an increasing function of i; otherwise, the argument

in the end of Section 4.1.2 applies in the same manner. Therefore,

ES4
n,a 62C4n

2

(
n4

242
+ 2n3 + EW 4

n,∗

n∑
i=1

1

i2
+ 2EW 4

n,∗

∑
i<j

1

ij

)

62C4n
2

(
n4

24
+ EW 4

n,∗

(
log2 n+

1

n

)) (4.54)

Since
∣∣Wn,∗ −W n

∣∣ 6 1
2

by (4.48) and the second moments of both Wi,∗ and W i are larger
than of order of n, we have

EW 4
n,∗

EW
4

n

= O(1).

We can thus combine (4.53) and (4.54) by interchanging Wi,∗ and W i to arrive at

EW 4
n,∗ = O(n2). (4.55)

4.2.4 The asymptotic normality of the conditional distribution of Rn

We verify the conditions of Theorem 4 for Rn conditioned on a for all a in C62(n). We
use the single subscript notation in the same way as in (4.24), so that we will write Xi

instead of Xi,∗, and Wi instead of Wi,∗.
We first verify (4.1). Since Γa(i) is deterministic given a in C62(n), σ2

i = Γa(i)2E[X2
i ].

Therefore, σ2
i is of order at most ni by (4.42). Then s2n,a =

∑
i σ

2
i is of order n3 at

most, which verifies the condition. We also observe that Γa(i) being deterministic, its
contribution is cancelled when Xi is divided by σi to obtain Yi in the statement of Theorem
4. Thus, we omit Γa(i) in the rest of the proof.

For the second moment condition in the theorem, we consider (4.49) to have

‖E[X2
i |Fi−1]− σ2

i ‖22 = E
[∣∣E(W 2

i−1)−W 2
i−1
∣∣2] = O(i2),

which follows from (4.41) and (4.55). Taking the square root of the above expression and
then dividing it by σ2

i , we see that it is of order less than
√
i. Therefore, (4.2) is satisfied

for p = 2.
For the third moment condition, we bound

‖E[X3
i |Fi−1]‖pp 6 E

[∣∣∣∣i24Wi−1 + 2W 3
i−1

∣∣∣∣p] (4.56)

from (4.50). Take p = 4/3, then the expression is bounded by

E

( 3

√
1

4
|Wi−1|+ 3

√
2 |Wi−1|

)4


6C E(i8/3|Wi−1|4/3 + i2|Wi−1|2 + i4/3|Wi−1|8/3 + i2/3|Wi−1|10/3 + |Wi−1|4)
=O(i10/3),
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where the last line follows from Lyapunov’s inequality (4.26), (4.41) and (4.55). Therefore,
8/3
√
i‖E[Y 3

i |Fi−1]‖4/3 is also uniformly bounded.
The last condition involves (4.51), for which we have

‖E[X4
i |Fi−1]‖∞ 6

∥∥∥∥ i416
+
i2

2
W 2
i−1 + 3W 4

i−1

∥∥∥∥
∞

= O(i4)

as |Wi−1| 6 i−2
2
. Then since σi is of order i, ‖E[Y 4

i |Fi−1]‖∞ is uniformly bounded, (4.4) is
also satisfied.

Therefore, by Theorem 4, we have for all a ∈ C62(n),∣∣∣∣P(Sn,asn,a
6 x

)
− Φ(x)

∣∣∣∣ 6 C√
n

(4.57)

where sn,a is the standard deviation of Sn,a and C is a constant independent of n.

4.2.5 Proof of Theorem 1 for Rn

Recall that Zn = (n− 1)(Rn − E(In)) and let zn := Var(Zn). For any x in R,

P(Zn 6 znx) =
∑

a∈C62(n)

P(Sn,a + αn,a 6 znx)P(C62(n) = a)

=
∑

a∈C62(n)

P

(
Sn,a + αn,a

sn,a
6

zn
sn,a

x

)
P(C62(n) = a)

=
∑

a∈C62(n)

Φ

(
zn
sn,a

x− αn,a
sn,a

)
P(C62(n) = a) +O(n−1/2)

(4.58)

by (4.57).
Define Tn =

∑n
i=1 B

(
i−1
i
, 0, 1

)
, which gives an upper bound on the number of two-

jumps in (2.13). We have

ETn =
n∑
i=1

1

i
= log n+O(1) and Var(Tn) =

n∑
i=1

i− 1

i2
= log n+O(1).

By Chebyshev’s inequality,

P

(
|Tn − log n| > 4

√
n log2 n

)
6

1√
n
.

Since ψ(Tn) 6 Tn by definition, ψ(Tn) is less than 4
√
n log n with probability at least

1− n−1/2. Using the variance decomposition (4.30), we have

bn− 4√n lognc∑
i=1

i2

4
+O(i) 6 s2n,a 6

n∑
i=1

i2

4
+O(i) with prob. at least 1− n−1/2
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by (4.49) and (4.41).
Therefore,

s2n,a =
n3

12
+O(n2) with prob. at least 1− n−1/2, (4.59)

otherwise it is bounded above by n3

8
in the case a = (2, 2, . . . , 2). Thus,

n3

12
+O(n2) 6 z2n 6 (1− n−1/2)n

3

12
+ n−1/2

n3

8
=
n3

12
+O(n2

√
n)

by (4.29). This eventually shows that
∣∣∣ znsn,a

∣∣∣ 6 1 + C′√
n

for some constant C ′. Then the

bound in (4.58) becomes

P(Zn 6 znx) 6
∑

a∈C62(n)

Φ

((
1 +

C ′√
n

)
x− αn,a

sn,a

)
P(C62(n) = a) +O(n−1/2) (4.60)

We then turn to the deterministic term. Another application of Chebyshev’s inequality
gives

P
(
|Un − 2n| >

√
5n1+k

)
6 n−2k (4.61)

by (4.45) and (4.46). As noted in Section 4.2.2, |αn,a| 6 Un, therefore |αn,a| 6
√

5n1+k +
O(n). So, ∣∣∣∣αn,asn,a

∣∣∣∣ = 2
√

15nk−1/2 +O
(
nk−3/4

)
(4.62)

by (4.59). Considering the estimate

|Φ (x+ a)− Φ (x)| 6 a√
2π

for all x ∈ R in (4.60), (4.62) becomes a part of the error term. We then optimize the
exponent that appears in both (4.61) and (4.62). We have mink

(
max

{
k − 1

2
,−2k

})
=

−1
3
. Therefore, we can further improve (4.60) to have∣∣∣∣P(Zn 6 znx)− Φ

((
1 +

C ′√
n

)
x

)∣∣∣∣ 6 2
√

15n−1/3.

Finally, ∣∣∣∣P(Znzn 6 x

)
− Φ(x)

∣∣∣∣ 6 Cn−1/3

by (4.32) for some constant C. �
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4.3 The number of excedances in random derangements.

The last example resembles the first two in many aspects, so we will derive the martin-
gale differences and leave it there. The number of excedances in derangements, see the
definition in the beginning of Section 2, satisfies the following recursive relation [Zha96].

Dexc
n,k = kDexc

n−1,k + (n− k)Dexc
n−1,k−1 + (n− 1)Dexc

n−2,k−1, (4.63)

which gives the random process

Dexc
n+2 =


Dexc
n + 1, with prob. (n+1)dn

dn+2
,

Dexc
n+1, with prob. (n+1)dn+1

dn+2

Dexc
n+1

(n+1)
,

Dexc
n+1 + 1, with prob. (n+1)dn+1

dn+2

n+1−Dexc
n+1

(n+1)
.

Let Zn := (n− 1)(Dexc
n − µn). The differences for one-jumps are

Zi − Zi−1 = Xi,1 + αi,1

where

Xi,1 =

D
exc
i−1 − (i− 1), with prob.

Dexc
i−1

(i−1) ,

Dexc
i−1, with prob.

i−1−Dexc
i−1

(i−1) .

and αi,1 = i− 1− (i− 1)µi + (i− 2)µi−1. For two-jumps, we have

Zi − Zi−2 = Xi,2 + αi,2

where Xi,2 = 2(Dexc
i−2 − µi−2) and αi,2 = 2i− 2− (i− 1)µi + (i− 1)µi−2. So we can write

Zn conditioned on some a ∈ C62(n) as the sum of a deterministic term in addition to a
sum of martingale differences,

E[Zn|C62(n) = a] =
∑
i

(Xai
+ αai

) .

A proof of the asymptotic normality of Dexc
n is given in [Cla02] along with its first two

moments. The rate of convergence in the limit can be studied by Theorem 4 combined
with Rosenthal’s inequality and the bounds derived for the random variables defined in
Section 3.3.

5 Higher order recurrences and other statistics

Although all the examples that have been covered are derived from triangular arrays
obeying a second-order recurrence relation, the same methods can be applied to statistics
of higher order recurrence relations. For a recurrence relation of order s, we can extend
the update rule (3.3) as follows. Given that ζ(i) is the ith coordinate of ζ,

ζ
(i)
n+1 = ζ(i+1)

n for all 2 6 i 6 s, and
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ζ
(1)
n+1 =

{
ζ(j)n +Xn,s+1−j with probability qj, 1 6 j 6 s

}
where

s∑
j=1

qs = 1.

So the decomposition can be achieved over compositions of summands of size at most
the order of the recurrence. The generating functions for Eulerian statistics that would
satisfy higher order recurrence relations, which counts the descents in a given conjugacy
class, are obtained in [Ful98]. The application of Zeilberger’s algorithm (see Section 4.3 of
[Aig07] for a comparative account of it) in [GZ06] suggests that the order of the recurrence
is related to the length of the maximum cycle in the conjugacy class or in the union of
the conjugacy classes.

Another type of Eulerian statistic that can possibly be studied by the methods in this
paper, is Eulerian-Fibonacci numbers, defined by Carlitz in [Car78]. They satisfy the
recurrence relation

Fn,k = kFn−1,k + (n− k + 1)Fn−1,k−1 + Fn−2,k − 2Fn−2,k−1 + Fn−2,k−2.

The contribution of the second term is independent of k, but the difficulty is due to the
middle term of the second-degree update, which is negative. The asymptotic normality of
these numbers is argued to follow from the method of moments in [HCD20], along with
the study of many other examples of Eulerian statistics described in various recursive
forms.

Another direction to follow is the study of Eulerian statistics in different Coxeter
groups. As observed in [Özd22], the martingale methods can be extended to Coxeter
groups of type B thanks to the equivalent recurrence relations of the symmetric group
up to a constant factor. However, the Coxeter group of type D does not allow a similar
extension of the methods. Even the descents in random elements of the group with no
restriction have complicated recurrence relations, which can be found in [Cho08], that
do not immediately yield jump probabilities. Yet, the asymptotic normality is already
known as their generating function is real-rooted [SV15].

Some other examples that are not Eulerian but still satisfy a simple recursive relation
include variations of Fibonacci permutations. See [Kos19] for numerous examples of those
numbers. The techniques employed in Section 4 do not seem to apply to most of them, but
the rudimentary methods in Section 3 can be improved to approximate their moments
at least. Another reason to study them is their potential to reveal useful identities.
An illustrative example of a Fibonacci-variant statistic is introduced in [Hos76] by the
following recurrence relation

Hn,k = Hn−1,k +Hn−2,k = Hn−1,k−1 +Hn−2,k−2

and the initial condition H1,0 = 1. It defines a triangular array, which in fact has con-
volutions of Fibonacci numbers as its rows, i.e., Hn,k = fk+1fn−k+1. Diaconis in [Dia18]
defined a Markov chain to study the distribution of bits of binary strings with no two
consecutive ones, and the probability of the kth bit to be zero is indeed proportional to
Hn,k. The result in the paper implies

P(Hn = k) = C
(
1 +O

(
ϕ−2k

)
+O

(
ϕ−2(n−k)

))
.
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This suggests that it converges to the uniform distribution, which is not decomposable,
other than the spikes on both its ends.

The final remark is about the technical aspects of the random process defined in
Section 3, which can be viewed as an autoregressive model in the form

Yn = AnYn−1 +Bn

where Yi and Bi are d-dimensional vectors and Ai is a d× d matrix. In particular, (3.3)
can be written as

ζTn =

[
1− qn qn

1 0

]
ζTn−1 +

[
Xn,2

Xn,1

]
.

The conditions for the existence of a stationary solution analogous to the formula (4.16)
are given in [BP92]. In [Kes73], a central limit theorem is shown provided that An and
Bn are independent and identically distributed. The case with martingale differences is
addressed in [AK92] with a multivariate limit theorem, whose assumptions include that
An is constant and the covariance matrix for Bn converges in probability. Although none
of the two holds in our case, it could be possible to weaken them and make inferences
about the limiting behavior of processes derived from Eulerian statistics without recourse
to decompositions.
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[Hos76] H. Hosoya. Fibonacci triangle. Fibonacci Quart., 14:173–178, 1976.

the electronic journal of combinatorics 29(4) (2022), #P4.24 33



[Kes73] H. Kesten. Random difference equations and renewal theory for products of
random matrices. Acta Mathematica, 131(1):207–248, 1973.

[Knu73] D.E. Knuth. The art of programming, Vol. 3 (Sorting and Searching). Addison-
Wesley Publishing Company, 3:481–489, 1973.

[Kos19] T. Koshy. Fibonacci and Lucas numbers with applications. John Wiley & Sons,
2019.
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