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Université de Tours, France

andrew.elvey@univ-tours.fr

Anthony J. Guttmann
School of Mathematics and Statistics

The University of Melbourne
Vic. 3010, Australia

guttmann@unimelb.edu.au

Submitted: May 20, 2022; Accepted: Oct 18, 2022; Published: Nov 4, 2022

© The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Pattern-avoiding ascent sequences have recently been related to set-partition
problems and stack-sorting problems. While the generating functions for several
length-3 pattern-avoiding ascent sequences are known, those avoiding 000, 100, 110,
120 are not known. We have generated extensive series expansions for these four
cases, and analysed them in order to conjecture the asymptotic behaviour.

We provide polynomial time algorithms for the 000 and 110 cases, and exponential
time algorithms for the 100 and 120 cases. We also describe how the 000 polynomial
time algorithm was detected somewhat mechanically given an exponential time
algorithm.

For 120-avoiding ascent sequences we find that the generating function has
stretched-exponential behaviour and prove that the growth constant is the same as
that for 201-avoiding ascent sequences, which is known.

The other three generating functions have zero radius of convergence, which we
also prove. For 000-avoiding ascent sequences we give what we believe to be the
exact growth constant. We give the conjectured asymptotic behaviour for all four
cases.

Mathematics Subject Classifications: 05C88, 05C89
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1 Introduction

Given a sequence of non-negative integers, n1n2n3 · · ·nk the number of ascents in this
sequence is

asc(n1n2n3 · · ·nk) = |{1 6 j < k : nj < nj+1}|.
The given sequence is an ascent sequence of length k if it satisfies n1 = 0 and ni ∈

[0, 1 + asc(n1n2n3 · · ·ni−1)] for all 2 6 i 6 k. For example, 01023102 is an ascent sequence,
but 012243 is not, as 4 > asc(0122) + 1 = 3.

Ascent sequences came to prominence when Bousquet-Mélou et al. [3] related them to
(2 + 2)-free posets, and certain involutions, whose generating function was first given by
Zagier [17]. They have subsequently been linked to other combinatorial structures. See
[15] for a number of examples. The generating function for the number of ascent sequences
of length n is

A(t) =
∑
n>0

ant
n =

∑
n>0

n∏
i=1

(1− (1− t)i) = 1 + t+ 2t2 + 5t3 + 15t4 + 53t5 + 217t6 + · · · ,

and

an ∼
12
√

3 exp(π2/12)

π5/2
n!

(
6

π2

)n√
n.

Later, Duncan and Steingrimsson [7] studied pattern-avoiding ascent sequences.
A pattern is simply a word on nonnegative integers (repetitions allowed). Given an

ascent sequence n1n2n3 · · ·nk and a pattern p, the subsequence ni1ni2 · · ·nij is an occurrence
of p if ni1ni2 · · ·nij is order isomorphic to p; that is to say, integers in ni1ni2 · · ·nij and p
appear in the same relative order. For example, the ascent sequence 010231 contains three
occurrences of the sequence 001, namely 002, 003 and 001. If there is an occurrence of p
in n1n2n3 · · ·nk, then n1n2n3 · · ·nk contains p. If an ascent sequence does not contain p,
it is said to be p-avoiding. For example, 010231 is 000-avoiding.

The connection between pattern-avoiding ascent sequences and other combinatorial
objects, such as set partitions, is the subject of [7], while the connection between pattern-
avoiding ascent sequences and a number of stack sorting problems is explored in [6]. Other
combinatorial connections are given in [5] and [8]

Considering patterns of length three, the number of ascent sequences of length n
avoiding the patterns 001, 010, 011, and 012 is given in the OEIS [16] (sequence A000079)
as 2n−1. For the pattern 102 the number is (3n + 1)/2 (OEIS A007051), while for 101
and 021 the number is just given by the nth Catalan number, Cn, given in the OEIS as
sequence A000108.

More recently, the case of 210-avoiding ascent sequences, given in the OEIS as sequence
A108304, was shown to be equivalent to the number of set partitions of {1, 2, . . . , n} that
avoid 3-crossings, the generating function for which was found by Bousquet-Mélou and
Xin [4]. It is D-finite, and the coefficients behave asymptotically as

c210n ∼
39 · 5

25

√
3

π

9n

n7
.
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More recently still, for the pattern 201 given in the OEIS as sequence A202062,
Guttmann and Kotesovec [13] found the generating function, which is not only D-finite
but algebraic. The coefficients behave as

c201n ∼ C
µn

n9/2
,

where µ = 7.2958969432397 . . . is the largest root of the polynomial x3 − 8x2 + 5x + 1,
and the amplitude C is

C =
35

16

(
4107

π
− 84

π

√
9289 cos

(
π

3
+

1

3
arccos

[
255709

√
9289

24653006

]))1/2

.

While this result has not been proved, it is undoubtedly correct.
As there are 13 patterns of length three up to order isomorphism, this leaves the

behaviour of just four length-3 pattern-avoiding ascent sequences to be determined. They
are 000, 100, 110 and 120. Quite short series for all four cases are given in the OEIS, but
these are insufficient to conjecture the asymptotics.

We first developed an efficient dynamic programming algorithm to generate further
terms, The efficiency of the algorithm is heavily pattern-dependent. For 110-avoiding
ascent sequences we generated only 42 terms, but for 100-avoiding ascent sequences we
generated 712 terms.

For 120-avoiding ascent sequences, we proved that the growth constant is the same
as that for 201-avoiding ascent sequences, as given above. More generally, we found
stretched-exponential behaviour, so that

c120n ∼ C · µn · µnσ1 · ng,

where µ = 7.2958969432397 . . . , g = 2, log µ1 = −9.675 ± 0.01 and C ≈ 3700. The
estimates of C and µ1 depend sensitively on the validity of our estimate that σ = 3/8
exactly.

For 000-avoiding ascent sequences we found factorial behaviour, so that

c000n ∼ C · n! · µn,

where µ ≈ 0.27019 and is conjectured to be 8/(3π2) exactly.
For both 100-avoiding and 110-avoiding ascent sequences we found

cn ∼ C ·
(

3n

4

)
!µn,

where both C and µ are pattern dependent. We found that µ110 = 0.44 ± 0.02, µ100 =
0.68± 0.04, and more precisely that µ110/µ100 ≈ 5/8.

For these last three cases we give weak lower bounds that prove that factorial growth
is to be expected in these cases. There are also presumably some sub-dominant terms,
such as ng, but we were unable to estimate these.

In the next section we give details of our algorithm, and in the next four sections we
study these four pattern-avoiding ascent sequences.

In the Appendix we describe the methods of series analysis used in this study.
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2 Sequence generation algorithm

The sequences were generated by a set of slightly different dynamic programming algorithms.
All of these are restrictions added to a basic dynamic programming algorithm to enumerate
the ascent sequences. The base algorithm will be explained next, not because it is
intrinsically useful but rather as the other algorithms are derived from it.

2.1 Enumerating Ascent sequences

Consider a function f(n, a, l) which gives the number of length n suffixes of an ascent
sequence where the prior portion of the sequence contains a ascents and the last number
was l. This is useful as the number of ascent sequences of length n, an = f(n− 1, 0, 0),
with a0 = 1.

Consider all possibilities i for the next number (the first number in the suffix), which
must be between 0 and a+ 1 inclusive. For each i, the rest of the suffix is of length n− 1,
and has a prior number i and a prior number of ascents of a if l > i and a + 1 if l < i.
This leads to a simple recursive definition:

f(n, a, l) =

{
1 if n = 0∑a+1

i=0 f(n− 1, a+ χ(l, i), i) otherwise

where

χ(l, i) =

{
1 if l < i
0 otherwise.

This is trivial to implement in a recursive computer algorithm, and is very efficient
using dynamic programming (storing each value, and not recomputing any value already
calculated). In particular, to enumerate n terms, values of each of the three arguments
to f never get above n, so the maximum number of terms visited is O(n3) and so the
algorithm uses time and space proportional to O(n3). This allows thousands of terms to
be readily computed.

A diagram of the values actually computed to compute a5 = 53 is given in figure 1, and
more compactly in figure 2 which uses the property of f where the referenced elements are
unchanged (other than n increasing) if n is increased, except for the trivial case of n = 0.

In future sections, to concentrate on the important part of the algorithm, the case
n = 0 will be omitted, and it should always be assumed that the function will be 1 in that
case.

2.2 Enumerating 000 avoiding ascent sequences

A similar approach works for enumerating sequences avoiding the pattern 000. Now when
one considers adding a number i after some history, i can be any value from 0 to a + 1
other than a value that has been seen twice before. One could write a function that takes
the same arguments as in section 2.1, plus a set S of the numbers seen exactly once before,
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4,0,0
53

3,0,0
15

3,1,1
38

2,0,0
5

2,1,1
10

2,1,0
11

2,2,2
17

1,0,0
2

1,1,1
3

1,1,0
3

1,2,2
4

1,2,1
4

1,2,0
4

1,3,3
5

Figure 1: Diagram of computation of a5 = f(4, 0, 0) = 53 using the algorithm in Section 2.1.
Each box represents a value of f whose arguments are given in the top of the box. The
value is in the lower left of the box. Lines coming out of the right of a box go to the left
of boxes corresponding to the instances of f that are summed to produce the value in the
box. Boxes and lines going to n = 0 are omitted.

and a set P of proscribed numbers present twice before. Then one could define a recursive
function g

g(n, a, l, S, P ) =
a+1∑
i=0


0 if i ∈ P

g(n− 1, a+ χ(l, i), i, S \ {i}, P ∪ {i}) if i ∈ S
g(n− 1, a+ χ(l, i), i, S ∪ {i}, P ) otherwise.

This again could be computed in a straightforward manner. Both sets S and P can have
O(2n) values, and so this is a much more computationally expensive algorithm. Fortunately
there is a very straightforward simplification. Any number in P effectively does not exist,
as far as the algorithm is concerned. However, the arguments are only used as numbers for
their relative order and 0 element, not any other intrinsic numerical properties. It would
be equally valid to rename the numbers such that the proscribed numbers P cease to exist
and all other numbers are mapped to the integers starting from 0. That is,

g(n, a, l, S, P ) = g(n, a− |P |, l −
l∑

i=0

χP (i), S, ∅)

where χP (i) is 1 if i ∈ P and 0 otherwise.
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0,0
1,2,5,15,53

1,1
1,3,10,38

1,0
1,3,11

2,2
1,4,17

2,1
1,4

2,0
1,4

3,3
1,5

Figure 2: Alternate diagram of computation of a5 = f(4, 0, 0) = 53 using the algorithm
in section 2.1. Each box represents a value of f whose arguments other than n are given
in the top of the box. The values for n = 0, 1, . . . is in the lower left of the box. Lines
coming out of the right of a box go to the left of boxes corresponding to the instances of f
that are summed to produce the value in the box. Each such line implicitly refers to one
lower value of n.

This means there is no reason to remember the set P , allowing one to rewrite the
recursive equation in terms of a function f 000(n, a, l, S) = g(n, a, l, S, ∅):

f 000(n, a, l, S) =
a+1∑
i=0

{
f 000 (n− 1, a+ χ(l, i)− 1, i− 1, r(S \ {i}, i)) if i ∈ S

f 000(n− 1, a+ χ(l, i), i, S ∪ {i}) otherwise

where r(S, i) is the renumbering function that takes a set S, and reduces the value of each
element greater than i by 1, as the old number i is edited out of existence.

Note that this erasure of numbers out of existence may mean that a or l ends up being
−1, which doesn’t need any special handling; a = −1 means the next value must be a 0,
and l = −1 means that the next value will be larger than l.

Logistically, the set S is represented on a computer as a long integer, where the ith bit
is 1 iff i ∈ S. Then r(S, i) can be easily done via bit masking and shifting.

The desired sequence {c000n} = {1, 2, 4, 10, 27, 83, 277, . . .} is then given by c000n =
f 000(n− 1, 0, 0, {0}).

The number of possible values of S is no more than 2n, so the algorithm is no worse than
O(n32n) and in practice is slightly better. It can be readily calculated by this algorithm
to about 30 terms.

A graph of the structure of this computation is given in figure 3. Note that the values
corresponding to a = 2, l = 2, S = 0, 2 are the same as a = 2, l = 2, S = 1, 2 for all n.
Similar behaviour happens more frequently as more levels are shown; indeed it turns
out empirically that f 000(n, a, l, S) for given values of n, a, and l only depends upon the
cardinality of S. This implies a much more efficient algorithm yet - see section 2.6.

2.3 Enumerating 100 avoiding ascent sequences

A somewhat similar approach works for avoiding 100. In this case we want to rewrite a
number out of existence if a number is ever encountered that is lower than any previously
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0,0,1
1,2,4,10,27,83,277,…

-1,-1,0
1,1,2,4,10,27,83,27…

1,1,11
1,3,8,23,73,250,932…

0,-1,1
1,2,5,14,42,139,495…

2,2,111
1,4,14,49,181,710,2…

0,-1,0
1,2,6,19,66,245,979…

1,0,11
1,3,9,29,100,368,14…

1,-1,11
1,3,10,35,129,503,2…

3,3,1111
1,5,22,94,408,1837,…

1,1,10
1,3,9,29,100,374,14…

1,0,1
1,3,10,37,145,605,2…

1,-1,1
1,3,11,43,177,770,3…

2,1,111
1,4,15,57,226,941,4…

2,0,111
1,4,16,65,273,1195,…

2,-1,111
1,4,17,73,322,1472,…

4,4,11111
1,6,32,164,835,4317…

0,0,0
1,2,5,13,39,127,457…

1,-1,0
1,3,12,51,231,1103,…

2,2,101
1,4,15,58,235,1004,…

2,2,110
1,4,15,58,235,1004,…

2,1,11
1,4,16,68,304,1423,…

2,0,11
1,4,17,76,354,1719,…

2,-1,11
1,4,18,84,406,2038,…

3,2,1111
1,5,23,104,477,2256…

3,1,1111
1,5,24,114,548,2704…

3,0,1111
1,5,25,124,621,3181…

3,-1,1111
1,5,26,134,696,3687…

5,5,111111
1,7,44,265,1567,926…

Figure 3: Diagram of the first 6 layers (sufficient to compute 6 terms) of the computation of
000 avoiding ascent sequences using the algorithm in section 2.2. The set S is represented
as a binary string in the third argument at the top of each box; i ∈ S iff the ith digit from
the right is a 1. Otherwise the interpretation is the same as figure 2.

seen number. This can be done by keeping track of the largest number so far seen, m.
Then

f 100(n, a, l,m) =
a+1∑
i=0

{
f 100 (n− 1, a+ χ(l, i)− 1, i− 1,m− 1) if i < m

f 100(n− 1, a+ χ(l, i), i, i) otherwise.

The desired sequence is then given by c100n = f 100(n− 1, 0, 0, 0).
This directly provides an efficient algorithm, O(n4), which enables many hundreds of

terms to be readily computed.

2.4 Enumerating 110 avoiding ascent sequences

The 110 avoiding case is very similar to the 000 avoiding case, except this time when we
get a repeated number, we want to write out of existence any number less than it.

f 110(n, a, l, S) =
a+1∑
i=0

{
f 110 (n− 1, a+ χ(l, i)− i, 0, r(S, i)) if i ∈ S
f 110(n− 1, a+ χ(l, i), i, S ∪ {i}) otherwise.

In this case the renumbering function r(S, i) removes any value in S less than i, and
reduces the values of all others by i.
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The desired sequence is then given by c110n = f 110(n− 1, 0, 0, {0}).
Implementing this as a dynamic programming algorithm has the same upper bound as

the 000 avoiding algorithm described in section 2.2, although in practice we write out of
existence more numbers and fewer states occur in practice, allowing 40 or so terms to be
readily computed with current hardware.

2.5 Enumerating 120 avoiding ascent sequences

The 120 avoiding case is very similar to the 110 avoiding case, except when we encounter
a value i larger than some previously seen value, we want to erase out of existence all
numbers smaller than the largest previously seen value less than i.

f 120(n, a, l, S) =
a+1∑
i=0

f 120 (n− 1, a+ χ(l, i)− s(S, i), i− s(S, i), r(S, s(S, i))) .

In this case the renumbering function r(S, i) has the same meaning as in section 2.4 and
the function s(S, i) means the largest element in S smaller than i, or 0 if there is none.
Note that in practice S will always contain the element 0.

The desired sequence is then given by c120n = f 120(n− 1, 0, 0, {0}).
It is more difficult to get large values of a in this case than prior cases, as two consecutive

increases of number in the sequence (increasing a by 2) will cause the first to be rewritten
out of existence, reducing a by 1. This means n must be increased by 2 to increase the
maximum value of a by 1. This is primarily important as the maximum element in S is
determined by the maximum value of a, so the algorithm becomes O(n32n/2). This allows
about twice as many terms as the 000 or 110 algorithms, or in the seventies in practice
with current hardware.

2.6 Better 000 algorithm

This section presents a more efficient algorithm for the 000 case than presented in section 2.2.
Perhaps more interesting than the algorithm itself is the method used to discover it.

For many years, we have suspected that looking for frequently repeated large numbers
in the dynamic programming cache will lead to the observation that a similar, more
efficient version of the same algorithm exists, tracking a subset of the state information
that was thought to be needed. This is the first time we have actually seen strong evidence
of this, with the majority of large numbers repeated.

Extensive numerical evidence demonstrated that, in the 000 algorithm presented above,
the value of f 000(n, a, l, S) for given values of n, a, and l is the same for many different
values of S with the same cardinality.

To see why, consider a set T and non-negative integer i such that i /∈ T and i+ 1 /∈ T .
We will demonstrate that f 000(n, a, l, T ∪ {i}) = f 000(n, a, l, T ∪ {i+ 1}) if i < l.

Consider a specific suffix u counted by f 000(n, a, l, T ∪ {i}). Find each maximal
contiguous subsequence in u containing just i and i+ 1. Reverse each of these sequences,
and replace each i by i+ 1 and vice versa. For instance, if i = 5 then the suffix u of 05663
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would map to a v of 05563. The resulting suffix v is counted by f 000(n, a, l, T ∪ {i+ 1}) as
the number of i and i+ 1 values are swapped, other values are unchanged; the number
of ascents is unchanged (including at the start as neither i or i + 1 can exceed l), and
i+ 1 will be allowed as l was allowed and i+ 1 6 l. Furthermore, this is a bijection, so
f 000(n, a, l, T ∪ {i}) = f 000(n, a, l, T ∪ {i+ 1}).

This can be used to canonicalise the value of S used in the recursive definition of f 000,
decreasing the number of states visited. In particular, for the case of a duplication where
a number is rewritten out of existence, remove that number as usual. When a new value
i is added, then instead of evaluating for S + i, bubble the value i down using multiple
invocations of the prior paragraph until the value below it is already in S. Define S to be
compacted if it is a (possibly empty) set of consecutive integers starting at zero. In both
cases, assuming the S input to f 000 is compacted, then all calls to f 000 it produces will
also be compacted. As the initial call to f is the compacted set {0}, all calls will be of
compacted sets.

A compacted set can be represented by its cardinality, which will not exceed n for
enumerating n terms. This means the enumeration algorithm becomes O(n4) which is much
more efficient, and allows easy enumeration of hundreds of terms on current hardware.

This is useful as it enables us to generate vastly more terms of the series; it is
also interesting as it demonstrates how a mechanical operation (checking the dynamic
programming cache for repeated large values) can lead to a polynomial time algorithm
given an exponential algorithm. A mechanical method of getting good ideas . . . or at least
becoming aware of their existence, is of great value.

The 110 algorithm has very few repeated large numbers. The 120 algorithm has an
intermediate amount of repeated large numbers. For instance,

f 120(−, 4, 0, 0, 1, 2, 4) = f 120(−, 4, 0, 0, 1, 3, 4) = f 120(−, 4, 0, 0, 2, 3, 4)

for all values of n tried (going 1, 6, 32, 160, 778, 3747 · · · with n). However the relationship
is more complex than the 000 case, the efficiency gains are lower, and we can already
enumerate many terms for this sequence anyway, so we did not pursue a new 120 algorithm.

In the next four sections, we analyse the extended sequences produced by these
algorithms, in order to conjecture the asymptotic behavior, in each case.

3 120-avoiding ascent sequence

This sequence is given as A202061 in the OEIS [16] to order O(x14), and we have extended
this to O(x73). We have used these exact coefficients to derive 200 further coefficients by
the method of series extension [11], and briefly described in the Appendix.

We first plot the ratios of the coefficients rn = cn/cn−1 against 1/n. If one has a pure
power-law type singularity, such a plot should be linear, with ordinate interception giving
an estimate of the growth constant.

The ratio plot is shown in Fig. 4, and it displays considerable curvature. By contrast,
if the ratios are plotted against 1/

√
n, as shown in Fig. 5, the plot is virtually linear, and

intercepts the ordinate at around 7.3, which is our initial estimate of the growth constant.
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This behaviour of the ratios implies a singularity of stretched-exponential type, so that
the coefficients behave as

cn ∼ C · µn · µnσ1 · ng, (1)

with µ ≈ 7.3 and σ ≈ 1/2. Given such a singularity, the ratios will behave as

rn = µ

(
1 +

σ log µ1

n1−σ +
g

n
+
σ2 log2 µ1

2n2−2σ +
(σ − σ2) log µ1 + 2gσ log µ1

2n2−σ

+
σ3 log3 µ1

6n3−3σ + O(n2σ−3) + O(n−2)

)
. (2)

One can eliminate the O(1/n) term in the expression for the ratios by studying instead
the linear intercepts,

ln ≡ n · rn − (n− 1) · rn−1 ∼ µ

(
1 +

σ2 log µ1

n1−σ +
σ2(2σ − 1) log2 µ1

2n2−2σ

)
.

When we plot ln against 1/
√
n there is still some curvature in the plot, but this disappears

when we plot ln against 1/n5/8, as shown in Fig. 6. This suggests that σ ≈ 3/8 is closer
than 1/2.

In order to estimate σ without knowing or assuming µ, we can use one (or both) of
the following estimators:

From eqn. (2), it follows that

rσn ≡
rn
rn−1

∼ 1 +
(σ − 1) log µ1

n2−σ + O(1/n2), (3)

so σ can be estimated from a plot of log(rσn − 1) against log n, which should have gradient
σ−2. The local gradients can be calculated and plotted against 1/nσ, using any approximate
value of σ.

Another estimator of σ when µ is not known follows from eqn. (1):

aσn ≡
c
1/n
n

c
1/(n−1)
n−1

∼ 1 +
(σ − 1) log µ1

n2−σ + O(1/n2), (4)

so again σ can be estimated from a plot of log(aσn − 1) against log n. Again, estimates of
σ are found by extrapolating the local gradient against 1/nσ.

While these two estimators are equal to leading order, they differ in their higher-order
terms. We show these two estimators in Fig. 7, and both estimators are consistent with
the estimate 2− σ ≈ −1.625, so that σ ≈ 3/8. We cannot of course exclude nearby values,
such as σ = 0.4.

If σ is known, or assumed, one can estimate at least some of the critical parameters by
direct fitting. In particular, one can fit the ratios to

rn = c1 +
c2
n1−σ +

c3
n

+
c4

n2−2σ , (5)
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Figure 4: Plot of ratios against 1/n for
120-avoiding ascent sequences.

Figure 5: Plot of ratios against 1/
√
n for

120-avoiding ascent sequences.

Figure 6: Plot of linear intercepts ln
against 1/n5/8 for 120-avoiding ascent
sequences.

Figure 7: Plot of estimators of 2 − σ
against 1/n for 120-avoiding ascent se-
quences.

by solving the linear system obtained by taking four successive ratios rk−2, rk−1, rk, rk+1,
from which one can estimate the parameters c1, . . . , c4. One increases k until one runs out
of known (or estimated) coefficients. Then c1 estimates µ, c2 estimates µ · σ log(µ1), c3
estimates µ · g (assuming σ 6= 1/2), and c4 gives estimators of µ · σ2 log2(µ1)/2.

We show the results of doing this, assuming σ = 3/8, in Figs 8, 9, 10, from which we
estimate c1 ≈ 7.295, c2 ≈ −26.5, and c3 ≈ −20.
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From these it follows that µ ≈ 7.295, log µ1 ≈ −9.68, and g ≈ 2.7. If we repeat this
analysis assuming σ = 0.4, the estimate of c1 barely changes, increasing to 7.297, but
c2 ≈ −20.5, and c3 < 0, so log µ1 ≈ −7, and g < 0. So these last two parameters are seen
to be very sensitive to the assumed value of σ.

From eqn. (2), if we know (or conjecture) µ and σ, we can use this to estimate µ1, as(
rn
µ
− 1

)
· n1−σ ∼ σ · log(µ1). (6)

In Fig. 11 we show the relevant plot, where we have used the estimates µ = 7.295 and
σ = 3/8. We estimate the ordinate intercept to be at around -3.6, from which follows
log µ1 ≈ −9.6. This is in agreement with the estimate obtained above by direct fitting
with σ = 3/8 assumed. Similarly, if we assume σ = 0.4, we find log µ1 ≈ −7.2, again in
agreement with the value found above by direct fitting.

Figure 8: Plot of estimates of c1 against
1/n for 120-avoiding ascent sequences.

Figure 9: Plot of estimates of c2 against
1/n for 120-avoiding ascent sequences.

Recall that the growth constant for ascent sequences is 6/π2. It is interesting to note
that 72/π2 = 7.2951 . . . . However the growth constant of 201-avoiding ascent sequences
[13] is 7.2958969 . . . , so either value of the growth constant appears possible. However,
we can prove that 201-ascent sequences have the same growth constant as 120-avoiding
ascent sequences, as shown in Sec. 4.

Using this knowledge, we can repeat the above analysis to establish the value of the
exponent σ, but incorporating the known value of µ. Doing this, we find σ = 0.372± 0.006,
which accords with our conjecture above that σ = 3/8 exactly.

Having established the value of µ and conjectured the value of σ, we are now in a
better position to estimate the other parameters. We define the normalised coefficients
dn ≡ cn/µ

n. Then we have

log dn ∼ logC + nσ · log µ1 + g log n,
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Figure 10: Plot of estimates of c3 against
1/n for 120-avoiding ascent sequences..

Figure 11: Plot of estimators of σ · log µ1

against 1/
√
n for 120-avoiding ascent se-

quences.

en ≡ ((n− 1)σ log dn − nσ log dn−1) · n1−σ ∼ −σ logC + g − σ · g log n.

So a plot of en/σ vs. log n should be linear, with gradient −g. We show this plot in Fig.
12, and plot the local gradients against 1/n in Fig. 13. We conclude from this that g ≈ 2.

Figure 12: Plot of en against log n for
120-avoiding ascent sequences.

Figure 13: Plot of estimators of expo-
nent −g against 1/n for 120-avoiding
ascent sequences.

Using this value of g, we can get a more precise estimate of µ1. Define the newly
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normalised coefficients
fn ≡ cn/(n

gµn).

Then
log fn − log fn−1
nσ − (n− 1)σ

∼ log µ1.

We show in Fig. 14 a plot of these estimates of log µ1 against 1/n, and from this we
estimate log µ1 = −9.675± 0.01.

Figure 14: Plot of log µ1 against 1/n for 120-avoiding ascent sequences.

Finally, we estimate the constant C by dividing the coefficients by µn · µnσ1 · ng with
the assumed values of the parameters µ, σ, and µ1. In this way we estimate C ≈ 3700.

We conclude this section by giving our best estimate for the asymptotic behaviour of
the coefficients of 120-avoiding ascent sequences as

cn ∼ C · µn · µnσ1 · ng,

where µ = 7.2958969 . . . , and is the largest solution of the cubic equation x3−8x2 +5x+1,
σ ≈ 3/8, log µ1 = −9.675± 0.01, g = 2 and C ≈ 3700. Apart from the value of the growth
constant µ, the other parameters, µ1 and C depend sensitively on the precision of our
estimate of σ. If σ 6= 3/8 our estimates of µ1 and C should not be believed.

After this work was completed, we were advised by three high-school students from
Guangzhou No.2 High School in Guangdong, China, Shi Lecun, Liang Chengwei and Cai
Zhongyu that they have developed a superior algorithm for the case 120.

Our algorithm is O(n32n/2), while theirs is polynomial, O(n3 log2 n). With their algo-
rithm they produced 500 exact terms of the sequence. The enumeration was done in about
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1 hour, using a small computing cluster consisting of 16 Intel i5-6600 @ 3.3GHz cores. The
new coefficients can be found on the OEIS [16].

We have repeated our analysis with this longer series, and our conclusions remain
unchanged, except to say that we are more confident that σ = 3/8 exactly than we were
with the shorter series.

4 Proof that 120-avoiding and 201-avoiding ascent sequences
have the same growth constant

In this section we show that for certain patterns p the counting sequence of p-avoiding
ascent sequences has the same growth rate as the counting sequence of simpler objects,
which we call p-avoiding weak ascent sequences1. Moreover, weak ascent sequences have a
symmetry property which allows us to show that 120-avoiding and 201-avoiding ascent
sequences have the same growth constant.

Definition 1. A sequence of non-negative integers, n1n2n3 · · ·nk is a weak ascent sequence
of length k if it satisfies

max{n1, n2, . . . , nk} 6 asc(n1n2n3 · · ·nk).

Lemma 2. If n1n2 . . . nk is an ascent sequence, then it is also a weak ascent sequence.

Proof. Assume n1n2 · · ·nk is an ascent sequence and let i ∈ [1, n] satisfy ni = max({n1, n2, . . . , nk})
with i minimal. If i = 1, then ni = n1 = 0, so nj = 0 for all j ∈ [1, n] and so the sequence
is a weak ascent sequence.

If i > 1, then by the definition of ascent sequence, we have

ni 6 asc(n1n2n3 · · ·ni−1) + 1.

Moreover, by the definition of i, we have ni−1 < ni, so asc(n1n2n3 · · ·ni−1) + 1 =
asc(n1n2n3 · · ·ni). Combining these yields

max{n1, n2, . . . , nk} = ni 6 asc(n1n2 · · ·ni) 6 asc(n1n2 · · ·nk),

so n1n2 · · ·nk is a weak ascent sequence.

The referee has kindly pointed out that the proof of this lemma follows almost immedi-
ately from some results of Sec. 4 of [3]. Namely, let x be an ascent sequence and let x̂ be
the weak ascent sequence of x. Then

max(x) 6 max(x̂) = asc(x̂) = asc(x).

1The term weak ascent sequences has been used in another context in [2]. In this paper we use our
definition, given as Definition 1.
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Proposition 3. Let j > 3 and let p =1 p2 · · · pj be a sum-indecomposable permutation of
01 · · · j−1, that is, there is no i ∈ [1, j−1] satisfying max{p1, . . . , pi} < min{pi+1, . . . , pj}.
Let wk be the number of p-avoiding weak ascent sequences and let ck be the number of
p-avoiding ascent sequences. Then the exponential growth rates µc = limk→∞ k

√
ck and

µw = limk→∞ k
√
wk exist and are equal to each other.

Proof. We start by showing that the limits exist, by proving that cm+n > cmcn and then
applying Fekete’s Lemma. If C1 and C2 are p-avoiding ascents sequences with lengths
m and n and maximum values N1 and N2 respectively, then we define C̃2 = C2 +N1 to
be the sequence defined by increasing each value of C2 by N1. Then C1 must contain
at least N1 ascents, so C = C1C̃2 is an ascent sequence, and it is p-avoiding because p
is sum-indecomposable. Since each pair C1, C2 defines a distinct sequence C of length
m + n, this implies that cm+n > cmcn. By exactly the same argument, wm+n > wmwn.
Now Fekete’s lemma implies that the limits

µc = lim
k→∞

k
√
ck and µw = lim

k→∞
k
√
wk

exist, although we do not prove that they are necessarily finite.
We will now show that

ck2+2k > wkk ,

as then combining this with ck 6 wk and taking limits yields the desired result.
Let W1,W2, . . . ,Wk be p-avoiding weak ascent sequences of length k, with maximum

values N1, N2, . . . , Nk, respectively. There are wnn choices of these, so we just need to show
that we can construct a unique p-avoiding ascent sequence C of length n2 + n with each
such choice. We construct C as follows:

C = 0101 · · · 01W̃1W̃2 · · · W̃k,

where the alternating sequence 0101 · · · 01 has length 2k and

W̃k = Wk + 1 +
k−1∑
j=1

Nj

is the sequence obtained by increasing each value in Wk by 1 +
∑k−1

j=1 Nj. Then we need
to prove the following three facts:

• The sequence C is uniquely defined by W1, . . . ,Wk,

• The sequence C avoids p,

• The sequence C is an ascent sequence.

To show that C is uniquely defined by W1, . . . ,Wk, we break C into n+ 2 subsequences of
length n to find the subsequences W̃1, W̃2, . . . , W̃k. Then W1, . . . ,Wk can be determined
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as follows: W1 = W̃1− 1, then N1 = maxW1, then W2 = W̃2−N1− 1, then N1 = maxW1

and so on until all Wi and Ni are determined.
Now we will show that C avoids p. We know that each Wi, and hence each W̃i, avoids

p, as does 01 · · · 01, so if the pattern p appears in C, its final element(s) must lie in some
W̃i that does not contain all of its elements. But then p would decompose as a direct sum,
as the element in W̃i would be greater than all elements not in W̃i. This is a contradiction
as we assumed p was sum-indecomposable.

Finally we will prove that the sequence C is an ascent sequence. Let C = n1n2 · · ·nk2+2k

and let i ∈ [2, k2 + 2k]. Then we need to show that
ni 6 asc(n1 · · ·ni−1) + 1. If i ∈ [2, 2k] then ni ∈ {0, 1}, so this is clear. Otherwise, assume
ni is an element of W̃h. Then

asc(n1 · · ·ni−1) > asc(0101 · · · 01W̃1 · · · ˜Wh−1)

> k + asc(W1) + · · ·+ asc(Wh−1)

> k +N1 + · · ·+Nh−1.

Now

ni 6 max(Wh) = N1 + · · ·+Nh−1 +Nh

6 N1 + · · ·+Nh−1 + asc(Wh)

6 N1 + · · ·+Nh−1 + n− 1.

Combining these yields ni 6 asc(n1 · · ·ni−1), so C is an ascent sequence. This completes
the proof that ck2+2k > wkk .

Finally, we will show that µc = µw. Since wk > ck, we clearly have µw > µc. Moreover,

µc = lim
k→∞

c
1/(k2+2k)

k2+2k > lim
k→∞

w
k/(k2+2k)
k = lim

k→∞
w

1/(k+2)
k = µw.

Theorem 4. The growth rate µ120
c of 120-avoiding ascent sequences is equal to the growth

rate µ201
c of 201-avoiding ascents sequences.

Proof. Using Proposition 3, it suffices to show that the growth rates µ120
w and µ201

w of weak
ascent sequences are equal. In fact we prove the stronger result that for any k, the number
w120
k of 120-avoiding weak ascent sequences of length k is equal to the number w201

k of
201-avoiding weak ascent sequences of length k. We will show this by a bijection.

Let n1 · · ·nk be a 120-avoiding weak ascent sequence. Define the sequence m1 · · ·mk by
mj = max{n1 · · ·nk}+ min{n1 · · ·nk} − nk+1−j. Note that the maximum and minimum
values of the sequence do not change under this transformation, so applying this transfor-
mation a second time yields the original sequence. Also note that ni < ni+1 if and only if
mk−i < mk+1−i, so the two sequences have the same number of ascents. Hence one is an
ascent sequence if and only if the other is an ascent sequence. Finally ni1 , ni2 , ni3 have
the shape 120 if and only if mk+1−i3 , mk+1−i2 , mk+1−i1 have the shape 201. Hence this
indeed forms a bijection between 120-avoiding weak ascent sequences and 201-avoiding
weak ascent sequences.
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5 000-avoiding ascent sequences

This sequence {cn} is given as A202058 in the OEIS [16] to order O(x22), and we have
extended it to O(x395). We first plotted the ratios of the coefficients cn/cn−1 against 1/n. If
one has a pure power-law singularity, such a plot should be linear, with ordinate intercept
giving an estimate of the growth constant. The ratio plot (not shown) is clearly diverging
as n→∞, implying zero radius of convergence.

This suggest that one should be looking at the ratios of the exponential generating
function (e.g.f.), rn = cn/(n · cn−1), which are shown in Fig. 15. While apparently going
to a finite limit as n → ∞, this displays some curvature. By contrast, if the ratios are
plotted against 1/n0.9, as shown in Fig. 16, the plot is virtually linear, and intercepts the
ordinate at around 0.271 or 0.272, which is our initial estimate of the growth constant.

However linearity against 1/n0.9 is very close to 1/n so perhaps this apparent behaviour
is due to the effect of higher-order terms mixed with a O(1/n) term? To eliminate the
presumed O(1/n) term, we show in Fig. 17 the linear intercepts, ln = n · rn− (n− 1) · rn−1
plotted against 1/n0.9. This plot is also linear, and again has ordinate interception between
0.2701 and 0.2702.

We next eliminate terms of O(1/n2) by constructing the sequence

l2n =
n2 · ln − (n− 1)2 · ln−1

2n− 1
∼ µ(1 + higher order terms).

This is shown in Fig. 18, where l2n appears linear when plotted against 1/n0.9. Since
we’ve eliminated the term O(1/n) and the O(1/n2) terms in the ratios by constructing
the sequence l2n, the fact that we still have linearity when plotted against 1/n0.9 implies
that there is a term of this form in the ratios. The elimination of the O(1/n) and
O(1/n2) terms in the ratios would not affect such a term, and that is what we are
seeing. The result of extrapolating successive pairs of points by constructing the sequence
given by l3n = n · l2n − (n − 1) · l2n−1 is shown in Fig. 19, from which we estimate
µ ≈ 0.27019±0.00001. The presence of a term of O(1/n0.9) implies a stretched-exponential
term in the expression for the coefficients, of the form µn

σ

1 , where σ ≈ 0.1. We cannot say
whether σ = 1/10, or 1/12, but it appears to be in the range 0.06 6 σ 6 0.1.

Recall that the growth constant for ascent sequences is 6/π2. It is interesting to note
that 8/(3π2) = 0.2701898 . . . . Our estimate of µ is in complete agreement with this value,
so once again, this is quite suggestive.

Note that all previously solved cases of length-3 avoiding ascent sequences have power-
law behaviour. This is the first example where the coefficients grow factorially. Here is
a simple argument giving a (weak) lower bound to the growth that precludes power-law
behaviour.

Consider an ascent-sequence of length 2n, the first n terms of which are
0, 1, 2, . . . , n− 1. Let the next n terms be any of the n! permutations of 0, 1, 2, . . . , n− 1.
Firstly, by construction this sequence is an ascent sequence. Secondly, also by construction,
it avoids the pattern 000 as well as the pattern 100. Therefore the number of 000- or 100-
avoiding ascent sequences of length 2n is at least n! So the number of 000- or 100-avoiding
ascent sequences of length n is at least (n/2)!

the electronic journal of combinatorics 29(4) (2022), #P4.25 18



We can also now compare this sequence with the behaviour of the coefficients of ascent
sequences, as they both grow factorially, by constructing the Hadamard quotient of the
coefficients of the two sequences. That is to say, the ascent-sequence coefficients are
known to grow as an ∼ C · n! · (6/π2)n ·

√
n, and our best estimate of the behaviour of the

coefficients of 000-avoiding ascent sequences is cn ∼ D · n! · µnσ1 · µn · ng. The Hadamard
quotient is

hn ≡
cn
an
∼ const.λn · µnσ1 · ng−1/2,

where λ = µπ2/6. Extrapolation of the ratios hn/hn−1 should give estimates of λ. We have
eliminated terms of O(1/n) and O(1/n2) and then plot linear intercepts against 1/n2 in
Fig. 20. Doing this gives λ ≈ 0.444444, which implies µ = 8/(3π2), as suggested earlier,
though with significantly greater precision.

The preceding analysis implies that the e.g.f of 000-avoiding ascent sequences behave
as

cn ∼ C · n! · µn · µnσ1 · ng

where we conjecture that µ = 8/(3π2) and 0.06 6 σ 6 0.1, but we are unable to estimate
the value of µ1 or the exponent g.

Figure 15: Plot of ratios of the e.g.f.
against 1/n for 000-avoiding ascent se-
quences.

Figure 16: Plot of ratios of the e.g.f.
against 1/n0.9 for 000-avoiding ascent se-
quences.

6 100-avoiding ascent sequences

This sequence {cn} is given as A202059 in the OEIS [16] to order O(x23), and we have
extended this to O(x712). We first plotted the ratios of the coefficients cn/cn−1 against
1/n. As for the 000-avoiding ascent sequences he ratio plot (not shown) is clearly diverging
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Figure 17: Plot of linear intercepts ln
against 1/n0.9 for 000-avoiding ascent se-
quences.

Figure 18: Plot of quadratic intercepts
l2n against 1/n0.9 for 000-avoiding ascent
sequences.

Figure 19: Plot of linear extrapolants of
l2n against 1/n2 for 000-avoiding ascent
sequences.

Figure 20: Plot of linear intercepts of ex-
trapolated Hadamard quotients against
1/n2 for 000-avoiding ascent sequences.

as n→∞, implying a zero radius of convergence. We have shown above that (n/2)! is a
lower bound for the coefficients of this ascent sequence, so this result is not surprising.

Let’s assume that the asymptotics are

cn ∼ C (αn)!µnng. (7)
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Then
rn =

cn
cn−1

∼ αα · nα · µ ·
(

1 +
g

n

)
, (8)

and
sn =

rn
rn−1

∼
(

1 +
α

n
− g

n2

)
. (9)

So from eqn. (9) a plot of sn against 1/n should approach ordinate 1 with gradient α.
The term O(1/n2) can cause some curvature, so we eliminate this by forming

tn ≡ (n2sn − (n− 1)2sn−1)/(2n− 1) ∼ (1 + α/(2n) + o(1/n2)). (10)

We show in Fig. 21 estimators of α obtained from the gradient of the plot of tn against
1/n. We estimate the ordinate to be around α = 0.75.

Assuming α = 3/4, we estimate µ, following eqn. (8), from the ordinate of the plot
of n−α · rn against 1/n. Again, we eliminate the O(1/n2) term as above. The result is
shown in Fig. 22, and we estimate the ordinate to be 0.53 ± 0.02, from which follows
µ = 0.66 ± 0.02. (This analysis assumes α = 3/4. A slightly different value of α would
make a significant difference to this estimate.)

Figure 21: Plot of estimators αn against
1/n for 100-avoiding ascent sequences.

Figure 22: Plot of estimators µ · αα
against 1/n for 100-avoiding ascent se-
quences.

An alternative analysis follows by direct fitting. From eqn. (7) we have

log cn ∼ α · n log n+ n(log µ+ α logα− α) + (g + 1/2) log n+ log(C
√

2πα),

where we have used Stirling’s approximation for the factorial function. So fitting

log ck = e1 · k log k + e2 · k + e3 · log k + e4,
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to successive coefficients log ck with k = m− 2, m− 1, m, m+ 1, with m increasing until
we run out of known coefficients, we obtain a system of linear equations from which
e1, e2, e3, e4 give estimates of the critical parameters.

Figure 23: Plot of estimators e1 = α
against 1/n for 100-avoiding ascent se-
quences.

Figure 24: Plot of estimators of e2 =
log µ + α logα − α against 1/n for 100-
avoiding ascent sequences.

In Fig. 23 we plot estimates of e1 = α against 1/n. Our ratio estimate of α = 3/4 is
well supported. In Fig. 24 we plot estimates of e2 = log µ+ α logα− α against 1/n. We
estimate e2 = −1.35± 0.05, from which follows µ = 0.68± 0.04, in reasonable agreement
with the ratio estimate, µ = 0.66 ± 0.02. We are not confident estimating the other
parameters g and C, as they depend sensitively on the values of α and µ.

Accepting that the dominant growth term is (3n/4)!, one can divide the coefficients by
this term and analyse the resulting sequence, which hopefully behaves like a conventional
power-law singularity. Unfortunately, doing this did not improve our analysis. The ratio
plot of the coefficients still exhibited significant curvature, making it difficult to estimate
the various assumed critical parameters. It is possible that the sub-dominant asymptotics
is more complicated than we have assumed, but we have no good idea how to explore this
possibility.

We conclude this section with the estimate that the coefficients of 100-avoiding ascent
sequences behave as

cn ∼ C (αn)!µnng,

with α ≈ 3/4, and µ = 0.68± 0.04, assuming α = 3/4 exactly. We make no estimate of C
or g.
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7 110-avoiding ascent sequences

This sequence {cn} is given as A202060 in the OEIS [16] to order O(x17), and we have
extended this to O(x42). We have used these exact coefficients to derive 100 further
approximate coefficients by the method of series extension [11], and briefly described in
the Appendix. We first plotted the ratios of the coefficients cn/cn−1 against 1/n. As with
the sequence for 100-avoiding ascent sequences, studied in the preceding section, the ratio
plot (not shown) is clearly diverging as n→∞, implying zero radius of convergence.

This is not surprising, as a variation of our previous argument gives a lower bound
(n/3)! for the growth of the coefficients. Consider an ascent-sequence of length 3n, the first
n terms of which are 0, 1, 2, . . . , n− 1 as is the second block of n terms. Let the next n
terms be any of the n! permutations of n, n+ 1, n+ 2, . . . , 2n− 1. Firstly, by construction
this sequence is an ascent sequence. Secondly, also by construction, it avoids the pattern
110. Therefore the number of 110-avoiding ascent sequences of length 3n is at least n! So
the number of 110-avoiding ascent sequences of length n is at least (n/3)!.

Our analysis closely parallels that of 100-avoiding ascent sequences, described in the
preceding section, and indeed, we find the asymptotic behaviour to be similar, just with a
different growth constant.

We first assume that the asymptotics are

cn ∼ C (αn)!µnng. (11)

So as with the analysis of 100-avoiding ascent sequences, we show in Fig. 25 estimators
of α obtained from the gradient of the plot of tn (10) against 1/n. We again estimate the
ordinate to be around α = 0.75.

Assuming α = 3/4, we estimate µ, following eqn. (8), from the ordinate of the plot
of n−α · rn against 1/n. Again, we eliminate the O(1/n2) term as above. The result is
shown in Fig. 26, and we estimate the ordinate to be 0.36 ± 0.02, from which follows
µ = 0.45 ± 0.02. (This analysis assumes α = 3/4. A slightly different value of α would
make a significant difference to this estimate.)

An alternative analysis follows by direct fitting, just as in the previous case.
In Fig. 27 we show estimates of e1 = α plotted against 1/n. The ratio estimate

of α = 3/4 is moderately well supported, though not as well as for the 100-avoiding
sequence. However there we had over 700 series coefficients. In Fig. 28 we plot estimates of
e2 = log µ+α logα−α against 1/n, made by fitting with α assumed to be 3/4. We estimate
e2 = −1.79± 0.05, from which follows µ = 0.44± 0.02, in reasonable agreement with the
ratio estimate, µ = 0.45± 0.02. We are not confident estimating the other parameters g
and C, as they depend sensitively on the values of α and µ.

We conclude this section with the estimate that the coefficients of 100-avoiding ascent
sequences behave as

cn ∼ C (αn)!µnng,

with α ≈ 3/4, and µ = 0.44± 0.02, assuming α = 3/4 exactly. We make no estimate of C
or g.
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Figure 25: Plot of estimators αn against
1/n for 110-avoiding ascent sequences.

Figure 26: Plot of estimators µ · αα
against 1/n for 110-avoiding ascent se-
quences.

Figure 27: Plot of estimators e1 = α
against 1/n for 110-avoiding ascent se-
quences.

Figure 28: Plot of estimators of e2 =
log µ + α logα − α against 1/n for 110-
avoiding ascent sequences.

For both this sequence and the 100-avoiding sequence, we conjectured that the dominant
growth term is (3n/4)!. We explore this further by considering the Hadamard quotient of
the two sequences, which should then have exponential growth.

Define new coefficients an ≡ c100n/c110n, which should behave as D · µ100/µ110, where
D is a constant. We study the behaviour of the coefficients an by the ratio method, and
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in Fig 29 we show the ratios rn = an/an−1 plotted against 1/n. Because of the significant
curvature, we eliminate terms of O(1/n2), which frequently cause this, and plot the result,
also against 1/n, in Fig 30. We estimate the limit as 0.625 ± 0.015. From the direct
estimates of the growth constants, we find their ratio to be 0.65± 0.07, so studying the
ratios of the Hadamard quotients gives a more precise estimate of the ratio of the growth
constants. The convergence adds support to our belief that the factorial growth is the
same for the two sequences.

Figure 29: Plot of ratios rn against 1/n
for the coefficients an.

Figure 30: The same plot, with terms
O(1/n2) eliminated.

8 Conclusion

We have given a new algorithm to generate length-3 pattern-avoiding ascent sequences,
and used this to generate many coefficients for 120-avoiding, 000-avoiding, 100-avoiding
and 110-avoiding ascent sequences.

In each case we have given, conjecturally, the asymptotics of the coefficients. For
120-avoiding ascent sequences we prove that the value of the growth constant is the same as
that for 201-avoiding ascent sequences, which is known. For 000-avoiding ascent sequences
we can reasonably confidently conjecture the exact value of the growth constants, and
in three cases we have given weak lower bounds that prove that the super-exponential
growth conjectured is to be expected.

These are the only examples of length-3 pattern-avoiding ascent sequences whose
generating function has zero radius of convergence.
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Appendix

9 Series analysis

The method of series analysis has, for many years, been a powerful tool in the study of a
variety of problems in statistical mechanics, combinatorics, fluid mechanics and computer
science. In essence, the problem is the following: Given the first N coefficients of the series
expansion of some function, (where N is typically as low as 5 or 6, or as high as 100,000
or more), determine the asymptotic form of the coefficients, subject to some underlying
assumption about the asymptotic form, or, equivalently, the nature of the singularity of
the function.

9.1 Ratio Method

The ratio method was perhaps the earliest systematic method of series analysis employed,
and is still the most useful method when only a small number of terms are known. If we
have a power-law singularity, so that f(z) =

∑
cnz

n ∼ C(1− z/zc)−γ, it follows that the
ratio of successive terms

rn =
cn
cn−1

=
1

zc

(
1 +

γ − 1

n
+ o(

1

n
)

)
. (12)

It is then natural to plot the successive ratios rn against 1/n. If the correction terms o( 1
n
)

can be ignored2, such a plot will be linear, with gradient γ−1
zc
, and intercept µ = 1/zc at

1/n = 0.

9.2 Functions with non-power-law singularities.

A number of solved, and unsolved problems that arise in lattice critical phenomena and
algebraic combinatorics have coefficients with a more complex asymptotic form, with a
sub-dominant term O(µn

σ

1 ) as well as a power-law term O(ng). Perhaps the best-known
example of this sort of behaviour is the number of partitions of the integers – though in
that case the leading exponential growth term µn is absent (or equivalently µ = 1). The
form of the coefficients cn in the general case is

cn ∼ C · µn · µnσ1 · ng. (13)

An example from combinatorics is given by Dyck paths enumerated not just by length,
but also by height (defined to be the maximum vertical distance of the path from the

2For a purely algebraic singularity with no confluent terms, the correction term will be O( 1
n2 ).
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horizontal axis). Let dn,h be the number of Dyck paths of length 2n and height h. The
OGF is then3

D(x, y) =
∑
n,h

dn,hx
2nyh, and [x2n]D(x, y) =

n∑
h=1

dn,hy
h. (14)

For y < 1 let A = 25/3π5/6/
√

3, E = 3
(
π
2

)2/3
and r = − log y. Then one finds that

[x2n]D(x, y) is given by eqn. (13) with C = 1−y
y2
r1/3A, µ = 4, µ1 = exp(−Er2/3), σ = 1/3,

and g = −5/6.
Applying the ratio method to such singularities requires some significant changes.

These were first developed in [10], where further details and more examples can be found.
In the next subsection we give a summary, including as much detail as is needed for our
analysis.

9.3 Ratio method for stretched-exponential singularities.

If
bn ∼ C · µn · µnσ1 · ng, (15)

then the ratio of successive coefficients rn = bn/bn−1, is

rn = µ

(
1 +

σ log µ1

n1−σ +
g

n
+
σ2 log2 µ1

2n2−2σ +
(σ − σ2) log µ1 + 2gσ log µ1

2n2−σ

+
σ3 log3 µ1

6n3−3σ + O(n2σ−3) + O(n−2)

)
. (16)

It is usually the case that σ takes the simple values 1/2, 1/3, 1/4 etc.4. If these
asymptotics arise as the irregular singular point of a D-finite ODE, the exponent must be
of the form 1/ρ, where ρ is a positive integer.

The presence of the term O( 1
n1−σ ) in the expression for the ratios above means that a

ratio plot against 1/n will display curvature, which can be usually be removed by plotting
the ratios against 1/n1−σ.

Unfortunately the observation that a ratio plot against 1/n1−σ will linearise the plot
does not provide a sufficiently precise method to estimate the value of σ. One can usually
distinguish between, say, σ = 1/2 and σ = 1/3 in this way, but one cannot be much more
precise than that. However, one can extend the ratio method to provide direct estimates
for the value of σ.

From (16), one sees that

(rn/µ− 1) = σ log µ1 · nσ−1 +O

(
1

n

)
. (17)

3One of us (AJG) posed this problem at an Oberwolfach meeting in March 2014. Within 24 hours
Brendan McKay produced this solution.

4In statistical mechanical models, the value of the exponent σ is simply related to the fractal dimension
df of the object through σ = 1/(1 + df ).
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Accordingly, a plot of log(rn/µ− 1) versus log n should be linear, with gradient σ − 1. We
would expect an estimate of σ close to that which linearised the ratio plot.

This log-log plot will usually be visually linear, but the local gradients are changing
slowly as n increases. It is therefore worthwhile extrapolating the local gradients. To do
this, from (17), we form the estimators

σ̃n = 1 +
log |rn/µ− 1| − log |rn−1/µ− 1|

log n− log(n− 1)
. (18)

This can be extrapolated against 1/nσ, using any approximate value of σ.
A second estimator of σ follows from eqn. (15). Define

cn ≡ log(bn/µ
n) ∼ logC + log µ1 · nσ + g · log n,

then setting
dn ≡ cn − cn−1 ∼ σ log µ1 · nσ−1 + g/n, (19)

a log-log plot of dn against n should be linear with gradient σ − 1. Note that if σ is closer
to zero than to 1, there is likely to be some competition between the two terms in the
expansion.

This way of estimating σ requires knowledge of, or at worst a very precise estimate of,
the growth constant µ. While µ is exactly known in some cases, more generally µ is not
known, and must be estimated, along with all the other critical parameters. In order to
estimate σ without knowing µ, we can use one (or both) of the following estimators:

From eqn. (16), it follows that

rσn ≡
rn
rn−1

∼ 1 +
(σ − 1) log µ1

n2−σ + O(1/n2), (20)

so σ can be estimated from a plot of log(rσn − 1) against log n, which should have gradient
σ − 2. Again, the local gradients can be calculated and plotted against 1/nσ, using any
approximate value of σ.

Another estimator of σ when µ is not known follows from eqn. (15),

aσn ≡
b
1/n
n

b
1/(n−1)
n−1

∼ 1 +
(σ − 1) log µ1

n2−σ + O(1/n2), (21)

so again σ can be estimated from a plot of log(aσn − 1) against log n. Again, estimates of
σ are found by extrapolating the local gradient against 1/nσ.

While these two estimators are equal to leading order, they differ in their higher-order
terms. Which of the two is more informative seems to vary from problem to problem.
However, we generally use both.

From eqn. (16), if we know (or conjecture) µ and σ, we can use this to estimate µ1, as(
rn
µ
− 1

)
· n1−σ ∼ σ · log(µ1). (22)
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10 Differential approximants

The generating functions of some problems in enumerative combinatorics are sometimes
algebraic, sometimes D-finite, sometimes differentially algebraic, and sometimes transcen-
dentally transcendental. The not infrequent occurrence of D-finite solutions was the origin
of the method of differential approximants, a very successful method of series analysis for
power-law singularities [9].

The basic idea is to approximate a generating function F (z) by solutions of differential
equations with polynomial coefficients. That is to say, by D-finite ODEs. The singular
behaviour of such ODEs is well documented (see e.g. [14]), and the singular points and
exponents are readily calculated from the ODE.

The key point for series analysis is that even if globally the function is not describable
by a solution of such a linear ODE (as is frequently the case) one expects that locally, in the
vicinity of the (physical) critical points, the generating function is still well-approximated
by a solution of a linear ODE, when the singularity is a generic power law.

An M th-order differential approximant (DA) to a function F (z) is formed by matching
the coefficients in the polynomials Qk(z) and P (z) of degree Nk and L, respectively, so
that the formal solution of the M th-order inhomogeneous ordinary differential equation

M∑
k=0

Qk(z)(z
d

dz
)kF̃ (z) = P (z) (23)

agrees with the first N = L+
∑

k(Nk + 1) series coefficients of F (z).
Constructing such ODEs only involves solving systems of linear equations. The function

F̃ (z) thus agrees with the power series expansion of the (generally unknown) function
F (z) up to the first N series expansion coefficients.

From the theory of ODEs [14], the singularities of F̃ (z) are approximated by zeros
zi, i = 1, . . . , NM of QM(z), and the associated critical exponents γi are estimated from
the indicial equation. If there is only a single root at zi this is just

γi = M − 1− QM−1(zi)

ziQ′M(zi)
. (24)

Estimates of the critical amplitude C are rather more difficult to make, involving the
integration of the differential approximant. For that reason the simple ratio method
approach to estimating critical amplitudes is often used, whenever possible taking into
account higher-order asymptotic terms [12].

Details as to which approximants should be used and how the estimates from many
approximants are averaged to give a single estimate are given in [12]. Examples of the
application of the method can be found in [10].

In this work, none of the four series that we analyse are appropriate for analysis by
the method of differential approximants, however we describe the method as it underlies
the idea of series extension, as described in the next section.
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11 Coefficient prediction

In [11] we showed that the ratio method and the method of differential approximants
work serendipitously together in many cases, even when one has stretched exponential
behaviour, in which case neither method works particularly well in unmodified form.

To be more precise, the method of differential approximants (DAs) produces ODEs
which, by construction, have solutions whose series expansions agree term by term with
the known coefficients used in their construction. Clearly, such ODEs implicitly define
all coefficients in the generating function, but if N terms are used in the construction of
the ODE, all terms of order zN and beyond will be approximate, unless the exact ODE is
discovered, in which case the problem is solved, without recourse to approximate methods.

What we have found is that it is useful to construct a number of DAs that use all
available coefficients, and then use these to predict subsequent coefficients. Not surprisingly,
if this is done for a large number of approximants, it is found that the predicted coefficients
of the term of order zn, where n > N, agree for the first k(n) digits, where k is a decreasing
function of n. We take as the predicted coefficients the mean of those produced by the
various DAs, with outliers excluded, and as a measure of accuracy we take the number
of digits for which the predicted coefficients agree, or the standard deviation. These two
measures of uncertainty are usually in good agreement.

Now it makes no logical sense to use the approximate coefficients as input to the
method of differential approximants, as we have used the DAs to obtain these coefficients.
However there is no logical objection to using the (approximate) predicted coefficients as
input to the ratio method. Indeed, as the ratio method, in its most primitive form, looks
at a graphical plot of the ratios, an accuracy of 1 part in 104 or 105 is sufficient, as errors
of this magnitude are graphically unobservable.

The DAs use all the information in the coefficients, and are sensitive to even quite
small errors in the coefficients. As an example, in a recent study of some self-avoiding walk
series, an error was detected in the twentieth significant digit in a new coefficient, as the
DAs were much better converged without the last, new, coefficient. The DAs also require
high numerical precision in their calculation. In favourable circumstances, they can give
remarkably precise estimates of critical points and critical exponents, by which we mean
up to or even beyond 20 significant digits in some cases. Surprisingly perhaps, this can be
the case even when the underlying ODE is not D-finite. Of course, the singularity must
be of the assumed power-law form.

Ratio methods, and direct fitting methods, by contrast are much more robust. The
sort of small error that affects the convergence of DAs would not affect the behaviour of
the ratios, or their extrapolants, and would thus be invisible to them. As a consequence,
approximate coefficients are just as good as the correct coefficients in such applications,
provided they are accurate enough. We re-emphasise that, in the generic situation, ratio
type methods will rarely give the level of precision in estimating critical parameters that
DAs can give. By contrast, the behaviour of ratios can more clearly reveal features of the
asymptotics, such as the fact that a singularity is not of power-law type. This is revealed,
for example, by curvature of the ratio plots [10].
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In practice we find, not surprisingly, that the more exact terms we know, the greater is
the number of predicted terms, or ratios that can be predicted.

In this study, we have extended the sequence of coefficients for the generating functions
of the two shorter series, 110-avoiding and 120-avoiding ascent sequences by 100 and 200
terms respectively, and have analysed the resulting series by ratio methods.

the electronic journal of combinatorics 29(4) (2022), #P4.25 32


	Introduction
	Sequence generation algorithm
	Enumerating Ascent sequences
	Enumerating 000 avoiding ascent sequences
	Enumerating 100 avoiding ascent sequences
	Enumerating 110 avoiding ascent sequences
	Enumerating 120 avoiding ascent sequences
	Better 000 algorithm

	120-avoiding ascent sequence
	Proof that 120-avoiding and 201-avoiding ascent sequences have the same growth constant
	000-avoiding ascent sequences
	100-avoiding ascent sequences
	110-avoiding ascent sequences
	Conclusion
	Series analysis
	Ratio Method
	Functions with non-power-law singularities.
	Ratio method for stretched-exponential singularities.

	Differential approximants
	Coefficient prediction

