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Abstract

Digital nets (in base 2) are the subsets of [0, 1]d that contain exactly the expected
number of points in every not-too-small dyadic box. We construct finite sets, which
we call “almost nets”, such that every such dyadic box contains almost the expected
number of points from the set, but whose size is exponentially smaller than the one
of nets. We also establish a lower bound on the size of such almost nets.

Mathematics Subject Classifications: 05D99, 11K38, 52C10, 65D99

1 Introduction

We call a subinterval of [0, 1] basic (in base q) if it is of the form
[
a
qk
, a+1
qk

)
, for nonnegative

integers a and k. A basic box is a product of basic intervals, i.e., a set of the form∏d
i=1

[
ai
qki
, ai+1
qki

)
. If q = 2, a basic interval is called a dyadic interval, and a basic box is

called a dyadic box.
We say that a set P ⊂ [0, 1]d is a (m, ε)-almost net in base q if it is of size |P | = qnm

for some natural number n and

(1− ε)m 6 |β ∩ P | 6 (1 + ε)m

for every basic box β of volume vol(β) = q−n.
In this paper, we are interested in constructions where the parameters m and ε

are independent of n. In contrast, since the family of all axis-parallel boxes has finite
VC-dimension, one can construct (m, ε)-almost nets with m linear in n by sampling the
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points of P at random, see [8, 6]. The dependence on n is unavoidable for points sampled
at random.

The case ε = 0 of the above definition has been well studied. If ε = 0, almost nets
are known as digital (t,m, s)-nets or simply (t,m, s)-nets (in base q) in the literature1.
The adjective ‘digital’ is due to the fact that basic intervals comprise of numbers with
specified initial digits in base q. They are used extensively in discrepancy theory and
numerical integration algorithms, and are subject to numerous works, including a book
devoted exclusively to them [7]. It is known from [12, Theorem 3] that, for each d, there
exist arbitrarily large (m, 0)-almost nets with m 6 q5d, if q is a prime power. On the
other hand, m must grow exponentially with d for large enough nets [9] (see also [10] for
asymptotic analysis of the bound in [9]).

In contrast to these results, for ε > 0, we construct (m, ε)-almost nets with m being
only polynomial in d.

Theorem 1. For any prime q, any d > 2, and any positive integers m,n satisfying
m > 400d log(dq), there exists a set P ⊂ [0, 1]d of size mqn such that, for any basic box β
of volume q−n,(

1− 10

√
d log(dq)

m

)
m 6 |β ∩ P | 6

(
1 + 10

√
d log(dq)

m

)
m. (1)

In particular, for every 0 < ε < 1/2 and every d > 2, there exist arbitrarily large
(m, ε)-almost nets in base q with m 6 100ε−2d log(dq).

Furthermore, the set P satisfying (1) can be chosen to be an
(
M, 0)-net in base q with

M 6 d4dq6dm.

This result has an application in geometric Ramsey theory: A convex hole in a finite
set S ⊂ Rd is a subset H ⊂ S in convex position and whose convex hull contains no
other point of S. An old problem of Valtr [11] asks for the largest h(d) such that every
sufficiently large S ⊂ Rd in general position contains a hole of size h(d). Using Theorem 1
one can show that h(d) 6 4d+o(d), which is an improvement over the bound of h(d) 6 27d

that can be obtained from (t,m, s)-nets. The details of both bounds are in [5].
The construction behind Theorem 1 is a minor modification on the construction in

[4]. Whereas the construction in [4] uses primes in Z, this construction uses irreducible
polynomials in Fq[x]. The reason for this change is to make the denominators be powers
of the same prime q. Furthermore, because the addition in Fq[x] satisfies the ultrametric
inequality (with respect to the degree), and because we do not need to worry about boxes
that are not basic, several details in the new construction are simpler. As such, we do not
make any claims about the novelty. Our purpose in writing the present note is to record
the details of the construction for its application to convex holes. We also hope that
almost nets will find applications in many other areas that currently use the conventional
nets.

1The parameters t,m, s in the definition of (t,m, s)-nets have different meaning than in the present
paper. They correspond to logq m, logq(mqn) and d respectively in our notation.
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We do not know when the bound in Theorem 1 is sharp. The following is the best
lower bound we were able to prove. Its dependence on ε is close to optimal, as long as ε is
not too small, but the dependence on d is poor. In the special case ε = 0, we recover the
lower bound t = Ω(s) in (t,m, s)-nets via a proof different than those in [9, 10] (keeping
in mind that that t and s correspond to logqm and d respectively).

Theorem 2. Assume that there exists an (m, ε)-net P ⊆ [0, 1]d in base q, then the
following holds.

If ε > 1/2
√
d, then

m = Ω
( log d

q2ε2 log(1/ε)

)
.

If 1/2
√
d > ε > e−d/8, then

m = Ω(q−2k−2ε−2),

where k = 2 log(1/ε)
log d−log log(1/ε)

.

In particular, if ε = ω(d−t) for some constant t, then we have m = Ωq,t(1/ε
2).

If ε = o(e−cd) for some constant c such that 0 < c < min(1/8, 1/q2), then we get an
exponential lower bound m = Ω

(
q−2ec

′d
)
, where c′ = 2c(1− 2 log q/ log(1/c)).

Open problem. It would be interesting to prove a result similar to Theorem 1 which
applies to all boxes, not only to basic boxes. It is possible to construct a set P for which
|β ∩P | is lower-bounded by (1− o(1))m for all boxes β by taking a union of translates of
the set P from Theorem 1 in a manner similar to that in the second part of the proof of
[4, Theorem 2]. However, we have been unable to control |β ∩ P | from above.

Acknowledgment. We are thankful to Ron Holzman for useful discussions, and to two
anonymous referees for their help in improving this paper.

2 Proof of Theorem 1

We denote by Fq the finite field consisting of elements 0, 1, 2, . . . , q − 1 equipped with

the usual mod-q arithmetic. Let t
def
= d2 logq d + 2e. Since the number of irreducible

polynomials of degree t in Fq[x] is

1

t
(
∑
i|t

µ(i)qt/i) >
1

t
(qt − qt/2+1) > d,

we may pick d distinct irreducible polynomials p1, . . . , pd of degree t in Fq[x]. We fix some
such choice of polynomials for the duration of the proof. We associate each of these d
polynomials to the respective coordinate direction. We will be interested in canonical
boxes, which are the boxes of the form

B =
d∏
i=1

[
ai
qkit

,
ai + 1

qkit

)
.
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for some nonnegative integers ki and 0 6 ai < qkit, i = 1, 2, . . . , d.
We say that a polynomial f ∈ Z[x] is a basic polynomial if deg f < t and all of its

coefficients are in {0, 1, . . . , q − 1}.
For an irreducible polynomial p ∈ Fq[x] of degree t and a polynomial f ∈ Fq[x], we

define the base-p expansion of f to be f = f0 + f1p + · · · + f`p
`, where each fi is a

basic polynomial. Put rp(f)
def
= (f0(1/q) + f1(1/q)q−t + · · · + f`(1/q)q

−`t)/q, where we
view the basic polynomials f0, f1, . . . , f` as polynomial functions on R. In other words,
if fi =

∑
j<t ci,jx

j with ci,j ∈ {0, 1, . . . , q − 1}, then, denoting by Ci the concatenation
ci,0ci,1 . . . ci,t−1, the base-q expansion of the real number rp(f) is

rp(f) = 0.C0C1 . . . C`.

Note that rp(f) ∈ [0, 1) for every f ∈ Fq[x]. Define the function r : Fq[x] → [0, 1]d by

r(f)
def
=
(
rp1(f), . . . , rpd(f)

)
.

Recall that our aim is to construct a set P ⊂ [0, 1]d whose intersection with any basic
box of volume q−n has almost the expected number of points.

Definition 3. We say that a box β is good if β is a basic box of volume vol(β) = q−n.
Let B be the smallest canonical box containing β. We call (B, β) a good pair.

Note that if (B, β) is a good pair, then vol(B) 6 q−n+dt−1. Indeed, every basic interval
is contained in an interval of the form [a/qkt, (a+1)/qkt) that is at most qt−1 times larger,
and therefore vol(B) 6 q−n(qt−1)d 6 q−n+dt−1.

Suppose B is a canonical box. Write it as B =
∏

i

[
ai/q

kit, (ai + 1)/qkit
)
, and consider

r−1(B). The set r−1(B) ⊆ Fq[x] consists of all solutions to the system

f ≡ a′1 (mod pk11 ),

f ≡ a′2 (mod pk22 ),

...

f ≡ a′d (mod pkdd ),

where a′i = fi,0 + fi,1pi + · · · + fi,ki−1p
ki−1
i and fi,0, fi,1, . . . , fi,ki−1 are the unique basic

polynomials satisfying ai/q
kit = (fi,0(1/q) + fi,1(1/q)q−t + . . .+ fi,ki−1(1/q)q−(ki−1)t)/q.

By the Chinese Remainder theorem, the set r−1(B) is of the form A(B) +D(B)Fq[x]

where D(B)
def
= pk11 p

k2
2 · · · p

kd
d and A(B) is the unique element in r−1(B) of degree less than

t(k1 + . . .+ kd). Note that degD(B) = t(k1 + . . .+ kd) = − logq(vol(B)).
Given a good pair (B, β), define

LB(β)
def
= {g ∈ Fq[x] : r

(
A(B) + gD(B)

)
∈ β}.

Claim 4. The set L def
= {LB(β) : (B, β) is a good pair} is of size at most q4dt.
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Proof. Let (B, β) be a good pair. Write B and β in the form

B =
d∏
i=1

[
ai
qkit

,
ai + 1

qkit

)
, β =

d∏
i=1

[
ai
qkit

+
bi

q(ki+1)t
,
ai
qkit

+
ci

q(ki+1)t

)
.

The condition r
(
A(B) + gD(B)

)
∈ β is equivalent to

A(B) + gD(B) ∈ a′1 + pk11 J1 (mod pk1+1
1 ),

A(B) + gD(B) ∈ a′2 + pk22 J2 (mod pk2+1
2 ),

...

A(B) + gD(B) ∈ a′d + pkdd Jd (mod pkd+1
d ),

where the sets Ji consist of the basic polynomials f such that f(1/q)qt−1 ∈ [bi, ci).
On the other hand,

A(B) + gD(B) ≡ a′1 + (α1 + gδ1)pk11 (mod pk1+1
1 ),

A(B) + gD(B) ≡ a′2 + (α2 + gδ2)pk22 (mod pk2+1
2 ),

...

A(B) + gD(B) ≡ a′d + (αd + gδd)p
kd
d (mod pkd+1

d )

for some αi, δi ∈ Fq[x]/(pi), i = 1, 2, . . . , d. Since dimFq Fq[x]/(pi) = deg pi = t, there are
at most q2dt different choices for (αi, δi)

d
i=1. Also, there are at most q2dt different choices

for (bi, ci)
d
i=1 satisfying 0 6 bi < ci 6 qt. Since LB(β) is determined by (αi, δi, bi, ci)

d
i=1,

the claim is true.

To each canonical box B of volume between q−n and q−n+dt−1 inclusive we assign a type,
so that boxes of the same type behave similarly. Formally, let A(B) be the polynomial
obtained from the polynomial A(B) by setting the coefficients of 1, x, x2, . . . , xn−dt−1 to
zero. Similarly, let D(B) be the polynomial obtained from D(B) by setting the coefficients

of 1, x, x2, . . . , xn−3dt to zero. The type of B is then the pair T (B)
def
=
(
A(B),D(B)

)
.

Note that, from q−n 6 vol(B) 6 q−n+dt−1 and degD(B) = − logq(vol(B)) it follows
that

n− dt+ 1 6 degD(B) 6 n. (2)

Claim 5. The number of types is at most q4dt.

Proof. Since degA(B) < degD(B) 6 n, only the dt (resp. 3dt) leading coefficients of
A(B) (resp. D(B)) may be non-zero. So, there are no more than qdt×q3dt = q4dt types.

For a type T = (A,D), let Y(T )
def
= {A + gD : g ∈ Fq[x]}. Note that if T = T (B),

then Y(T ) is an approximation to r−1(B). That is to say, the respective elements of Y(T )
and of r−1(B) differ only in low-degree coefficients.
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Let Ik denote polynomials of degree less than k in Fq[x]. Our construction will be a
union of sets of the form h+ In−dt where deg h 6 n+ dt.

We first prove that there is no difference in how the sets Y(T ) and r−1(B) intersect
h+ In−dt.

Claim 6. Suppose T (B) =
(
A(B),D(B)

)
. Then for any polynomial h ∈ In+dt and any

polynomial g, A(B) + gD(B) ∈ h+ In−dt if and only if A(B) + gD(B) ∈ h+ In−dt.

Proof. IfA(B)+gD(B) ∈ h+In−dt, then deg(A(B)+gD(B)) < n+dt. Since degA(B) < n
and degD(B) > n − dt, it follows that deg g < 2dt. From the definition of A(B) and
D(B), the coefficients of xn−dt, xn−dt+1, . . . in A(B)+gD(B) are the same as the respective
coefficients in A(B) + gD(B). The opposite direction is similar.

For a type T and L ∈ L that satisfy T = T (B) and L = LB(β) for some good pair
(B, β), define

YT (L)
def
= {A+ gD : g ∈ L}.

With this definition, YT (L) is the approximation to r−1(β) induced by the approximation
Y(T ) to r−1(B).

Claim 7. The set YT (L)
def
= YT (L) ∩ In+dt is of size exactly qdt.

Proof. Let (B, β) be a good pair such that T = T (B) and L = LB(β). From the previous
claim, we know that the size of YT (L) is the same as the size of r−1(β) ∩ In+dt. By the
Chinese remainder theorem, each of the canonical boxes of volume q−(bn/tc+d)t contains
equally many points from r(In+dt). Since n 6 (bn/tc + d)t, the number of points in
β ∩ r(In+dt) is equal to qn+dt vol(β) = qdt.

Claim 8. Let h be chosen uniformly from In+dt. Then |YT (L) ∩ (h + In−dt)| is 1 with
probability q−dt and is 0 otherwise.

Proof. Let u ∈ YT (L) be arbitrary. Clearly Pr[u ∈ h + In−dt] = q−2dt. The events of
the form u ∈ h + In−dt are mutually disjoint as u ranges over YT (L). Indeed, suppose
T = (A,D) and u, u′ ∈ YT (L) are such that u, u′ ∈ h + In−dt for some h ∈ In+dt. We
may write u = A + gD and u′ = A + g′D. Then u − u′ = (g − g′)D ∈ In−dt. Since
degD(B) > n− dt, this implies that g = g′ and hence u = u′.

In the combination with Claim 7, this implies that

Pr
[
|YT (L) ∩ (h+ In−dt)| = 1

]
= q−2dtqdt = q−dt.

Sample qdtm elements uniformly at random from In+dt, independently from one an-
other. Let H be the resulting multiset, and consider the multiset

H + In−dt
def
= {h+ f : h ∈ H, f ∈ In−dt}.

For a type T and L ∈ L that satisfy T = T (B) and L = LB(β) for some good pair

(B, β), define the random variable NT ,L
def
= |YT (L) ∩ (H + In−dt)|. This random variable

is distributed according to the binomial distribution Binom(qdtm, q−dt).
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Let ε =
√

33dt log q/m. Note that ε <
√

33d(2 log d+ 3 log q)/m < 10
√
d log(dq)/m,

and in particular ε < 1/2. Hence, ε2/2−ε3/2 > ε2/4. By the tail bounds for the binomial
distribution [3, Theorems A.1.11 and A.1.13] we obtain

Pr
[
NT ,L −m > εm

]
< e−(ε2/2−ε3/2)m < q−8dt/2,

Pr
[
NT ,L −m < −εm

]
< e−ε

2m/2 < q−8dt/2.

From Claims 4 and 5, and the union bound it then follows that there exists a choice
of H such that NT ,L is bounded between (1 − ε)m and (1 + ε)m whenever T = T (B),
L = LB(β) and (B, β) is a good pair. By Claim 6, this implies that the number of points
in any good box β of volume q−n, the size β ∩ r(H + In−dt) is bounded between (1− ε)m
and (1 + ε)m.

Hence the multiset r(H+ In−dt) in [0, 1)d is of size exactly mqn and satisfies (1). Since
the r-image of every set of the form h + In−dt, for h ∈ Fq[x], is a (qdt, 0)-net, it follows
that r(H + In−dt) is a (M, 0)-net with M = q2dtm 6 d4dq6dm.

To obtain a set satisfying the same conclusion, we may perturb the points of the
multiset r(H + In−dt) slightly to ensure distinctness.

3 Proof of Theorem 2

We shall derive Theorem 2 from the following lemma.

Lemma 9. For any positive integers n, d, q and positive real numbers m, ε with n > d > 2,
q > 2, and ε < 1/4, if there exists an (m, ε)-almost net P ⊆ [0, 1]d in base q of size qnm,
then

m = Ω
( log(

(
d
k

)
)

q2kε2 log(1/ε)

)
,

for any integer k such that 1 6 k 6 d/2 and

2ε >

(
d

k

)−1/2

(3)

holds.

Proof. Let B be the box [0, 1/qn−2k)× [0, 1)d−1. For any point v = (v1, . . . , vd) ∈ B, write
its coordinates in base q as v` = (0.v`,1v`,2 . . .)q. Noting that the first n− 2k base-q digits

of v1 are zero, we let X1(v) be the first non-trivial digit of v1, i.e., X1(v)
def
= v1,n−2k+1.

Similarly, let X`(v)
def
= v`,1 for ` > 2.

The proof idea is to use almost independence of functions X1, . . . , Xd for a randomly
chosen point of B. However, we do not directly appeal to the known bound on the size of
probability spaces supporting almost independent random variables (see e.g. [1, 2]) be-
cause those bounds are formulated for {0, 1}-valued random variables, whereas X1, . . . , Xd

take q distinct values.
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Let S
def
= P ∩ B, and t

def
= |S|. Since P is an (m, ε)-almost net, it follows that t is

between q2k(1− ε)m and q2k(1 + ε)m. Assume v1, . . . , vt are all the points in S.

For x ∈ R, let eq(x)
def
= exp(2πix/q) where i =

√
−1. Let U be a

(
d
k

)
-by-t matrix,

where the rows are indexed by
(

[d]
k

)
and the columns are indexed by [t]. The general entry

of U is
UJ,`

def
= eq

(∑
j∈J

Xj(v
`)
)
.

Also, define A
def
= 1

t
UU∗.

Claim 10. The diagonal terms in A are all 1. The off-diagonal terms are, in absolute
value, bounded above by 2ε.

Proof. The general term of A is given by

AJ1,J2 = 1
t

t∑
`=1

eq

(∑
j∈J1

Xj(v
`)−

∑
j∈J2

Xj(v
`)
)
.

If J1 = J2, this is clearly 1.
Suppose J1 6= J2. Note that, for any α = (αj)j∈J1∆J2 with αj ∈ {0, 1, . . . , q − 1}, the

set
{v ∈ B : Xj(v) = αj for j ∈ J1∆J2}

is a basic box of volume q−n+2k−|J1∆J2|. Thus, for any τ ∈ {0, 1, . . . , q − 1}, the region

Bτ
def
=
{
v ∈ B :

∑
j∈J1

Xj(v)−
∑
j∈J2

Xj(v) ≡ τ (mod q)
}

can be partitioned into q|J1∆J2|−1 many basic boxes of volume q−n+2k−|J1∆J2| each. Since
we have −n + 2k − |J1∆J2| > −n, it follows that the number of ` such that v` ∈ Bτ is
bounded between q2k−1(1− ε)m and q2k−1(1 + ε)m. Thus,

|AJ1,J2| =
1

t

∣∣∣∣∣
q∑

τ=1

|Bτ ∩ S|eq(τ)

∣∣∣∣∣
6

1

t

∣∣∣∣∣
q∑

τ=1

q2k−1meq(τ)

∣∣∣∣∣+
1

t

q∑
τ=1

|εq2k−1meq(τ)|

=
εq2km

t
6 2ε.

We apply [1, Theorem 2.1] to the matrix (A+ Ā)/2. We obtain that, if
(
d
k

)−1/2
6 2ε <

1/2, then 2q2k(1 + ε)m > 2 rank(A) > rank
(
(A+ Ā)/2

)
= Ω(

log((d
k))

ε2 log(1/ε)
). Therefore,

m = Ω
( log(

(
d
k

)
)

q2kε2 log(1/ε)

)
.
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The right hand side of lemma 9 is a decreasing function of k for k ∈ [1, d/2]. Therefore,
we shall pick k as small as possible. If ε > 1/2

√
d, then we may set k = 1 and get

m = Ω
( log d

q2ε2 log(1/ε)

)
.

If 1/2
√
d > ε > e−d/8, then we may set k = 2 log(1/ε)

log d−log log(1/ε)
. From the assumption on ε, we

have k 6 log(1/ε). Therefore,(
d

k

)
>(d/k)k

> exp
( 2 log(1/ε)

log d− log log(1/ε)
(log d− log k)

)
> exp

( 2 log(1/ε)

log d− log log(1/ε)
(log d− log log(1/ε))

)
>

1

ε2
,

and so (3) holds. Hence, we may apply Lemma 9 with dke in place of k and obtain

m = Ω(q−2k−2ε−2).

In particular, if ε = ω(d−t) for some constant t, then k is also a constant, and so m =
Ωq,t(1/ε

2) in this case.
If ε = o(e−cd) for some constant c such that 0 < c < min(1/8, 1/q2), then the (m, ε)-

net is also an (m, e−cd)-net, when d is large enough. We may apply the result above with
e−cd in place of ε. In this case, the calculations above yield k = 2cd/ log(1/c), and we get
m = Ω

(
q−2ec

′d
)

where c′ = 2c
(
1− 2 log q/ log(1/c)

)
.
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