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Abstract

We prove that the permutations of {1, . . . , n} having an increasing (resp., decreas-
ing) subsequence of length n−r index a subset of the set of all rth Kronecker powers
of n×n permutation matrices which is a basis for the linear span of that set. Thanks
to a known Schur–Weyl duality, this gives a new basis for the centralizer algebra
of the partition algebra acting on the rth tensor power of a vector space. We give
some related results on the set of doubly stochastic matrices in that algebra.

Mathematics Subject Classifications: 05A10, 05E10, 20C30, 20C08

Introduction

LetV be a free k-module with basis {v1, . . . ,vn} over a unital commutative ring k; identify
m ∈ Z with its image under the natural ring morphism Z → k. The symmetric group Wn

on n letters acts on V by permuting the basis, via w · vj = vw(j) extended linearly. This
action extends to a “diagonal” action on the rth tensor power V⊗r = V ⊗ · · ·⊗V, by

w · (vj1 ⊗ vj2 ⊗ · · ·⊗ vjr) = vw(j1) ⊗ vw(j2) ⊗ · · ·⊗ vw(jr) (1)

for any j1, j2, . . . , jr ∈ [n] := {1, . . . , n}. In other words, the matrix of the action of w,
taken with respect to the basis

vi1 ⊗ vi2 ⊗ · · ·⊗ vir (i1, . . . , ir ∈ [n]), (2)

is the rth Kronecker power P (w)⊗r of the n × n permutation matrix P (w) := [δi,w(j)].
Extending the action linearly to the group algebra k[Wn] makes V⊗r into a k[Wn]-module.
Identify Endk(V

⊗r) with the algebra Mnr(k) of nr × nr matrices, via the basis, and let

Φ : k[Wn] → Endk(V
⊗r),

!
w∈Wn

aw w %→
!

w∈Wn
awP (w)⊗r (3)
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be the corresponding matrix representation. The image im(Φ) is the k-linear span of the
set Γ of rth Kronecker powers of n × n permutation matrices. Our main result is the
following.

Theorem 1. The set of all P (w)⊗r such that w is a permutation in Wn and the sequence
(w(1), w(2), . . . , w(n)) has an increasing (resp., decreasing) subsequence of length n− r is
a k-basis for im(Φ).

The result is of interest only for r < n−1, as the subsequence condition is vacuous for
r ! n− 1 (in which case Φ is faithful). In [5], it is shown that the problem of expressing
an arbitrary element of im(Φ) as a linear combination of the basis in Theorem 1 reduces
to inverting a (0, 1)-unitriangular matrix.

In Section 1 we assume that k = R, the field of real numbers, and consider nonnegative
matrices in im(Φ) in the spirit of [1,6,7,28,33,34,39]. Of particular interest is Birkhoff’s
theorem [2] (see also von Neumann [42]), that the set of n×n doubly stochastic matrices is
the convex hull of the set of n×n permutation matrices. We wondered whether Birkhoff’s
theorem extends to the set Ω of nr × nr doubly stochastic matrices in im(Φ); indeed, we
conjectured that it does so extend in an earlier version of this paper. The conjecture is
false, by a recent counterexample (Example 1) due to Roberson and Schmidt. In Section
1, we prove:

(i) Ω is convex and the points of Γ are extremal points of Ω.

(ii) Birkhoff’s theorem extends to Ω if and only if a theorem of König extends to Ω, and
it does so extend if r ! n− 1.

The interesting question of determining the convex structure of Ω, and in particular
finding its set of vertices, is highlighted.

The rest of the paper takes place over a general unital commutative ring k, unless
indicated otherwise. Section 2 looks at r = 1 in detail; the bases in Theorem 1 appear to be
new even in that case, and we show that they are indexed by the set of “consecutive” cycles
in Wn. Section 3 contains the proof of Theorem 1. Although the proof is straightforward
it is heavy on technical notation; in particular we need to work in the Iwahori–Hecke
algebra of Wn in most of that section. Note that Schur–Weyl duality is not needed to
prove Theorem 1. Theorem 2 in Section 3 obtains a new “Kazhdan–Lusztig” basis for the
annihilator of a certain key permutation module, which may be of independent interest.
Section 4 explains the connections to integral Schur–Weyl duality for partition algebras,
proved in [3, 10], and shows for instance that im(Φ) = EndP(r,n)(V

⊗r), the centralizer
algebra for the usual action of the partition algebra on tensor space. Section 5 applies
Schur–Weyl duality to describe im(Φ) by an explicit linear system, which relates back to
doubly stochastic matrices in case k = R.

1 Convexity and doubly stochastic matrices

Assume that k = R in this section. Recall that a square matrix is doubly stochastic if its
entries are nonnegative real numbers and all its rows and columns sum to 1.
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Proposition 1. If k = R, the set Ω of doubly stochastic matrices in im(Φ) is convex, and
every P (w)⊗r is an extremal point (vertex) of Ω.

Proof. Let M,M ′ be in Ω, the set of doubly stochastic elements of im(Φ), the R-span
Γ = {P (w)⊗r | w ∈ Wn}. Then for any 0 " t " 1, tM + (1 − t)M ′ is again doubly
stochastic, and it is also in the R-span of Γ, so it is in Ω. Thus Ω is convex.

Furthermore, if M = P (w)⊗r is not an extremal point of Ω, then it must be the
midpoint M = 1

2
(A + B) of the line segment between two distinct points A,B of Ω.

Hence
mi1···ir, j1···jr =

1
2
(ai1···ir, j1···jr + bi1···ir, j1···jr)

for all i1 · · · ir, j1 · · · jr in [n]r, where each

0 " ai1···ir, j1···jr , bi1···ir, j1···jr " 1.

Ifmi1···ir, j1···jr = 0 then ai1···ir, j1···jr = bi1···ir, j1···jr = 0. Ifmi1···ir, j1···jr = 1 then ai1···ir, j1···jr =
bi1···ir, j1···jr = 1. Since 0, 1 are the only possible values of the entries of M , we see that
A = B, which is the desired contradiction.

In case r = 1, Birkhoff’s theorem [2] characterizes the set of n × n doubly stochastic
matrices as the convex hull of the set of n×n permutation matrices. In light of Proposition
1, it is natural to ask the following question.

Question 1. Does Birkhoff’s result extend to the set Ω, for all n, r? In other words, is
Ω the convex hull of Γ, for all n, r?

Proposition 3 shows that the answer is yes for all r sufficiently large, but it is no in
general, as we will see. Recall that Birkhoff’s theorem is implied by a theorem of König
[24], which states that any n × n doubly stochastic matrix M = [mij] has a positive
diagonal, where a diagonal is defined to be {mw(j),j}j∈[n], for some w ∈ Wn (the entries
corresponding to the nonzero entries in P (w)). Equivalently, König’s result is that the
permanent of any doubly stochastic matrix is positive; recall that the permanent is the
sum of all diagonal products.

Proposition 2. Let k = R. For any n, r the following are equivalent:

(a) The set Ω of doubly stochastic matrices in im(Φ) is equal to the convex hull of
Γ = {P (w)⊗r | w ∈ Wn}.

(b) Every M = [mi1···ir, j1···jr ] in Ω has a positive “Kronecker power” diagonal; that is,
a diagonal, with all entries positive, of the form

{mw(j1)w(j2)···w(jn), j1j2···jr | j1, j2, . . . , jr = 1, . . . , n}

corresponding to the nonzero entries in P (w)⊗r, for some w ∈ Wn.
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Proof. This is an extension to higher Kronecker powers of standard arguments, e.g., [28,
II.1.7], [1, Thm. 2.1.4], or [7, Thm. 1.2.1].

We first show that (b) implies (a). Assume that (b) holds. Any convex linear combina-
tion of the P (w)⊗r clearly belongs to Ω, so we only need to show the reverse inclusion. Let
M be in Ω. By (b), there is a positive Kronecker power diagonal in M , indexed by some
w ∈ Wn. Let cw be the minimum entry in that diagonal. If cw = 1 then M = P (w)⊗r and
we are done. Otherwise 0 < cw < 1 and the matrix M ′ := 1

1−cw
(M−cwP (w)⊗r) is again in

Ω. Note thatM ′ has at least one more zero entry thanM , andM = cwP (w)⊗r+(1−cw)M
′.

We then repeat the argument with M ′ in place of M . The process must terminate in
finitely many steps, as the number of nonzero entries in the sequence of matrices forms a
strictly decreasing sequence. Upon termination, we have found real scalars cw ! 0 such
that

M =
!

w∈Wn
cwP (w)⊗r and

!
w∈Wn

cw = 1

which is a convex linear combination, thus proving the reverse inclusion and the desired
equality.

Conversely, the fact that (a) implies (b) is immediate, as the diagonal corresponding to
any nonzero summand in a convex linear combination of the P (w)⊗r must be positive.

Proposition 3. Assume that k = R. If r ! n−1 then Ω is equal to the convex hull of the
set Γ = {P (w)⊗r | w ∈ Wn}. In other words, the analogue of Birkhoff ’s theorem holds.

Proof. By [4, Cor. 4.13], the representation Φ is injective for any r ! n−1, hence induces
an isomorphism R[Wn] ∼= im(Φ). Thus there is always a unique solution to the equation

Φ
"!

w∈Wn
cww

#
=

!
w∈Wn

cwP (w)⊗r = M

for any given M in im(Φ). We have

mi1···ir, j1···jr =
!

w∈Wn:w(jα)=iα, ∀α cw.

If r ! n, only one P (w)⊗r can contribute to any mw(j1)···w(jr),j1···jr , where there are
exactly n distinct values (the maximum possible) in {j1, . . . , jr}. So we must take
cw = mw(j1)···w(jr),j1···jr equal to that entry of M , for each w. Thus, if M happens to
be doubly stochastic, then each cw ! 0. At least one of the cw is positive, and the cor-
responding diagonal is a positive Kronecker power diagonal in M , so by Proposition 2,
Birkhoff’s theorem holds in this case.

If r = n − 1 then the same reasoning applies to any mw(j1)···w(jn−1),j1···jn−1 , where the
values in {j1, . . . , jn−1} are all distinct (we can take jk = k here, for instance). The point
is that any permutation of n objects is determined by its values on n− 1 of them. So the
rest of the argument goes through as in the preceding paragraph.

However, in general the answer to Question 1 is no, as shown in the following simple
counterexample, based on Roberson and Schmidt [38, Sect. 3]. To set the stage, we
observe that P (w)⊗2 is the block matrix [δi,w(j)P (w)]. In other words, it has a copy of
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P (w) in each block corresponding to a 1-entry of P (w), and all other blocks are zero. For
instance, if t is the transposition that interchanges (1, 2) in W4 then

P (t)⊗2 =

$

%%&

0 P (t) 0 0
P (t) 0 0 0
0 0 P (t) 0
0 0 0 P (t)

'

(()

as a block matrix. Now we are ready for the promised example.

Example 1 (Roberson–Schmidt). Take (n, r) = (4, 2). Let M =
!

w∈W4
cwP (w)⊗2,

where cw = 1/5 for each transposition w ∈ W4, c1 = −1/5 is the coefficient of the identity
matrix, and cw = 0 for all other w ∈ W4. Then M has the block form shown in Figure 1,
with its rows and columns indexed by [4] × [4] ordered lexicographically. This matrix is

Figure 1: Counterexample for (n, r) = (4, 2)

!

"""""""""""""""""""""""""""#

.4 0 0 0 0 .2 0 0 0 0 .2 0 0 0 0 .2
0 0 .2 .2 .2 0 0 0 0 .2 0 0 0 .2 0 0
0 .2 0 .2 0 0 .2 0 .2 0 0 0 0 0 .2 0
0 .2 .2 0 0 0 0 .2 0 0 0 .2 .2 0 0 0

0 .2 0 0 0 0 .2 .2 .2 0 0 0 .2 0 0 0
.2 0 0 0 0 .4 0 0 0 0 .2 0 0 0 0 .2
0 0 .2 0 .2 0 0 .2 0 .2 0 0 0 0 .2 0
0 0 0 .2 .2 0 .2 0 0 0 0 .2 0 .2 0 0

0 0 .2 0 .2 0 0 0 0 .2 0 .2 .2 0 0 0
0 .2 0 0 0 0 .2 0 .2 0 0 .2 0 .2 0 0
.2 0 0 0 0 .2 0 0 0 0 .4 0 0 0 0 .2
0 0 0 .2 0 0 0 .2 .2 .2 0 0 0 0 .2 0

0 0 0 .2 .2 0 0 0 .2 0 0 0 0 .2 .2 0
0 .2 0 0 0 0 0 .2 0 .2 0 0 .2 0 .2 0
0 0 .2 0 0 0 .2 0 0 0 0 .2 .2 .2 0 0
.2 0 0 0 0 .2 0 0 0 0 .2 0 0 0 0 .4

$

%%%%%%%%%%%%%%%%%%%%%%%%%%%&

doubly stochastic. We claim that it contains no positive Kronecker power diagonal, and
thus by Proposition 2 does not lie in the convex hull of Γ. Notice that

Mi,j = .2P (ti,j) for all i ∕= j

where ti,j is the transposition interchanging i, j. Each of these blocks has a unique positive
diagonal. By the observation preceding this example, if M had a positive Kronecker
power diagonal, it would be of the form P (t)⊗2, for some transposition t. But none of the
blocks Mi,i on the main block diagonal contains a positive diagonal corresponding to any
transposition, so the claim is established.
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We note that Proposition 1 implies that the analogue of Birkhoff’s theorem holds for
a given r if and only if the P (w)⊗r, w ∈ Wn, are the only vertices of the convex region Ω.
The existence of Example 1 suggests the following interesting problem.

Question 2. Determine the vertex set of the convex polytope Ω.

By Proposition 1, all the points in Γ are vertices of Ω, but Example 1 shows that there
can be others. In fact, for (n, r) = (4, 2), calculations by Roberson and Schmidt reveal
that Ω has 162 vertices, far more than the 24 in Γ.

2 Interpretation of the main result in case r = 1

We work over k (an arbitrary unital commutative ring) from now on, unless explicitly
stated otherwise. Theorem 1 gives two bases of im(Φ) which appear to be new, even for
r = 1. We wish to explore this case in detail, as it turns out that the set of permutations
in question has interesting structure.

We need to understand the set of w ∈ Wn having an increasing subsequence of length
n − 1. It is easy to list all such w by a combinatorial process of filling in n slots. We
will use the shorthand notation w1w2 · · ·wn for the sequence (w(1), w(2), . . . , w(n)) for
w ∈ Wn. To construct a permutation w1w2 · · ·wn on the list, that is, one having an
increasing subsequence of length n − 1, pick a number k ∈ [n] and a slot j ∈ [n], and
place k in the jth slot. The remaining elements, i.e., those in [n] \ {k}, are placed in the
remaining slots in increasing order. As there are n choices for the number and n choices
for its slot, there are n2 items in the list.

Example 2. If n = 4, carrying out the above procedure yields the following grid of
sequences, in the shorthand notation:

1234 2134 2314 2341
2134 1234 1324 1342
3124 1324 1234 1243
4123 1423 1243 1234

in which we have underlined the number placed in the chosen slot.

Notice that the identity permutation appears n times on the main diagonal, and the
n − 1 elements on the superdiagonal are the same as the corresponding ones on the
subdiagonal. So our list overcounts by 2(n−1) items. Omitting the duplicates, we obtain
a list of n2 − 2n + 2 permutations, which is the (well known) dimension of im(Φ) in the
r = 1 case.

The structure of this set of permutations is revealed by writing the permutations not
as sequences, but instead as products of disjoint cycles.
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Example 3. The corresponding elements in Example 2 written in the cycle notation (e.g.,
(4, 3, 2) means 4 %→ 3 %→ 2 %→ 4) are:

(1) (1, 2) (1, 2, 3) (1, 2, 3, 4)
(2, 1) (1) (2, 3) (2, 3, 4)
(3, 2, 1) (3, 2) (1) (3, 4)
(4, 3, 2, 1) (4, 3, 2) (4, 3) (1)

where we write (1) for the identity permutation.

Observe that every element consists of a single cycle of consecutive numbers, and all
such cycles appear. Elements along the diagonals have the same cycle length, the cycle
length increasing by one each step as the diagonal distance increases away from the main
diagonal. Cycles which are in symmetric positions about the diagonal are mutual inverses.
Finally, we observe that the picture is compatible with restriction, because we obtain the
grid for n− 1 by deleting the last row and column of the grid for n.

Let w0 be the longest element (with respect to the usual Coxeter length function) in
Wn. Note that w0, as a sequence, is the reverse of the identity sequence (it swaps (1, n),
(2, n− 1), etc).

We define a consecutive k-cycle to be either a k-cycle which maps each integer in the
interval [i, i+ k− 1] to its successor modulo k, or its inverse. Notice that all the cycles in
Example 3 are consecutive.

Proposition 4. The set of w ∈ Wn having an increasing subsequence of length n−1 is the
same as the set Cons(n) of all consecutive cycles in Wn, and thus {P (w) | w ∈ Cons(n)},
{P (ww0) | w ∈ Cons(n)} are the bases in Theorem 1 in case r = 1.

Proof. The first claim is proved by induction on n. Assuming the desired equality in the
statement has been established for n − 1, one easily checks that the additional 2n − 3
consecutive cycles which move n coincide with the non-diagonal elements in the last row
and column of the grid, which shows that the equality holds when n− 1 is replaced by n.

Hence {P (w) | w ∈ Cons(n)} is the first basis in Theorem 1. The second basis is
obtained by reversing the order of each sequence in the grid, which obviously interchanges
increasing and decreasing subsequences. Let ←−w denote the reverse of w ∈ Wn. Then
←−w = ww0. It follows that {P (ww0) | w ∈ Cons(n)} is the second basis in Theorem 1.

The two bases in Proposition 4 appear to be new. Compare e.g. with the bases in
[8, 11, 12, 15, 20, 26]. The first basis in Proposition 4 has something of the same flavor
as that in [12, Cor. 1], which is also indexed by a (different) set of cycles and is also
compatible with restriction.

3 Proof of Theorem 1

The main task of the proof is to rewrite the basis of ker(Φ) given in [4, Thm. 7.4] (which
is written in terms of certain Murphy basis elements at v = 1) in terms of the Kazhdan–
Lusztig basis. Our main technical tool is the paper of Geck [14], which works out the
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relation between the two approaches in the context of the Iwahori–Hecke algebra H as-
sociated to the symmetric group. One may wish to compare our proof with the proof of
[37, Thm. 1], which is also based on Geck’s paper, although both the results and proofs
are different.

Let S be the set of adjacent transpositions inWn and writeW = Wn in this section. Let
l : W → Z!0 be the usual length function with respect to S. The Iwahori–Hecke algebra
H = H(W,S) is the Z[v, v−1]-algebra (v an indeterminate) with basis {Tw | w ∈ W}
(where T1 = 1) and with multiplication given by

TsTw =

*
Tsw if l(sw) = l(w) + 1,

Tsw + (v − v−1)Tw if l(sw) = l(w)− 1

for all w ∈ W , s ∈ S.

Remark 1. We follow the notational conventions of [14, 27] here; in particular the gen-
erators Ts satisfy the “balanced” quadratic eigenvalue relation (Ts+ v−1)(Ts− v) = 0. To
get back to the setup in the older articles [22, 35, 36] one needs to set q = v2 and replace
Ts by vTs (which defines an isomorphism between the two versions).

There is a unique ring involution Z[v, v−1] → Z[v, v−1], written a %→ a, such that
v = v−1. This extends to a ring involution ȷ : H → H such that

ȷ
"!

w∈W awTw

#
=

!
w∈W (−1)l(w)awTw (4)

for any aw ∈ Z[v, v−1]. There is also a unique Z[v, v−1]-algebra automorphism

† : H → H such that Ts %→ T †
s = −T−1

s (s ∈ S). (5)

We have T †
w = (−1)l(w)T−1

w−1 , for any w ∈ W . The maps ȷ, † commute. Define a map

: H → H, h %→ h, where h = ȷ(h†) = ȷ(h)†. The map is a ring involution of H such
that !

w∈W awTw =
!

w∈W awT
−1
w−1 (aw ∈ Z[v, v−1]). (6)

By [27, Thm. 5.2], for any w ∈ W , there exist unique Cw, C
′
w in H such that

Cw = Cw and Cw ≡ Tw mod H>0

C ′
w = C ′

w and C ′
w ≡ Tw mod H<0

(7)

where
H>0 :=

!
w∈W vZ[v]Tw, H<0 :=

!
w∈W v−1Z[v−1]Tw.

Then {Cw | w ∈ W}, {C ′
w | w ∈ W} are both bases ofH. These are the “Kazhdan–Lusztig

bases” first introduced in [22]. It was proved in [22, Thm. 1.1] that

Cw = Tw +
+

y<w

(−1)l(w)+l(y)py,w Ty, C ′
w = Tw +

+

y<w

py,w Ty (8)
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for any w ∈ W , where both sums are over the set of y ∈ W such that y < w in the Bruhat–
Chevalley order on W = Wn and py,w is in v−1Z[v−1]. It follows that Cw = (−1)l(w)ȷ(C ′

w).

Now we recall Murphy’s bases. As usual, we write λ ⊢ n to indicate that λ =
(λ1,λ2, . . . ,λk) is a partition of n (meaning that λ ∈ Zk, λ1 ! λ2 ! · · · ! λk > 0,
and

!
λi = n). If λ ⊢ n, set

T(λ) = {standard Young tableaux of shape λ}

where as usual the numbers in a standard tableau are strictly increasing along the rows
and down the columns. (See [13] for details.) In [35] (see also [36]) Murphy introduces
two bases

{xst | s, t ∈ T(λ),λ ⊢ n}, {yst | s, t ∈ T(λ),λ ⊢ n}
of H, indexed by pairs of standard Young tableaux of the same shape. For λ ⊢ n and
s, t ∈ T(λ),

xλ :=
!

w∈Wλ
vl(w)Tw and xst := Td(s)xλTd(t)−1

yλ :=
!

w∈Wλ
(−v)−l(w)Tw and yst := Td(s)yλTd(t)−1

(9)

where Wλ is the usual Young subgroup associated to λ and d(t) := y, for a tableau t, if
y ∈ W is the unique element of W such that yt = tλ. Here tλ is the tableau in which the
the numbers 1, . . . , n appear in their natural order, written as in order across rows from
the top row to the bottom one. Notice that Wλ is the row-stabilizer of tλ.

Remark 2. The notation here differs slightly from Murphy’s in [35,36]. Because of renor-
malization (see Remark 1) what he writes as Tw corresponds to vl(w)Tw in our notation.
Also, the order of the products defining xst, yst is reversed here, as we deal with left mod-
ules while he works with right ones. Our conventions are chosen to agree with those in
Geck’s paper [14].

Recall [13, 41] or [23, §5.1.4] that the Robinson–Schensted–Knuth (RSK for short)
correspondence gives a bijection

,

λ⊢n

"
T(λ)× T(λ)

#
→ W

mapping pairs of standard tableaux of the same shape to permutations. Write πλ(s, t) for
the image of a pair (s, t) of standard tableaux of shape λ. Given w ∈ W , the pair (s, t)
such that πλ(s, t) = w is explicitly constructed by the insertion algorithm [13,23,41]: s is
obtained by inserting the numbers in the sequence (w(1), w(2), . . . , w(n)) into an initially
empty tableau, and t records the order in which the positions of s were filled.

For any s, t ∈ T(λ), any λ ⊢ n, the ring involution ȷ : H → H defined in (4) satisfies

ȷ(xλ) = yλ and thus ȷ(xst) = ±yst. (10)

Hence by [14, Cor. 4.3], it follows that Geck’s element ỹst := Td(s)Cwλ
Td(t)−1 satisfies the

identity
ỹst = ±vl(wλ)yst. (11)
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The element wλ = πλ′(tλ
′
, tλ

′
) here is the longest word in Wλ, where

λ′ denotes the transpose partition of λ.

By [14, Cor. 5.6], the two-sided Kazhdan–Lusztig cell R(λ) indexed by any λ ⊢ n is given
by

R(λ) = {πλ′(s, t) | s, t ∈ T(λ′)}. (12)

For any w ∈ W , Geck writes λw = λ ⇐⇒ w ∈ R(λ). We prefer instead to label cells
by their RSK-shape, written RSK(w), which we define to be the common shape of the
associated pair of tableaux in the RSK-correspondence. Thus

λw = λ ⇐⇒ RSK(w) = λ′; i.e., RSK(w) = λ′
w. (13)

Recall the dominance order ⊵ on partitions, a partial order, defined by

λ = (λ1, . . . ,λm)⊵ µ = (µ1, . . . , µl)

if
!

i"k λi !
!

i"k µi for all k. Write λ⊴µ if and only if µ⊵λ, and λ⊳µ if and only if λ⊴µ
but λ ∕= µ, etc. Recall that transposition reverses the dominance order: λ⊵µ ⇐⇒ λ′⊴µ′.
Reformulating the statement of [14, Cor. 4.11] in light of [14, Cor. 5.11] in these terms
gives the following.

Proposition 5 (Geck). Let λ ⊢ n. For any s, t in T(λ), there exists a unique element
w ∈ R(λ) of RSK-shape λ′, such that

ỹst = Cw +
+

x: RSK(x)=λ′

axCx +
+

x: RSK(x)⊳λ′

bxCx

where ax ∈ vZ[v], bx ∈ Z[v, v−1] for all x.

Recall what it means to “specialize v %→ ξ in k”. If ξ ∈ k is invertible, we regard k as
a Z[v, v−1]-algebra by means of the (unique) ring homomorphism Z[v, v−1] → k sending
v±1 %→ ξ±1. Let Hk := k ⊗Z[v,v−1] H be the k-algebra obtained by extending scalars via
this morphism. By abuse of notation, we identify symbols such as Tw, Cw, yst, etc with
their respective images 1 ⊗ Tw, 1 ⊗ Cw, 1 ⊗ yst, etc in Hk. As in Dipper and James [9],
the left ideal Mλ := Hxλ is a “permutation module” indexed by λ ⊢ n. If we specialize
v %→ 1 in k then Hk ∼= k[Wn] and Mλ is isomorphic to the usual permutation module for
k[Wn].

At this point, there are two possibilities for how to proceed, depending on whether we
prefer to specialize now or later. Rather than favor one over the other, we discuss both.

Theorem 2. Suppose that r < n − 1. Let α(n, r) := (n − r, 1r) be the partition (n −
r, 1, . . . , 1) with 1 repeated r times.

(a) Under specialization v %→ 1 in k, the set {Cx | RSK(x) ⋭ α(n, r)} is a k-basis of the
annihilator of the k[Wn]-action on V⊗r.
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(b) Over Z[v, v−1], the set {Cx | RSK(x) ⋭ α(n, r)} is a Z[v, v−1]-basis of the annihilator
of the H-action on Mα(n,r).

Proof. (a) Let ∆ := {a ∈ k[Wn] | a annihilates V⊗r}. By [4, Thm. 7.4], the set

{yst | s, t ∈ T(λ), λ ⋬ α(n, r)′} = {yst | s, t ∈ T(λ), λ′ ⋭ α(n, r)}

is a k-basis of ∆. Let
a =

+

s,t∈T(λ):λ′⋭α(n,r)

astyst (ast ∈ k)

be an arbitrary element of ∆. As we are working at v = 1, we have yst = ±ỹst by equation
(11). By Proposition 5, each yst appearing on the right hand side of the above equality
belongs to the k-span of {Cx | RSK(x)⊴ λ′}, for some λ′ ⋭ α(n, r). But

λ′ ⋭ α(n, r) and RSK(x)⊴ λ′ =⇒ RSK(x) ⋭ α(n, r),

so a is in the span of {Cx | RSK(x) ⋭ α(n, r)}. So that set spans ∆. Linear independence
is clear, so it is a basis. This proves (a).

(b) Now let ∆ := {a ∈ H | a annihilates Mα(n,r)}. By [10, §8], which extends the
main result of [4] to H, essentially the same set

{yst | s, t ∈ T(λ), λ ⋬ α(n, r)′} = {yst | s, t ∈ T(λ), λ′ ⋭ α(n, r)}

is a Z[v, v−1]-basis of ∆. The rest of the argument is almost exactly the same as for part
(a), except that coefficients are in Z[v, v−1]. The power of v in equation (11) causes no
trouble, as v is invertible.

Remark 3. (i) Parts (a), (b) of Theorem 2 are connected by [4, Thm. 7.4(c)], which says
that when v %→ 1 in k, the annihilators of V⊗r and Mα(n,r) coincide. It follows that (b)
implies (a) in Theorem 2. On the other hand, we proved (a) directly without assuming
(b), based on the main result of [4], and (a) is really all we need. (ii) There is no Hopf
algebra structure on H properly deforming that of Z[Wn], so there is no interesting “q-
analogue” of the diagonal action of k[Wn] on V⊗r; thus it doesn’t make sense to ask for
the annihilator of V⊗r in the context of part (b).

The following Lemma will be applied to deduce the Corollary to Theorem 2 that
follows, which in turn is used in proving Theorem 1.

Lemma. For any subset U of Wn, the image of {Tw | w ∈ Wn \U} is a Z[v, v−1]-basis of
H/∆, where ∆ is the submodule spanned by {Cx | x ∈ U}. The corresponding statement
holds over k upon specialization v %→ 1.

Proof. This is essentially the same idea as Möbius inversion over the poset Wn under the
Bruhat–Chevalley order, using the unitriangular relation (8) between the bases {Cx | x ∈
Wn}, {Tx | x ∈ Wn}. By inverting the unitriangular matrix giving the basis transition in
(8), we see that

Tw = Cw +
+

y<w

by,wCy (by,w ∈ Z[v, v−1]).
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This implies a similar relation holds in the image H/∆, that is,

T̃w = C̃w +
+

y<w, y/∈U

by,wC̃y (by,w ∈ Z[v, v−1])

where we set T̃w := Tw +∆, C̃w := Cw +∆ in the quotient. Clearly, the set {C̃x | x /∈ U}
is a basis of H/∆. Inverting again, we see that

C̃w = T̃w +
+

y<w, y/∈U

dy,wT̃y (dy,w ∈ Z[v, v−1]).

Thus, H/∆ is spanned by {T̃w | w ∈ Wn \ U}. We leave the proof of linear independence
of that set to the reader.

Corollary. The image of {Tx ∈ H | RSK(x)⊵α(n, r)} is a Z[v, v−1]-basis of the quotient
H/∆, where ∆ is the annihilator of Mα(n,r). Under specialization v %→ 1 in k, the image of
{x ∈ Wn | RSK(x)⊵α(n, r)} is a k-basis of k[Wn]/∆, where ∆ = ker(Φ) is the annihilator
of V⊗r.

Proof. The first statement follows from part (b) of Theorem 2, by taking U in the Lemma
to be the set of x in Wn such that RSK(x) ⋭ α(n, r). The second statement follows from
the first, as Tx becomes x upon specialization v %→ 1. Alternatively, it follows from part
(a) of Theorem 2, by making the same choice for U and specializing in the Lemma.

We can now give the proof of the main result.

Proof of Theorem 1. By the Corollary, {P (w)⊗r | w ∈ Wn,RSK(w)⊵α(n, r)} is a k-basis
of im(Φ) ∼= k[Wn]/ ker(Φ). By [4, Lem. 6.2],

λ⊵ α(n, r) ⇐⇒ λ1 ! n− r

and by Schensted’s theorem [40] (see also [41]) we have

RSK(w) = λ =⇒ IS(w) = λ1

where IS(w) is the length of the longest increasing subsequence of (w(1), w(2), . . . , w(n)).
Putting these facts together shows that

λ = RSK(x)⊵ α(n, r) ⇐⇒ IS(λ) ! n− r

which gives the first basis in Theorem 1.

The existence of the second basis in Theorem 1 follows from the first, using another
observation of Schensted, that DS(w) = IS(←−w ) for any w inWn, where DS(w) is the length
of the longest decreasing subsequence of (w(1), . . . , w(n)) and ←−w = (w(n), . . . , w(1)) is
the reverse of w, already considered in the proof of Proposition 4. The map

!
aww %→

!
aw

←−w =
!

awww0 (aw ∈ k)
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given by right multiplication by w0 defines a linear involution of k[Wn] carrying {w |
DS(w) ! k} onto {w | IS(w) ! k}, for any k. It induces a linear involution on im(Φ)
which is given by right multiplication by the matrix P (w0)

⊗r; this clearly interchanges
the two bases.

Remark 4. Theorem 1 has a counterpart for the k-submodule V⊗r⊗vn of V⊗(r+1), which
we identify with V⊗r. The restriction of the diagonal action of Wn to the subgroup

Wn−1 = {w ∈ Wn | w(n) = n} ⊂ Wn

gives an action on V⊗r fixing vn. Let Φ′ : k[Wn−1] → Endk(V
⊗r) be the corresponding

representation. Then the set of P (w)⊗r indexed by w ∈ Wn−1 having an increasing (resp.,
decreasing) subsequence of length n − 1 − r is a basis of im(Φ′). The proof is nearly
identical with that of Theorem 1; we leave the details to the reader.

4 Connections with Schur–Weyl duality

Let A = k[Wn] be the group algebra of Wn. The diagonal action of Wn makes V⊗r into
an A-module. Let

A′ = EndA(V
⊗r) = {ϕ ∈ Endk(V

⊗r) | ϕ(αt) = αϕ(t),α ∈ A, t ∈ V⊗r},

the commutant of A. Then V⊗r is also an A′-module, with ϕ ∈ A′ acting by ϕ · t = ϕ(t)
for any t ∈ V⊗r. Each α ∈ A induces an A′-homomorphism fα : V⊗r → V⊗r defined by
fα(t) = αt. Now consider the bicommutant (double centralizer)

A′′ = EndA′(V⊗r) = {ψ ∈ Endk(V
⊗r) | ψf = fψ, for all f ∈ A′}

where the multiplication here is functional composition. Then the map

Φ : A → EndA′(V⊗r) = A′′, α %→ fα. (14)

is an k-algebra homomorphism. It is abstractly the same map as the representation Φ
considered in (3), with restricted codomain.

If k is a field of characteristic zero or characteristic larger than n, then V⊗r is
semisimple as an A-module and Jacobson’s density theorem [18] (see also [19, §4.3] or
[25, Chap. XVII, Theorem 3.2]) implies that Φ is surjective. By the main result of [3] (see
also [10, §6]), Φ is surjective in general, for any unital commutative ring k.

Let P(r, n) be the partition algebra [21, 29–31] over k on 2r vertices with param-
eter n. It has a basis indexed by the set partitions (equivalence relations) on the set
{1, . . . , r, 1′, . . . , r′}; basis elements are often depicted by diagrams on 2r vertices labeled
by elements of that set, with a path connecting two vertices if and only if they lie in the
same subset of the set partition. The action of P(r, n) onV⊗r is described explicitly in [17],
to which we refer for basic properties of partition algebras. Let Ψ : P(r, n) → Endk(V

⊗r)
be the representation afforded by the action.
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Proposition 6 (Schur–Weyl duality). The commutant A′ = EndWn(V
⊗r) is the image

of the representation Ψ : P(r, n) → Endk(V
⊗r). The bicommutant A′′ = im(Φ) is the

centralizer algebra EndP(r,n)(V
⊗r).

Proof. The fact that A′ = EndWn(V
⊗r) is the image of Ψ is [17, Thm. 3.6]; the combi-

natorial proof given there is valid over any k. The aforementioned surjectivity of Φ then
implies the second claim.

If we now assume that k = R, the following shows that the study of the set of nonneg-
ative invariants in EndP(r,n)(V

⊗r) reduces to the study of the set Ω of doubly stochastic
elements of im(Φ).

Corollary. Assume that k = R. Then the set of all nonnegative matrices in im(Φ) =
EndP(r,n)(V

⊗r) identifies with the set of nonnegative scalar multiples of the set Ω of doubly
stochastic matrices in im(Φ).

Proof. If M is a matrix in im(Φ), it may be written as a linear combination of elements
of the set Γ of P (w)⊗r, for w ∈ Wn. The rows and columns of the P (w)⊗r all sum to
1; hence the rows and columns of M all sum to the same value. If the entries of M are
nonnegative, then so is the common value s of the row and column sums. If s ∕= 0 then
s−1M is doubly stochastic, so M is a positive multiple of that doubly stochastic matrix. If
s = 0 then M = [0] must be the zero matrix, which is also zero times a doubly stochastic
matrix.

Conversely, suppose that D ∈ im(Φ) is doubly stochastic. Then it is a nonnegative
matrix in EndP(r,n)(V

⊗r), hence the same is true of any nonnegative scalar multiple.

Remark 5. Return to general k. In the situation of Remark 4, there is an action of
the “half” partition algebra P(r + 1

2
, n) on V⊗r ∼= V⊗r ⊗ vn, where P(r + 1

2
, n) is the

subalgebra of P(r + 1, n) spanned by all diagrams with an edge connecting vertices r,
r′; see [17] for details. All of the results in this section generalize to the half partition
algebra. In particular, the bicommutant of the action of Wn−1 is equal to

im(Φ′) = EndP(r+ 1
2
,n)(V

⊗r).

Again, we leave the details to the interested reader. Remark 4 gives a basis of this algebra.

5 Equations for im(Φ) and Ω

There is another symmetric group Sr acting on V⊗r, by place-permutation, and its com-
mutant algebra is the Schur algebra EndSr(V

⊗r) studied in [16,32], etc. We write it as Sr

to emphasize that the actions of Sr and Wn on tensors are very different. Write (i1 · · · ir)σ
for the effect of place-permuting i1 · · · ir according to σ ∈ Sr. By [3, Prop. 3.2], combined
with the fact that P(r, n) is generated by Sr and the elements p1, p3/2 in the notation of
[17, (1.10)], an nr ×nr matrix X = [xi1···ir, j1···jr ] belongs to the bicommutant A′′ = im(Φ)
if and only if
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(i) xi1···ir, j1···jr = x(i1···ir)σ ,(j1···jr)σ , for all σ ∈ Sr.

(ii) xi1···ir, j1···jr = 0 if (i1 = i2 but j1 ∕= j2) or (i1 ∕= i2 but j1 = j2).

(iii)
!n

i=1 xi i2···ir, j1···jr =
!n

j=1 xi1···ir, j j2···jr , for all i1, . . . , ir, j1, . . . , jr.

Condition (i) is the condition that X is in the Schur algebra, and (iii) is equivalent to X
commuting with Jn ⊗ In

⊗(r−1), where Jn = [1] is the n× n matrix of all 1’s and In = [δij]
is the n× n identity matrix. Thanks to (i), conditions (ii), (iii) can be place-permuted to
any other places.

Finally, if k = R, including the additional conditions

(iv) xi1···ir, j1···jr ! 0,

(v)
!

i1···ir xi1···ir, j1···jr = 1 =
!

j1···jr xi1···ir, j1···jr

(for all i1 · · · ir, j1 · · · jr) along with conditions (i)–(iii) gives a description of the set Ω of
doubly stochastic elements of im(Φ) = EndPr(n)(V

⊗r).
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