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Abstract

We define the Eulerian ideal of a k-uniform hypergraph and study its degree
and Castelnuovo–Mumford regularity. The main tool is a Gröbner basis of the ideal
obtained combinatorially from the hypergraph. We define the notion of parity join
in a hypergraph and show that the regularity of the Eulerian ideal is equal to the
maximum cardinality of such a set of edges. The formula for the degree involves
the cardinality of the set of sets of vertices, T , that admit a T -join. We compute
the degree and regularity explicitly in the cases of a complete k-partite hypergraph
and a complete hypergraph of rank three.

Mathematics Subject Classifications: 13A02, 13P10, 13P25, 05E40; 05C65,
05C70

1 Introduction

Eulerian ideals of graphs were introduced in [13], motivated by the notion of vanishing
ideals of projective toric sets parameterized by graphs, the study of which started in
[14]. Both the Eulerian ideal of a graph and the vanishing ideal of the toric subset pa-
rameterized by a graph are homogeneous binomial ideals of the polynomial ring on the
edges of the graph and yield one-dimensional, Cohen–Macaulay quotients. These proper-
ties are favorable to the study of the Castelnuovo–Mumford regularity and the degree of
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these ideals. In the case of the vanishing ideal of the projective toric set parameterized
by a graph, there has been substantial progress in the computation of these invariants
(cf. [5, 6, 8, 10, 12, 15]) and results indicate that they involve the cardinality of the base
field. On the other hand, by [13, Proposition 2.8] we known that in the case of the Eulerian
ideal, the regularity and the degree do not depend on the base field and therefore they
reflect the combinatorics in a clear way. The degree of the Eulerian ideal has a simple
formula involving the number of connected components of G and the bipartite property
(cf. [13, Proposition 2.11]). As for the formula of the regularity, the key combinatorial
notion, introduced in [9], is that of parity join. These are subsets of edges of the graph
which, given any even subgraph of the graph with an even number of edges (for example,
two edge-disjoint triangles), have no more than half the number of edges of that sub-
graph in common with it (cf. Definition 14, below). Together with a re-interpretation of
this invariant in terms of T -joins with cardinalities of fixed parity, these have enabled a
combinatorial formula for the Castelnuovo–Mumford regularity of the Eulerian ideal (or,
equivalently, the quotient it yields) for a general graph (cf. [9, Theorem 4.13]).

The purpose of the present article is to generalize the notions and results of [13, 9]
to hypergraphs. To obtain a homogeneous ideal without changing the original definition,
we will restrict to k-uniform hypergraphs, i.e., hypergraphs whose edges have cardinality
equal to k. We describe a Gröbner basis for the Eulerian ideal of a k-uniform hypergraph
and from this basis we derive combinatorial formulas for the degree and the Castelnuovo–
Mumford regularity. Finally, we apply these to the explicit computation of these invariants
in the case of complete hypergraphs.

The contents are the following. Sections 2 and 3 are devoted to preliminary material;
we give the definition of the Eulerian ideal of a hypergraph (Definition 1), a characteriza-
tion of the homogeneous binomials in the ideal (Proposition 3) and we define T -joins and
even subsets in a hypergraph (Definition 5). In Section 4 we describe a Gröbner basis of
the ideal (Theorem 10) which we use in Section 5 to describe the Hilbert function of the
quotient by the ideal in terms of reduced parity joins (Definition 14 and Theorem 17). In
Sections 6 and 7 we give combinatorial formulas for the invariants regularity (Theorem 24)
and degree (Theorem 26). In Section 8, we compute explicitly these invariants for some
families of complete hypergraphs.

2 The ideal

Let H be a hypergraph. More precisely, let H = (VH, EH) where VH is a set (of vertices)
and EH is a set of subsets of VH, the elements of which we call edges ofH. All hypergraphs
in this article are assumed to be finite, with nonempty edge set and k-uniform, with k > 2,
i.e., their edges have common cardinality equal to k. Simple graphs are identified with
2-uniform hypergraphs. Fix K a field and let

K[VH] = K[xv : v ∈ VH] and K[EH] = K[te : e ∈ EH]

be polynomial rings. Define a homomorphism of graded rings, ϕ : K[EH] → K[VH], by
ϕ(te) =

∏
v∈e xv, for all e ∈ EH. Throughout we will use the multi-index notation for
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monomials, i.e., whenever α ∈ NEH is a nonnegative integer valued function of the set of
edges, tα ∈ K[EH] will denote the monomial:

tα =
∏

e∈EH
t
α(e)
e .

If α ∈ ZEH is an integer-valued function of the edge set of H, we will use supp(α) to
denote its support, i.e., supp(α) = {e ∈ EH : α(e) 6= 0}. Similarly for functions of the
vertex set γ and monomials xγ ∈ K[VH].

Definition 1. Let H be a k-uniform hypergraph. With the above notations, the Eulerian
ideal of H is the ideal IH = ϕ−1(x2v − x2w : v, w ∈ VH).

Since ϕ is a graded homomorphism and IH is the preimage of a homogeneous binomial
ideal, by a standard elimination argument, the Eulerian ideal of H is also a homogeneous
binomial ideal (Cf., for instance, [13, Proposition 2.2]). In the graph case, the name
Eulerian ideal comes from the characterization of a Gröbner basis of this ideal in terms of
the Eulerian subgraphs of the graph (cf. [9, Theorem 3.3]). In the hypergraph case, the
role of Eulerian subgraphs will be taken by the even subsets of edges (cf. Definition 5), as
we will see later. This is equivalent in the case of graphs and, in the case of hypergraphs,
is a direct approach that avoids considering any of the several notions of connectivity.
The motivation for this is the next result, which is a characterization of the binomials in
the Eulerian ideal, along the lines of [13, Proposition 2.5]. Let us first fix some notation.

Definition 2. (i) If C ⊂ EH and v ∈ VH, let degC(v) denote
∑

e∈C | {v} ∩ e|. (ii) If
α ∈ ZEH , let

supp2(α) = {e ∈ EH : α(e) ≡2 1} ⊂ EH.

Proposition 3. Let tα − tβ ∈ K[EH] be homogeneous and let C = supp2(α − β). Then
tα − tβ ∈ IH if and only if, for every v ∈ VH, degC(v) is even.

Proof. Let ϕ(tα − tβ) = xγ − xµ, for some γ, µ ∈ NVH . Then, for every v ∈ VH,

degC(v) =
∑

e∈C | {v} ∩ e|
≡2

∑
e∈EH

| {v} ∩ e| · (α(e)− β(e))

≡2 γ(v)− µ(v).

Suppose that tα − tβ ∈ IH. Then xγ − xµ ∈ (x2v − x2w : v, w ∈ VH) and therefore there
exist gvw ∈ K[EH] such that

xγ − xµ =
∑

v,w∈EH

gvw(x2v − x2w).

Fix v ∈ VH. Setting all variables but xv, in the expression above, equal to 1 we get:

xγ(v)v − xµ(v)v = h(x2v − 1)
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for some h ∈ K[xv]. Writing h as linear combination of monomials in xv and working
out the product on the left explicitly, we deduce that there exists m ∈ Z such that
γ(v) = µ(v) + 2m, as required.

Conversely, suppose that γ(v) − µ(v) is even, for every v ∈ VH. Then there exists
ρ ∈ {0, 1}VH such that γ = 2γ′ + ρ and µ = 2µ′ + ρ for some γ′, µ′ ∈ NVH . Let us fix
u ∈ VH and let us work with the relations x2v ≡ x2u modulo the ideal (x2v−x2w : v, w ∈ VH).
Then

xγ − xµ ≡ x
2|γ′|
u xρ − x2|µ

′|
u xρ,

where |γ′| =
∑

v∈VH γ
′(v) and |µ′| =

∑
v∈VH µ

′(v). As xγ − xµ is homogeneous (because

tα − tβ is), we get |γ′| = |µ′| and thus the last binomial above is equal to zero. We
conclude that ϕ(tα − tβ) ∈ (x2v − x2w : v, w ∈ VH), i.e., tα − tβ ∈ IH.

Example 4. Let H be the 3-uniform hypergraph on VH = {1, 2, 3, 4, 5} with

EH = {{1, 2, 4} , {2, 3, 4} , {1, 3, 4} , {1, 2, 5} , {2, 3, 5} , {1, 3, 5}} , (1)

depicted in Figure 1 as the faces of a triangular bipyramid. Consider the set of faces

1

2

3

4

5

Figure 1: A 3-uniform graph.

incident to vertex 2,

J = {{1, 2, 4} , {2, 3, 4} , {1, 2, 5} , {2, 3, 5}} . (2)

One checks easily that degJ(v) is even, for every v ∈ VH. Hence, by Proposition 3, if
J = A tB is any partition of J into parts of cardinality 2, the binomial∏

e∈A te −
∏

e∈B te

is an element of IH. For example, t124t234 − t125t235 ∈ IH. There are 6 binomials coming
from these choices. In a minimal generating set, which one can compute using Macaulay2,
there are 8 binomials of this type (of the 18 we get by varying J as the set of edges incident
to 1, 2 or 3, only 8 are linearly independent) and there are 5 other binomials of the form
t2e − t2f , for e, f ∈ EH.

the electronic journal of combinatorics 29(4) (2022), #P4.3 4



3 T -joins

The characterization of the binomials in IH given in Proposition 3 leads us to the notion
of T -join in hypergraphs. This notion will play a key role in the computation of the
regularity and the degree of K[EH]/IH.

Definition 5. (i) If T ⊂ VH and J ⊂ EH, we say that J is a T -join if and only if

degJ(v) =
∑

e∈J | {v} ∩ e| is odd ⇐⇒ v ∈ T.

In particular, a ∅-join is a subset of edges J ⊂ EH such that degJ(v) is even, for every
v ∈ VH. These subsets of edges are called even. (ii) Let us denote the set of all even
subsets of EH by E(EH). (iii) Let us denote by T (VH) the set of all T ⊂ VH for which
there exists at least a T -join.

Given T ⊂ VH, the question of existence of a T -join is pertinent. When T = ∅ or when
T is the set of vertices of a single edge, then a T -join always exists, namely the empty
set and the singleton of the edge in question, respectively. In general, not every subset
T ⊂ VH admits a T -join. It is well-known that for k = 2, i.e., for graphs, if a T -join
exists for a given T ⊂ VH then |J ∩ EC| must be even, for every connected component
C of the graph H. The converse also holds (cf. [7, Proposition 12.7]). The situation
for odd k is different. For example in the hypergraph of Example 4 the set of edges
J = {{1, 2, 4} , {1, 3, 4} , {2, 3, 4}}, corresponding to the pyramid on the top, is a {4}-join.

The following is a minimal set of restrictions on the elements of T (VH), which we will
use in the remainder of this article.

Proposition 6. Let T ∈ T (VH) and let J be a T -join. (i) If k is even then |T | is even.
(ii) If k is odd then |T | ≡2 |J |. In particular, when k is odd there are no elements of
E(EH) with odd cardinality.

Proof. Since ∑
v∈VH degJ(v) =

∑
v∈T degJ(v) +

∑
v 6∈T degJ(v) = k|J |,

if k is even, then |T | ≡2 0 and if k is odd, then |T | ≡2 |J |.

Many properties of T -joins in graphs extend to hypergraphs. One example is the
relation of T -joins with the symmetric difference of sets, which we denote by 4. Namely,
the fact that if J1 is a T1-join and J2 is a T2-join then J14J2 is a (T14T2)-join. This
follows from the observation that, for every v ∈ VH,

degJ14J2(v) =
∑

e∈J1 | {v} ∩ e|+
∑

e∈J2 | {v} ∩ e| − 2
∑

e∈J1∩J2 | {v} ∩ e|.

In particular, E(EH), the set of even subsets ofEH is closed under the symmetric difference.

the electronic journal of combinatorics 29(4) (2022), #P4.3 5



4 A Gröbner basis

Definition 7. (i) Denote t = {t2e − t2f : e, f ∈ EH}. (ii) A binomial tα − tβ, is

said an Eulerian binomial if tα and tβ are square-free, coprime, of same degree and
supp(α) t supp(β) ⊂ EH belongs to E(EH). Let E denote the finite set of all Eulerian
binomials. (iii) Let us denote G = t ∪ E .

Note that, here, the even subset supp(α) t supp(β) ⊂ EH has even cardinality, since
tα and tβ are square-free, coprime and of the same degree.

Proposition 8. G = t ∪ E ⊂ IH.

Proof. Let tα − tβ ∈ G and denote C = supp2(α − β). By Proposition 3, we must show
that C is even. If tα − tβ ∈ t then C = ∅ and therefore deg∅(v) = 0, for every v ∈ VH
(cf. Definition 2). If tα − tβ ∈ E then

supp2(α− β) = supp(α) t supp(β)

which, by definition, is even.

From now on, fix a total order on the set EH and consider the associated graded
reverse lexicographic order on K[EH]. The next result gives a sufficient condition for a
binomial to reduce to zero modulo the set of binomials G = t ∪ E .

Proposition 9. Let tα−tβ ∈ K[EH] be homogeneous. If supp2(α−β) is even, then, with
respect to the graded reverse lexicographic order, tα−tβ reduces to zero modulo G = t∪E .

Proof. We will use complete induction on the degree of tα − tβ. If deg(tα − tβ) = 0,
then tα − tβ = 0 and there is nothing to show. Assume that deg(tα − tβ) > 0. Let
tδ = gcd(tα, tβ) and assume that tδ 6= 1. Let us write tα = tδtγ and tβ = tδtµ. Then

supp2(α− β) = supp2(γ − µ).

As deg(tγ − tµ) < deg(tα − tβ), by induction, tγ − tµ
G−→ 0. We may thus restrict to the

case when tα and tβ are coprime.

Assume, without loss of generality, that the leading term of tα− tβ is tα. If tα and tβ are
both square-free, then tα − tβ ∈ E and we have finished. Suppose that tα is square-free
but there exists tε 6= 1 such that tβ = (tε)2tη, for suitable square-free tη. Let tσ denote
the product of the least d edges in supp(α), where d = deg(tε), and consider tαt−σ− tηtσ.
Since deg(tα) = deg(tβ) we deduce that tαt−σ− tηtσ is homogeneous. Furthermore, since
tαt−σ and tηtσ are square-free, coprime monomials and since

supp(α− σ) t supp(η + σ) = supp(α) t supp(η) = supp2(α− 2ε− η)

which, by assumption, is even, we conclude that tαt−σ − tηtσ is, in fact, an Eulerian
binomial. As tσ is the product of a set of least edges in supp(α), its leading term is
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tαt−σ, which divides tα, the leading term of tα− (tε)2tσ. Using this Eulerian binomial in
a one-step reduction, we get:

tα − (tε)2tη
E−→ tη

[
(tσ)2 − (tε)2

]
.

Hence we may reduce to the case that tα is not square-free (since the leading term of
(tσ)2 − (tε)2 is certainly not square-free). Suppose then that there exists e ∈ EH such
that t2e | tα. Let f ∈ EH be an edge, less than e, such that tf | tβ. Then t2e − t2f has
leading term t2e. Using this element of t in a one-step reduction, we get:

tα − tβ
t−→ tf (tft

αt−2e − tβt−1f ).

If γ, µ ∈ NEH are such that tγ = tft
αt−2e and tµ = tβt−1f then

supp2(γ − µ) = supp2(α− β).

Hence, by induction tγ − tµ
G−→ 0.

Next, let us use Propositions 3 and 9 to show that G = t ∪ E is a Gröbner basis
for the Eulerian ideal with respect to the graded reverse lexicographic order. This result
generalizes [9, Theorem 3.3].

Theorem 10. With respect to the graded reverse lexicographic order, G = t ∪ E is a
Gröbner basis of the Eulerian ideal IH.

Proof. We will use Buchberger’s criterion and we start by showing that IH = (G ). By
Proposition 8, (G ) ⊂ IH. To prove the reverse inclusion, we will use the fact that IH is
generated by homogeneous binomials. Let tα − tβ be a homogeneous binomial in IH and
let C = supp2(α − β). Then, by Proposition 3, C is even and hence, by Proposition 9,
tα − tβ reduces to zero modulo G = t ∪ E , which implies that tα − tβ ∈ (G ).

If tα− tβ ∈ G then supp2(α−β) is even. To prove that S(f, g) reduces to zero modulo G
this property of f, g ∈ G will suffice. Assume, without loss of generality, that f = tα− tβ

and g = tγ − tµ with lt(f) = tα, lt(g) = tγ. Let us denote

C1 = supp2(α− β), C2 = supp2(γ − µ)

and let tδ = gcd(tα, tγ). The S-polynomial of f and g is equal to tα+µ−δ − tβ+γ−δ, which
is, of course, a homogeneous binomial. Let

C = supp2(α + µ− δ − β − γ + δ)

= supp2(α− β)4 supp2(γ − µ)

= C14C2.

Since C1, C2 ⊂ EH are even subsets, we deduce that C is even. Therefore, by Proposi-
tion 9, S(f, g) reduces to zero modulo G .
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5 The Hilbert function

As is well-known, a Gröbner basis of IH enables an explicit characterization of a monomial
basis for the quotient K[EH]/IH. We will use this idea to determine a combinatorial
formula for the Hilbert function and series of K[EH]/IH. The result we obtain here is a
generalization of the corresponding result for the case of graphs [11, Theorem 2.7]. Despite
that K = Z/3 in [11], because the emphasis there is on parameterized codes over graphs,
this result holds over any field, as will be shown here. The key combinatorial invariant
involved is the notion of parity join for hypergraphs, introduced below, which was first
defined in [9], for graphs. This notion is related to the notion of join (cf. [3]).

Definition 11. Let I ⊂ K[x1, . . . , xn] be a homogeneous ideal in a polynomial ring
endowed with a choice of a monomial order. Given d > 0, let Bd(I) denote the set of
degree d monomials that do not belong to the initial ideal of I.

It is well known that the cosets with representative in Bd(I) form a K-basis for the
degree d component ofK[x1, . . . , xn]/I. (Cf., for example, [2, Theorem 2.6]). In particular,
dim

(
K[x1, . . . , xn]/I

)
d

= |Bd(I)|. From now on, let us denote by ` ∈ EH the least
edge of H. Consider (IH, t

2
`). The quotient K[EH]/(IH , t

2
`) is an Artinian ring, because

t2e ∈ (IH, t
2
`), for every e ∈ EH. We will use this quotient to characterize the Hilbert

function of K[EH]/IH. Let us first make use of the Gröbner basis, G , of IH given in
Definition 7, to give an explicit characterization of the set Bd(IH, t2`).

Lemma 12. If G is the Gröbner basis of IH given in Definition 7, then

Bd(IH, t2`) =
{
tγ ∈ K[EH] : deg(tγ) = d and lt(g) - tγ, for all g ∈ G ∪

{
t2`
}}
.

Proof. Given that G is a Gröbner basis of IH with respect to the graded reverse lexi-
cographic order and no leading term of an element of G is divisible by t` we deduce
that G ∪ {t2`} is a Gröbner basis for (IH, t

2
`), i.e., the ideal of leading terms of (IH, t

2
`) is

generated by the leading terms of G ∪ {t2`} and the result follows.

Example 13. Let us go back to the 3-uniform hypergraph of Example 4. Fix the order
of EH as given in (1), so that the last variable is t` = t135. The following is a list of the
sets Bd(IH, t2`), for d > 0, computed using Macaulay2.

d Bd(IH, t2`)
0 {1}
1 {t124, t234, t134, t125, t235, t135}
2 {t124t235, t124t135, t234t135, t134t135, t125t235, t125t135, t235t135}
3 {t124t235t135, t125t235t135}
> 4 ∅

Since, for every e 6= `, t2e − t2` ∈ G has leading term equal to t2e, from Lemma 12, we
deduce that the elements of B(IH, t

2
`) are square-free monomials, as we can check directly

in this example. Hence all the monomials in Bd(IH, t2`) are in bijection with a certain set
of subsets of d edges of H.
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Definition 14. (i) If J ⊂ EH, then J is said a parity join if

|J ∩ C| 6 |C|
2
,

for all C ∈ E(EH), with |C| even. (ii) Let us denote

µp(H) = max {|J | : J is a parity join} .

(iii) With respect to the total order of EH we are fixing, J is called a reduced parity
join if J is a parity join and, for every nonempty C ∈ E(EH) such that |C| is even and

|J ∩ C| = |C|
2

, J contains the least edge of C. We denote the set of reduced parity joins
of cardinality d by J r

d (H).

We will see next that Bd(IH, t2`) and J r
d (H) are in bijection. The maximum cardinality

of a parity join, µp(H), is related to an important invariant of K[EH]/IH, the Castelnuovo–
Mumford regularity; which is the topic of the next section.

Theorem 15. The map Bd(IH, t2`)→ J r
d (H) defined by tγ 7→ supp(γ) is well-defined and

a bijection.

Proof. Let C ⊂ EH be an even set of even cardinality. Suppose that J = supp(γ) satisfies

|J ∩ C| > |C|
2

. Let tα be the product of the first |C|
2

edges in J ∩ C and let tβ denote the
product of the remaining edges of C. Then tα−tβ ∈ E has leading term equal to tα. This
is also the case if |J ∩ C| = |C|

2
and J does not contain the least edge in C. Both cases

lead to a contradiction. Since tγ is square free and thus |J | = deg(tγ) = d, we deduce
that J ∈ J r

d (H). Hence the map is well-defined. Using again the square-free property of
the elements of Bd(IH, t2`) we see that the map is injective.

Let us now prove that the map is surjective. Let J ⊂ EH be a reduced parity join and
let tγ be the product of the edges in J . Since tγ is square-free, it suffices to show that tγ

is not divisible by the leading term of an element in E ⊂ G . Let us consider an Eulerian
binomial tα− tβ and assume, without loss of generality, that lt(tα− tβ) = tα. Then, this
means that supp(β) contains the least edge of the corresponding even set

C = supp(α) t supp(β) ⊂ EH.

Assume, with a view to a contradiction that tα | tγ. Then |J ∩C| > deg(tα) = |C|
2

. Since

J is a parity join, we deduce that |J ∩C| = |C|
2

and therefore J ∩C = supp(α). But then,
as J is a reduced parity join, the least edge of C must be in J , which is to say that it
belongs to supp(α). This is a contradiction.

Before we use Theorem 15 to give a combinatorial formula for the Hilbert function of
K[EH]/IH we need to show that t2` is a regular element for this quotient. We will show
that, in fact, any monomial has this property. The proof can be taken almost verbatim
from the proof of [13, Proposition 2.1].

Lemma 16. If tγ ∈ K[EH] is a monomial, then tγ is
(
K[EH]/IH

)
-regular.
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Proof. Given the definition of IH (cf. Definition 1), it suffices to show that if xu is any
variable in K[VH] = K[xv : v ∈ VH] and f ∈ K[VH], then

xuf ∈ (x2v − x2w : v, w ∈ VH) ⇐⇒ f ∈ (x2v − x2w : v, w ∈ VH).

Fix a total order of the vertices of H for which u ∈ VH is the least vertex. Then

g =
{
x2v − x2u : v ∈ VH, v 6= u

}
is a Gröbner basis of (x2v − x2w : v, w ∈ VH) with the respect to the graded reverse
lexicographic order. Assume xuf ∈ (x2v − x2w : v, w ∈ VH). Then xuf reduces to zero
modulo g. As no leading term of an element of g is divisible by xu, we conclude that xu
is a factor of every one-step reduction in the division algorithm, which is to say that f
reduces to zero modulo g and hence f ∈ (x2v − x2w : v, w ∈ VH).

Theorem 17. dimK

(
K[EG]/IH

)
d

=
∑

j>0 |J r
d−2j(H)|.

Proof. Since t2` is
(
K[EH]/IH

)
-regular, the following is a short exact sequence of graded

homomorphisms of K[EH]-modules:

0→ K[EH]

IH
[−2]

·t2`−→ K[EH]

IH
→ K[EH]

(IH, t2`)
→ 0. (3)

Using Theorem 15 and the above, we deduce that

dimK

(
K[EG]/IH

)
d

= dimK

(
K[EG]/IH

)
d−2 + |J r

d (H)|.

Iterating, we obtain dimK

(
K[EG]/IH

)
d

=
∑

j>0 |J r
d−2j(H)|.

Corollary 18. K[EH]/IH is a 1-dimensional and Cohen–Macaulay ring.

Proof. For d > µp(H) the set J r
d (H) is empty. Therefore, by Theorem 17, the Hilbert

polynomial is a nonzero constant and hence dimK[EH ]/IH = 1. Since any monomial tγ

is
(
K[EH]/IH

)
-regular, we deduce that K[EH]/IH is Cohen–Macaulay.

Corollary 19. Let s = |EH| and, for every 0 6 d 6 s, let jd = |J r
d (H)| denote the

number of reduced parity joins of cardinality d. The Hilbert series of K[EH]/IH, in the
variable z, is equal to:

1 + sz + j2z
2 + · · ·+ jsz

s

1− z2
(4)

Proof. Let us denote by F (z) the Hilbert series of K[EH]/IH and by M the quotient
K[EH]

(IH,t
2
` )

. By (3) and Theorem 15,

(1− z2)F (z) =
∑

d>0

(
dimKMd

)
zd =

∑
d>0 jdz

d.

Since j0 = 1, j1 = |EH| = s and jd = 0, for all d > s, the formula follows.
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6 Regularity

As we saw in the previous section, the Hilbert function of K[EH]/IH is related to reduced
parity joins. We will show that the Castelnuovo–Mumford regularity of this graded ring
is related to the maximum cardinality of a reduced parity join. However there is a way
to give this result in terms of the simpler notion of parity join and µp(H) and that is
what we will do. The way to do this is to exploit the relation between parity joins and
T -joins. The next result, which we use in the computation of the maximum cardinality
is the analogue for hypergraphs of [9, Lemmas 4.6 and 4.12].

Proposition 20. Let T ∈ T (VH) and let J be a T -join. (i) There exist T -joins J1, J2
with |J1| 6≡2 |J2| if and only if there exists C ∈ E(EH) with |C| odd. (ii) J is a parity join
if and only if J has minimum cardinality among all T -joins J ′ such that |J ′| ≡2 |J |.

Proof. (i) Let J1, J2 ⊂ EH be T -joins with |J1| 6≡2 |J2|. Then C = J14J2 ⊂ EH is an
even set of odd cardinality. Conversely, if C ∈ E(EH) and |C| is odd then J4C is another
T -join and |J4C| 6≡2 |J |.
(ii) Reasoning as before we deduce that

{J4C : C ∈ E(EH) and |C| is even} . (5)

is the set of all T -joins, J ′ ⊂ EH, with |J ′| ≡2 |J |. If C ∈ E(EH) with |C| even, then

|J ∩ C| 6 |C|
2
⇐⇒ |J4C| > |J |.

Therefore J is a parity join if and only if |J | is the minimum cardinality of an element of
(5).

Let us denote the power set of EH by P(EH). Since a set of edges may be identified
with the corresponding monomial ofK[EH], the graded reverse lexicographic order induces
a total order on P(EH). Let us define it explicitly. Let J1 6= J2 ∈ P(EH) and denote by
tα 6= tβ the square-free monomials obtained as the products of the edges of J1 and J2,
respectively. Then tα � tβ, in the graded reverse lexicographic order, if and only if either

deg(tα) � deg(tβ) ⇐⇒ |J1| > |J2|

or supp(β) contains the least edge of supp(α − β), i.e., J2 contains the least edge of the
symmetric difference J14J2.

Definition 21. If J1 6= J2 ∈ P(EH) are elements of the power set of EH, we set J1 � J2
if |J1| > |J2| or, if |J1| = |J2| and J2 contains the least edge in J14J2.

It is clear that the partial order � defined by the above is a total order and, in
particular, every (finite) subset of P(EH) has a minimum element

Proposition 22. Let T ∈ T (VH) and let J be a T -join. Then J is a reduced parity join
if and only if J is the minimum with respect to � of the set

{J ′ : J ′ is a T -join and |J ′| ≡2 |J |} . (6)
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Proof. Let J ′ be another T -join with |J ′| ≡2 |J | and denote C = J ′4J the corresponding
even cardinality element of E(EH). Then

|J ∩ C| = |C|
2
⇐⇒ |J ′| = |J |.

Hence, if J is a reduced parity join and |J ′| = |J | then J contains the last edge of C
which implies that J ′ � J . Therefore J is the minimum of (6). Conversely if J is the
minimum of this set then, by Proposition 20, J is a parity join. Suppose that there exists
C ∈ E(EH) nonempty and such that |J ∩ C| = |C|

2
. Set J ′ = J4C. Then J ′ is another

T -join and |J ′| = |J |. Then, since J ′ � J , by definition, J contains the least edge of C.
We conclude that J is a reduced parity join.

Proposition 20 gives the existence of a reduced parity join of cardinality equal to that
of any given parity join. In particular, it allows to compute µp(H), as the maximum
cardinality of a reduced parity join (cf. Definition 14).

Corollary 23. µp(H) is the maximum cardinality of a reduced parity join.

The next theorem is a combinatorial formula for the regularity of K[EH]/IH. This
result is the generalization for hypergraphs of [9, Theorem 4.13].

Theorem 24. The regularity of K[EH]/IH is equal to µp(H)− 1.

Proof. Since K[EH]/IH is a 1-dimensional, Cohen–Macaulay graded module, its regularity
is equal to its index of regularity, i.e., the smallest degree r such that H(d) = P (d), for
all d > r, where H and P denote the Hilbert function and the Hilbert polynomial of
K[EH]/IH, respectively (cf. [1, Corollary 4.8]). In turn, the index of regularity is equal to
the degree of the Hilbert series plus one (cf. [16, Corollary 5.1.9]). Since, by Corollary 19,
the degree of the Hilbert series of K[EH]/IH is equal to the maximum cardinality of a
reduced parity join minus two and, in turn, using Corollary 23, the regularity of K[EH]/IH
is equal to µp(H)− 1.

7 Degree

Since K[EH]/IH is a 1-dimensional K[EH]-module its degree coincides with its Hilbert
polynomial, which, as the Hilbert series, (4), indicates is related to the cardinality of the
set of reduced parity joins, tsd=0J r

d (H). In the case of graphs, because we know exactly
which sets belong to T (VH), the degree of this module may be given in terms of the con-
nected components of the graph and the bipartite property. (Cf. [13, Proposition 2.11] and
[9, Proposition 4.10].) In the general case, an alternative combinatorial characterization
of the degree involves the cardinality of T (VH).

Proposition 25. The map tsd=0J r
d (H)→ T (VH) sending a reduced parity join, J ⊂ EH,

to the set {v ∈ VH : degJ(v) is odd} is a surjection. If all elements of E(EH) have even
cardinality then it is a bijection, otherwise, it is 2-to-1.
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Proof. Fix T ∈ T (EH). By Proposition 22, there exists a reduced parity join J that maps
to T . If all elements of E(EH) have even cardinality then, by Proposition 20 the set (6)
is the full set of T -joins and, using again Proposition 22, we deduce that there exists only
one T -join which is a reduced parity join. If there exists C ∈ E(EH) of odd cardinality
then J and J4C are T -joins with |J4C| 6≡2 |J |. Hence we may apply Proposition 22
twice to find two reduced parity joins mapping to T . As any other T -join must belong
to one of the two corresponding sets of T -joins (the even cardinality ones and the odd
cardinality ones) and, by Proposition 22, only one in each set is a reduced parity join, we
deduce that the preimage of T consists of exactly two reduced parity joins.

Theorem 26. If s = |EH|, then the degree of K[EH]/IH is equal to 1
2

∑s
d=0 |J r

d (H)|.
Moreover, if no element of E(EH) has odd cardinality, then the degree is 1

2
|T (VH)|, other-

wise the degree is |T (VH)|.

Proof. Since K[EH]/IH is 1-dimensional, the degree of this K[EH]-module may be ob-
tained by multiplying its Hilbert series by (1 − z) and setting z = 1. Using the rational
form of the Hilbert series given in (4), we deduce that

degK[EH]/IH = 1
2

∑s
d=0 jd = 1

2

∑s
d=0 |J r

d (H)|.

The rest of the statement follows from Proposition 25.

8 Complete Hypergraphs

In this section we compute the degree and the regularity of K[EH]/IH when H is a
complete k-partite graph or a 3-uniform complete hypergraph. The computations rely on
the fact that in these cases the set T (VH) and the set of T -joins, for any given T ∈ T (VH),
can be analyzed explicitly, without using a notion of hypergraph connectivity.

Definition 27. A hypergraph is called a complete k-partite hypergraph if the vertex
set, VH, is endowed with a k-partition, VH = tki=1Vi, with |Vi| = ai > 0, such that
EH = {{v1, . . . , vk} : vi ∈ Vi, for every i = 1, . . . , k}. Let us denote a complete k-partite
hypergraph by Kka1,...,ak .

The next result is the analogue of the well-known result that a bipartite graph contains
no cycles of odd cardinality. It is also an important characteristic of a complete k-partite
hypergraph as regards the results of the previous sections.

Proposition 28. If H = Kka1,...,ak and C ∈ E(EH), then |C| is even.

Proof. If C ⊂ E(EH), then, since every edge in C contains a single vertex of V1,

|C| =
∑

v∈V1
∑

e∈C | {v} ∩ e| =
∑

v∈V1 degC(v).

Since degC(v) is even, for every v ∈ VH, this implies that |C| is even.
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Proposition 29. Let H = Kka1,...,ak and T ⊂ VH. T ∈ T (VH) if and only if Ti = T ∩ Vi,
for i = 1, . . . , k, have cardinalities of equal parity. Moreover, if T satisfies this condition,
then the minimum cardinality of a T -join is maxki=1 |Ti|.

Proof. If T ∈ T (VH) and if J is a T -join then, for every i = 1, . . . , k,

|J | =
∑

v∈Ti degJ(v) +
∑

v∈Vi\Ti degJ(v) ≡2 |Ti|. (7)

Hence |Ti|, for i = 1, . . . , k, have equal parity. Conversely, let T ⊂ VH be such that
Ti = T ∩ Vi, for i = 1, . . . , k, have cardinalities of equal parity. Denote r = maxki=1 |Ti|.
Consider the sequence of elements of Ti written as wi1, . . . , w

i
r, where, the first |Ti| in this

sequence are the members of Ti (without repetitions) and, if |Ti| < r, the last r − |Ti| of
them are equal to wi1. Consider the set of r edges

J =
{{
w1
i , . . . , w

k
i

}
: i = 1, . . . , r

}
.

If v 6∈ T then, clearly degJ(v) = 0. If v = wij ∈ Ti, with 2 6 j 6 |Ti| then degJ(v) = 1. If
v = wi1 ∈ Ti then, because |Ti| ≡2 r, degJ(v) = r − |Ti| + 1 ≡2 1. We deduce that J is a
T -join of cardinality r = maxki=1 |Ti|. It remains to be proved that this is the minimum
cardinality of a T -join. If J ′ is any T -join, then, applying the equality in (7) to J ′, we get

|J ′| >
∑

v∈Ti degJ ′(v) > |Ti|,

for every i = 1, . . . , k. We conclude that |J ′| > maxki=1 |Ti|.

Theorem 30. If H = Kka1,...,ak , then{
log2

(
degK[EH]/IH

)
=
(∑k

i=1 ai
)
− k

regK[EH]/IH = max {a1, . . . , ak} − 1.

Proof. As for the degree, using Theorem 26, we only need to show that

log2 |T (VH)| = (
∑k

i=1 ai)− k + 1. (8)

But this is now straightforward from Proposition 29. Let us now deal with the statement
on the regularity of K[EH]/IH. By Theorem 24 we must show that

µp(H) = max {a1, . . . , ak} .

Let J ⊂ EH be a parity join and let T ∈ T (VH) be the set of vertices, v ∈ VH, such that
degJ(v) is odd. Since by Proposition 28 there are no elements of E(EH) of odd cardinality,
using Proposition 20, we deduce that |J | is the minimum cardinality of a T -join. Since we
showed in Proposition 29 that the minimum cardinality of a T -join is maxki=1 |Ti|, where,
recall, Ti = T ∩ Vi, we conclude that |J | 6 max {a1, . . . , ak}. This shows that

µp(H) 6 max {a1, . . . , ak} .
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To prove the opposite inequality, it suffices to show that there exists a parity join of
cardinality max {a1, . . . , ak}. Arguing as before, this is the same as showing that there
exists T ∈ T (VH) such that max {a1, . . . , ak} = maxki=1 |Ti|. Let 1 6 m 6 k be such that
am = max {a1, . . . , ak}. If am is even, fix T = Vm, if am is odd, then, choosing vi ∈ Vi, for
all i 6= m, set T = {v1, . . . , vm−1} ∪ Vm ∪ {vm+1, . . . , vk}. In both cases T ∈ T (VH) and
am = maxki=1 |Ti|.

Definition 31. A hypergraph is called complete of rank k if |VH| > k and EH is the set
of cardinality k subsets of VH. Let us denote a complete hypergraph of rank k, with n
vertices, by Kkn.

Recall that we are assuming throughout this article that k > 2.

Proposition 32. Let H = Kkn. (i) If n = k then T (VH) = {∅, VH}. (ii) If n > k and k
is odd, then T (VH) = P(VH). (iii) If n > k and k is even, then T (VH) is equal to the set
of elements of P(VH) of even cardinality.

Proof. (i) If n = k and VH = {v1, . . . , vn} then EH = {{v1, . . . , vn}} and therefore a T -join
exists if and only if T = ∅ or T = {v1, . . . , vn} = VH. (ii) Assume that n > k and k is
odd. To show that T (VH) = P(VH) it suffices to show that {v} ∈ T (VH), for all v ∈ VH.
Fix v0 ∈ VH and let V be any subset of VH \ {v0} with cardinality k. Consider:

J = {{v0} ∪ J ′ : J ′ ⊂ V and |J ′| = k − 1} ⊂ EH.

As degJ(v0) =
(
k
k−1

)
= k is odd, degJ(w) =

(
k−1
k−2

)
= k − 1 is even, for every w ∈ V , and

degJ(v) = 0 for every v 6∈ V ∪ {v0}, we deduce that

degJ(v) is odd ⇐⇒ v ∈ {v0} .

In other words, J is {v0}-join. (iii) Assume that n > k and k is even. Let T ∈ T (VH)
and let J be a T -join. By Proposition 6, |T | is even. To prove that T (VH) is equal to the
set of subsets of VH of even cardinality, it suffices to show that, for every pair of distinct
vertices v1, v2 ∈ VH, {v1, v2} ∈ T (VH). Let us fix v1, v2 ∈ VH. Choose V ⊂ VH \ {v1, v2}
of cardinality k − 1. Consider

J = {{v1, v2} ∪ J ′ : J ′ ⊂ V and |J ′| = k − 2} ⊂ EH.

Arguing as before we deduce that J is a {v1, v2}-join.

Corollary 33. Let H = Kkn. (i) If n = k, then degK[EH]/IH is equal to 1. (ii) If n > k,
then degK[EH]/IH is equal to 2n−1.

Proof. (i) If n = k then |EH | = 1 hence IH = (0) and K[EH] is 1-dimensional. (ii) There
are two cases. Assume first that k is odd. Then, by Proposition 6, no element of E(EH)

has odd cardinality. Therefore, by Theorem 26, the degree of K[EH]/IH is equal to |T (VH)|
2

,
which, by Proposition 32, is equal to 2n−1. Let us now assume that k is even. Let V ⊂ VH
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be a subset of vertices of cardinality k + 1 and let J be the set of edges with vertices in
V . Then

degJ(v) =
(
k
k−1

)
= k

is even, for every v ∈ V while degJ(v) = 0, for every v ∈ VH \ V . In other words, J is an
even subset of edges. Since |J | =

(
k+1
k

)
= k+1 we conclude that E(EH) contains elements

of odd cardinality. Hence the degree of K[EH]/IH is |T (EH)|, which, by Proposition 32,
is equal to 2n−1.

Theorem 34. Let H = K3
n. If n = 3, then regK[EH]/IH = 0. If n = 4, then

regK[EH]/IH = 4. If n > 5, then regK[EH]/IH = bn+1
3
c.

Proof. If n = 3 then |EH| = 1 and therefore, by Theorem 10, IH = (0), and hence
regK[EH]/IH = 0. Assume now that n = 4 and let C ∈ E(EH). By Proposition 6, |C|
must be even and hence |C| = 0, 2 or 4. A set of two distinct edges yields two vertices
of degree 2 and two of degree 1. A set of four edges is the whole of EH, which yields all
vertices of degree 3. Hence we must have |C| = 0. In other words, E(EH) = {∅} and,
consequently, all subsets of EH are parity joins. Therefore µp(H) = |EH| = 4 and, by
Theorem 24, regK[EH]/IH = 3.

Let us now assume that n > 5. As no element of E(EH) has odd cardinality, by Proposi-
tion 20, parity joins coincide with minimum cardinality T -joins. We will use this to show
that µp(H) = bn+1

3
c + 1. Note that, by Proposition 32, T (VH) = P(VH). Given T ⊂ VH

let us denote by τ(H, T ) the minimum cardinality of a T -join. If T = ∅ then τ(H, T ) = 0.
If |T | = 1, say T = {v1}, then τ(H, T ) 6 3 since there exists a T -join of cardinality 3, as
is shown in Figure 2. (In this figure, vertices in T are shown in black, other vertices in

v3

v4

v1

v2

|T |=1

v2

v1

v4

v3

|T |=2

v1

v3 v2

|T |=3

v2

v3

v1

v4

v5

|T |=4

Figure 2: T -joins in K3
n, for 0 6 |T | 6 7.
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gray.) Assume now |T | > 2 and let us use induction to prove that

τ(H, T ) 6 b |T |+1
3
c+ 1.

For |T | = 2, 3 and 4 this is proved by showing there is a T -join of cardinality 6 2. For
each |T |, the corresponding T -join is indicated in Figure 2. Assume now that |T | > 5.
Consider any three elements of T say v1, v2, v3, let T ′ = T \ {v1, v2, v3} and, by induction,

let J ′ be a T ′-join of cardinality less than or equal to b |T |+1
3
c. Then

J = J ′4{{v1, v2, v3}}

is a T -join with cardinality less than or equal to b |T |+1
3
c+ 1.

Since |T | 6 n and n > 5, so far we have shown that a minimum cardinality T -join has
cardinality less than or equal to bn+1

3
c + 1. Hence µp(H) 6 bn+1

3
c + 1. To show the

opposite inequality we only need to prove that there exists T ⊂ VH such that any T -join
has cardinality at least bn+1

3
c+ 1. Let T ⊂ VH be any set of 3bn+1

3
c− 1 vertices of H and

let J be a T -join. Then, from∑
v∈T degJ(v) +

∑
v 6∈T degJ(v) = 3|J | (9)

we get
3|J | > |T | = 3bn+1

3
c − 1 =⇒ |J | > bn+1

3
c.

Now, |J | = bn+1
3
c is impossible since (9) reduced modulo 2 yields

|J | ≡2 |T | ≡2 bn+1
3
c − 1.

We conclude that |J | > bn+1
3
c+ 1.
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[14] C. Renteŕıa, A. Simis and R. H. Villarreal, Algebraic methods for parameterized codes
and invariants of vanishing ideals over finite fields, Finite Fields Appl., 17, no. 1,
81–104, (2011).

[15] M. Vaz Pinto and R. H. Villarreal, The degree and regularity of vanishing ideals of
algebraic toric sets over finite fields, Comm. Algebra 41, no. 9, 3376–3396 (2013).

[16] R. H. Villarreal, Rees algebras of edge ideals, Comm. Algebra 23, no. 9, 3513–3524,
(1995).

the electronic journal of combinatorics 29(4) (2022), #P4.3 18

https://doi.org/10.1080/00927872.2022.2106372
https://doi.org/10.1080/00927872.2022.2106372

	Introduction
	The ideal
	T-joins
	A Gröbner basis
	The Hilbert function
	Regularity
	Degree
	Complete Hypergraphs

