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Abstract

The cycles of a graph give a natural cyclic ordering to their edge-sets, and these
orderings are consistent in that two edges are adjacent in one cycle if and only if they
are adjacent in every cycle in which they appear together. An orderable matroid
is one whose set of circuits admits such a consistent ordering. In this paper, we
consider the question of determining which matroids are orderable. Although we
are able to answer this question for non-binary matroids, it remains open for binary
matroids. We give examples to provide insight into the potential difficulty of this
question in general. We also show that, by requiring that the ordering preserves
the three arcs in every theta-graph restriction of a binary matroid M , we guarantee
that M is orderable if and only if M is graphic.

Mathematics Subject Classifications: 05B35

1 Introduction

In a graph, the edges of each cycle have an ordering on them. But this is not true for the
circuits of a matroid. The goal of this paper is to see to what extent we can distinguish
graphic matroids by an ordering condition that mimics the ordering condition on the
edges of the cycles of a graph.

A reversible cyclic ordering of a finite set X is an arrangement of the elements of X
on the vertices of an n-gon with one element at each vertex. Elements x1 and x2 of X are
adjacent in the ordering when the corresponding vertices of the n-gon lie on a common
edge. Figure 1 shows an example of such an ordering (x1 x2 . . . xn). The same ordering
can also be denoted, for example, by (x3 x2 x1 xn . . . x4). Throughout this paper, all
orderings are assumed to be reversible cyclic orderings unless stated otherwise.

In a graph, there is an associated ordering on the edge set of each cycle. These
orderings have the property that two edges are adjacent in an ordering of a given cycle
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Figure 1: A reversible cyclic ordering.

if and only if they are adjacent in the ordering of every cycle in which the edges appear
together.

Unlike the cycles of a graph, the circuits of a matroid are sets without inherent order.
We give a matroid M an ordering by imposing an ordering on each of its circuits. Such an
ordering of M is consistent if, for every pair {e, f} of distinct elements of E(M) and every
pair {C,C ′} of circuits of M with {e, f} ⊆ C ∩C ′, if e and f are adjacent in the ordering
of C, then e and f are adjacent in the ordering of C ′. A matroid is called orderable if it
has a consistent ordering.

The notation for matroids in this paper follows [5] with one modification. We call a
matroid N a series extension of a matroid M if N can be obtained from M by a (pos-
sibly empty) sequence of single-element series extensions; a parallel extension is defined
analogously.

The primary goal of this work is characterizing orderable matroids. As noted above,
our first examples of orderable matroids are graphic matroids.

Proposition 1. If M is a graphic matroid, then M is orderable.

However, orderability is not enough to distinguish graphic matroids from non-graphic
matroids. Our main result specifies all non-binary orderable matroids. The infinitely
many such matroids are all built from U2,n for some n ! 4 by using two operations, which
we now describe.

For a matroid M without coloops, a series extension of M is balanced if, for some
integer k exceeding one, each element of M is replaced by k elements in series. We call k
the order of the balanced series extension. The second operation is a generalization of the
operation of adding an element in parallel to another. A theta-graph is a graph consisting
of a pair of distinct vertices and three internally disjoint paths between them. Now, let
P be a nonempty subset of a series class of a matroid M . Fix an element t of P , contract
P − t, and relabel t as t′ to obtain M ′. Let N be the cycle matroid of a theta-graph with
series classes {t′}, P , and P ′, where |P ′| = |P |. Finally, let M ′′ be the 2-sum of M ′ and N
with basepoint t′. The operation transforming M into M ′′ is called parallel-path addition.
The size of this addition is |P |; we call P and P ′ parallel paths of M ′′, and say that M ′′ is
obtained from M by adding P ′ in parallel to P . The following theorem is the main result
of the paper.

Theorem 2. Let M be a connected non-binary matroid. Then M is orderable if and only
if it can be obtained from U2,n for some n ! 4 by a sequence of the following operations:
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(i) balanced series extension; and

(ii) parallel-path addition.

When we come to consider binary orderable matroids, we encounter considerable diffi-
culty. For example, as we show in the next section, F ∗

7 and M∗(K5) are not orderable, yet
each has an orderable series extension. In view of this, it is natural to consider additional
conditions that one can add to orderability in order to distinguish graphic matroids within
binary matroids. The next theorem gives three equivalent such additional conditions.

Theorem 3. The following are equivalent for a binary matroid M :

(i) M is graphic.

(ii) every minor of M is orderable.

(iii) every series minor of M is orderable.

(iv) every parallel minor of M is orderable.

Although, as noted above, there are orderable binary matroids that are not graphic,
we know of no counterexample to the following.

Conjecture 4. A 3-connected orderable binary matroid is graphic.

We have, however, made the following progress.

Theorem 5. A 4-connected regular orderable matroid is graphic.

Another condition one can add to orderability to distinguish graphic matroids within
binary matroids involves the theta-graphs in a matroid M , where a theta-graph in M is
a restriction of M that is isomorphic to the cycle matroid of a theta-graph. Equivalently,
it is a restriction of M that is isomorphic to a series extension of U1,3. The series classes
of a theta-graph are called its theta-arcs. A subset B of a circuit C is a block if there
is a listing b1, b2, . . . , bk of the elements of B such that bi and bi+1 are adjacent for all i
in [k − 1]. A consistent ordering of a matroid M is a theta-ordering if every theta-arc
of every theta-graph of M is a block in the ordering; M is theta-orderable if it has a
theta-ordering.

Theta-orderability turns out to be equivalent to a concept introduced by Wagner [9].
For distinct circuits C and D of a matroid M , an arc of C is a minimal non-empty subset
A of C such that A ∪ D contains at least two circuits. A set {A1, A2, A3} of arcs of a
common circuit is incompatible if A1 ∩ A2 ∩ A3 ∕= ∅ and Ai − (Aj ∪ Ak) ∕= ∅ for all i, j,
and k such that {i, j, k} = {1, 2, 3}. In Section 4, we prove the following characterization
of theta-orderable binary matroids. The equivalence of (i) and (ii) is Wagner’s main
result [9].

Theorem 6. The following are equivalent for a binary matroid M :

the electronic journal of combinatorics 29(4) (2022), #P4.31 3



(i) M is graphic;

(ii) M has no set of incompatible arcs; and

(iii) M is theta-orderable.

The following characterization of theta-orderable non-binary matroids will also be
proved in Section 4.

Theorem 7. Let M be a connected non-binary matroid. Then M is theta-orderable if
and only if M is a parallel extension of a balanced series extension of U2,n for some n ! 4.

In Section 2, after some preliminaries, we prove Theorem 3. The proof of our main
result, Theorem 2, is in Section 3, and Theorem 5 is proved in Section 5.

2 Preliminaries

Our first proposition collects some basic properties of orderability. These properties will
be used frequently and often implicitly. We omit their straightforward proofs.

Proposition 8. Let M be a matroid.

(i) If M is orderable, then M\e is orderable for all e ∈ E(M).

(ii) If r(M) " 2, then M is orderable.

(iii) M is orderable if and only if the connected components of M are orderable.

(iv) M is orderable if and only if si(M) is orderable.

Next, we note a partial converse to Proposition 1.

Proposition 9. If M is an orderable binary matroid with a spanning circuit, then M is
graphic.

Proof. Let C be a spanning circuit of M and e be an element in C. Fix a consistent
ordering of M , and take a standard binary representation of M with respect to the basis
C − e. Now construct a graph G beginning with a cycle having edge set C, ordered
consistently with the fixed ordering of M . Now, for each element f of E(M)− C, let Cf

be the fundamental circuit of f with respect to C − e. Because Cf − f is a block in the
ordering, we may add an edge f to G as a chord of C so that it forms a cycle with edge
set Cf . The result is a graph whose cycle matroid has ground set E(M), has C − e as a
basis, and has the same fundamental circuits with respect to this basis as M . Since M
and M(G) are binary, we deduce that M = M(G).

We now note a necessary condition for a matroid to be orderable, along with some
consequences of this condition.
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Proposition 10. Let M be a simple matroid and X be a subset of E(M) with |X| ! 3.
If there are elements e and f in E(M)−X such that X ∪ e and X ∪ f are both circuits
of M , then M is not orderable.

Proof. Assume to the contrary that M has a consistent ordering. Notice that the ordering
of X ∪f is obtained from that of X ∪e by replacing f with e. Let a and b be the elements
in X that are adjacent to e. Using strong circuit elimination on X ∪ e and X ∪ f , we
obtain a circuit C ⊆ X ∪ {e, f} containing e but not a, and another C ′ ⊆ X ∪ {e, f}
containing f but not b.

As C is not properly contained in either X ∪ e or X ∪ f , it must contain both e and
f . Further, M is simple, so C ∩X is nonempty. Since a and b are the only elements in
X adjacent to e or f , it follows that C = {e, f, b}. By symmetry, C ′ = {e, f, a}.

Circuit elimination applied to C and C ′ now yields a circuit D that does not contain
e. Then D ⊆ {a, b, f}. Since |X| ! 3, it follows that D is a proper subset of X ∪ f , a
contradiction.

Corollary 11. Let M be a matroid of rank at least three and X be a circuit-hyperplane
of M . If E(M) − X is not a parallel class of M , then the matroid obtained from M by
relaxing X is not orderable.

Corollary 12. The only orderable whirl is U2,4.

We now prove Theorem 3, whose proof relies on the next lemma and its corollary. The
following technical property facilitates the statements of these results. A matroid M has
the (e, f, g)-property if

(i) M has a circuit containing {e, f, g};

(ii) e, f , and g are distinct; and

(iii) M has a circuit D containing f but neither e nor g and, with the exception of at
most one d in D, there is a circuit of M containing {e, f, g, d}.

Lemma 13. If a matroid M has the (e, f, g)-property, then f is not adjacent to both e
and g in a consistent ordering of M .

Proof. Suppose M has the (e, f, g)-property and f is adjacent to both e and g. Then, in
the circuit D of condition (iii), f is adjacent to elements d1 and d2 of D − f . But M has
a circuit containing {e, f, g, di} for some i in {1, 2}, a contradiction.

Corollary 14. Let C be a circuit of a matroid M . Suppose there is an element c of C so
that M has the (e, c, g)-property for every choice of e and g in C − c. Then M does not
have a consistent ordering.

Proof of Theorem 3. Since graphic matroids are orderable and the class of graphic ma-
troids is minor-closed, (i) implies (ii)-(iv). Let S be the set

{F7, F
∗
7 ,M

∗(K5),M
∗(K3,3),M

∗(K ′
3,3),M

∗(K ′′
3,3),M

∗(K ′′′
3,3), R10}.
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Figure 2: The matroid F7.

By results of Tutte [8] and Bixby [1, 2], S contains all binary matroids that are excluded
minors, excluded series minors, or excluded parallel minors for the class of graphic ma-
troids. Thus we can prove that (i) follows from each of (ii)-(iv) by showing that none of
the matroids in S is orderable.

Let F7 be labelled as in Figure 2. Using the element 1 in the circuit {1, 2, 3, 4},
Corollary 14 gives that F7 has no consistent ordering.

Let F ∗
7 be labelled as in Figure 3. Consider the circuits C1 = {1, 2, 3, 4}, C2 =

{1, 3, 5, 7}, and C3 = {2, 4, 5, 7}. The ordering of a four-element circuit is uniquely deter-
mined by a single pair of non-adjacent elements, and the automorphism group of F ∗

7 is
doubly transitive. Thus we may assume that C1 has the ordering (1 2 3 4).

Since 1 and 3 are not adjacent in C1, it follows that C2 has the ordering (1 5 3 7).
Thus 5 and 7 are non-adjacent, so C3 has the ordering (2 5 4 7). However, the elements
of the set {1, 2, 5} are now pairwise adjacent, so the circuit {1, 2, 5, 6} cannot be ordered.
Thus F ∗

7 has no consistent ordering.
Let M∗(K5) be labelled as in Figure 4, and assume that M∗(K5) has a consistent

ordering. Let C be the circuit {1, 2, 3, 4}. By symmetry, we may assume its ordering is
(1 2 3 4). This ordering and the circuit {1, 2, 4, 7, 8, 9} give that 1 and 8 are not adjacent,
so the circuit {0, 1, 5, 8} must be ordered (0 1 5 8). Similarly, the circuit {1, 2, 3, 5, 6, 7}

1

2 3

4

5

6

7

Figure 3: The matroid F ∗
7 .
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Figure 4: The graph K5.

gives that 2 and 6 are not adjacent, so {0, 2, 6, 9} must be ordered (0 2 9 6). Now 0 is
adjacent to 1, 6, and 8 in the circuit {0, 1, 4, 6, 7, 8}, a contradiction.

1 2
3 4

5
6 7

8 9

Figure 5: The graph K3,3.

Let M∗(K3,3) be labelled as in Figure 5. We shall use Corollary 14 letting c be the
element 1 in the circuit C = {1, 3, 5, 8} of M∗(K3,3). The cases {e, g} = {3, 5} and
{e, g} = {3, 8} are symmetric, and the circuits C and {1, 3, 5, 7, 9} certify that M has the
(3, 1, 5)-property with D = {1, 4, 8, 9}. The circuit {1, 5, 6, 8, 9} certifies that M has the
(5, 1, 8)-property with D = {1, 2, 6, 9}. Corollary 14 now implies that M∗(K3,3) has no
consistent ordering.

1 2
3 4

5
6 7

8 9

a

Figure 6: The graph K ′
3,3.

The next two cases will also use Corollary 14. Let M∗(K ′
3,3) be labelled as in Figure 6,

and let c be the element 3 in the circuit C = {3, 6, 7, 8} of M∗(K ′
3,3). The cases {e, g} =

{6, 7} and {e, g} = {6, 8} are symmetric, and the circuit {2, 3, 5, 6, 7, 8} certifies that
M has the (6, 3, 7)-property with D = {1, 2, 3}. The circuit C certifies that M has the
(7, 3, 8)-property with D = {3, 6, 9}. Corollary 14 now implies that M∗(K ′

3,3) has no
consistent ordering.
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3 4

5
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8 9

a b

Figure 7: The graph K ′′
3,3.

Let M∗(K ′′
3,3) be labelled as in Figure 7, and let c be the element 1 in the circuit

C = {1, 3, 5, 8, a, b} of M∗(K ′′
3,3). When {e, g} ⊆ C − 3, the circuit C certifies that M

has the (e, 1, g)-property with D = {1, 2, 3}. Each of the remaining cases uses D =
{1, 4, 7, a}. The cases {e, g} = {3, 5} and {e, g} = {3, 8} are symmetric, and the circuit
{1, 3, 5, 7, 9, a, b} certifies that M has the (3, 1, 5) property. The circuits {1, 3, 4, 6, 8, a, b}
and {1, 3, 5, 7, 9, a, b} certify the (3, 1, a)-property. Finally, the circuit {1, 3, 4, 6, 8, a, b}
certifies the (3, 1, b)-property. Corollary 14 now implies that M∗(K ′′

3,3) has no consistent
ordering.

1 2
3 4

5
6 7

8 9

a b

c

Figure 8: The graph K ′′′
3,3.

Let M∗(K ′′′
3,3) be labelled as in Figure 8. We begin by noting that there must be at

least one adjacent pair in the set {1, 4, 7} due to the circuit {1, 4, 7, a, c}. By symmetry,
we may assume that 1 and 4 are adjacent.

Combining this adjacent pair with the three-element circuits, we get that 2145 is a
block in the circuit {1, 2, 4, 5, 9, b, c}. Therefore 4 is not adjacent to 9, b, or c. This
means that, in the circuit {3, 4, 5, 9, b, c}, we must have 4 adjacent to 3. Using the three-
element circuit {4, 5, 6}, we now have that 4 is adjacent to 1, 3, and 6. Therefore the
circuit {1, 3, 4, 6, 8, a, b} cannot be ordered consistently, and M∗(K ′′′

3,3) has no consistent
ordering.

1 2
3 4

5
6 7

8 9

Figure 9: A graft corresponding to R10.
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Let M be the graft matroid of K3,3 where the graft element eγ corresponds to the set of
boxed vertices in Figure 9. Then M ∼= R10. Using Corollary 14 again, let c be the element
1 in the circuit C = {1, 2, 4, 5} of M . When {e, g} = {2, 4}, the circuit {1, 2, 4, 6, 8, 9}
certifies the (2, 1, 4)-property when D = {1, 3, 4, 6}. When {e, g} = {2, 5}, the circuit
{1, 2, 5, 6, 7, 9} certifies the (2, 1, 5)-property with D = {1, 3, 7, 9}. Finally, when {e, g} =
{4, 5}, the circuit {1, 4, 5, 6, 7, eγ} certifies the (4, 1, 5)-property with D = {1, 6, 8, eγ}.
Corollary 14 now implies that R10 has no consistent ordering.

We conclude this section with a pair of examples that indicate the potential difficulty
of characterizing orderable binary matroids.

Example 15. This example describes a 12-element orderable series extension of F ∗
7 ,

which we refer to as O1. Thus, the pair O1 and F ∗
7 demonstrates that the class of binary

orderable matroids is not closed under the taking of series minors. Let F ∗
7 be labelled as

in Figure 3. We obtain O1 by adding 1′, 2′, and 7′ in series with 1, 2, and 7, respectively,
and adding 4′ and 4′′ in series with 4. Figure 10 gives a consistent ordering of the circuits
of O1.

(1 5 1′ 2′ 6 2) (1 5 1′ 7′ 3 7) (2 6 2′ 7′ 3 7) (3 4 5 4′ 6 4′′)

(1 4′ 2′ 1′ 4 3 4′′ 2) (1 7 4 1′ 7′ 4′′ 6 4′) (2 7 4 5 4′ 2′ 7′ 4′′)

Figure 10: A consistent ordering of O1.

Example 16. LetK5 be labelled as in Figure 4. We obtain a regular, non-graphic matroid
O2 fromM∗(K5) by adding elements 0′ and 2′ in series with 0 and 2, respectively. Figure 11
gives a consistent ordering of O2.

(4 6 5 7) (2′ 1 2 6 5 8 9) (0′ 1 0 9 3 4 6) (2′ 1 2 4 7 8 9)

(3 7 8 9) (2 1 2′ 3 7 5 6) (0′ 1 0 8 7 4 6) (0′ 1 0 9 3 7 5)

(0′ 2′ 3 4 2 0 8 5) (0′ 2′ 9 0 2 4 7 5) (2′ 0′ 6 2 0 8 7 3)

(2 1 2′ 3 4) (0 1 0′ 5 8) (0 2 6 0′ 2′ 9) (3 4 6 5 8 9)

Figure 11: A consistent ordering of O2.

3 A Characterization of Non-Binary Orderable Matroids

In this section, we prove Theorem 2. We begin by finding the orderable series extensions
of uniform matroids and their consistent orderings. These results allow us to characterize
the non-binary orderable matroids that are 3-connected, from which we obtain the full
characterization using the canonical tree decomposition of Cunningham and Edmonds [3].
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A uniform matroid is binary if and only if it is graphic. Thus, the binary uniform
matroids are certainly orderable, as are those whose rank is at most two. Proposition 10
implies this list is complete.

Corollary 17. A uniform matroid is orderable if and only if it is binary or has rank at
most two.

The next two results deduce the structure of a consistent ordering of a series extension
of a non-binary uniform matroid, and show that such an ordering can be used to consis-
tently order the underlying uniform matroid. For a non-coloop element e of a matroid
M , we denote the series class of M containing e by Se or sometimes by Se(M).

Let M be a matroid with a consistent ordering. Suppose X and Y are disjoint subsets
of a circuit C of M . We say X and Y are adjacent if there is an adjacent pair of elements
x and y, where x belongs to X and y belongs to Y . Let B be the union of a set of blocks
that belong to a common circuit of M . If there is a listing B1, B2, . . . , Bk of the blocks
in B such that Bi and Bi+1 are adjacent for all i in [k − 1], then B is a section. Finally,
let S be a series class of M . If a block of M is contained in S and is maximal with this
property, then it is called an S-block.

Lemma 18. Let M be an orderable series extension of a non-binary uniform matroid Ur,n

and fix a consistent ordering of M . Let C be a circuit of M , and let x and y be elements
of C from distinct series classes of M .

(i) If a section K in C is adjacent to a pair of Sx-blocks, then K must contain an
Sy-block.

(ii) Every series class S of M has the same number of S-blocks.

Proof. For (i), suppose to the contrary that there is a section K in C that contains no Sy-
block and is adjacent to a pair of distinct Sx-blocks. AsM is non-binary, 2 " r " n−2 and
there is a circuit Dx of M that contains K and Sx but avoids Sy. Let Dy = (Dx−Sx)∪Sy.
Observe that, since M is a series extension of Ur,n, the set Dy is a circuit. The consistency
of Dy with C implies that K is not adjacent to Sy-blocks in Dy, but the consistency of
Dy with Dx gives that K can only be adjacent to Sy-blocks in Dy, a contradiction.

We now deduce (ii) from (i). Let S be a series class of E(M) for which the number of
S-blocks is as large as possible. We may assume this number exceeds one. In a circuit C
containing S, let K be a minimal section that is adjacent to a pair of distinct S-blocks.
Note that the number of such minimal sections in C equals the number of S-blocks. Let
S ′ be a series class of M contained in C that is distinct from S. Part (i) implies there is
an S ′-block in K and, as K contains no S-blocks, (i) further implies that there is exactly
one S ′-block in K. Thus there are the same number of S ′-blocks as S-blocks. Part (ii)
now follows.

Proposition 19. Let Ur,n be a non-binary uniform matroid. If a series extension of Ur,n

is orderable, then so is Ur,n.
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B1

K1

B2

K2

B3

. . .

Bk

Kk

Figure 12: The circuit C in the proof of Proposition 19.

Proof. Let M be an orderable series extension of Ur,n and fix a consistent ordering of M .
By Lemma 18(ii), there is an integer k ! 1 such that every series class of M is divided
into exactly k blocks. If k = 1, the result follows immediately, so assume k ! 2.

Let [n] be the ground set of Ur,n. Consider the circuit C of M that contains the set
{1, 2, . . . , r + 1}. Label the S1-blocks in C as B1, B2, . . . , Bk, such that Bi and Bi+1 abut
a section Ki that does not contain S1-blocks, as in Figure 12.

Applying Lemma 18(i), we see that each section Ki contains exactly one Sj-block for
all j in {2, 3, . . . , r + 1}. Thus, Bi ∪ Ki defines a permutation of {1, 2, . . . , r + 1} that
begins with 1. We show this permutation is the same for all i.

Without loss of generality, suppose the block in K1 adjacent to B1 is an S2-block. If
the block in K2 adjacent to B2 is an Sj-block with j ∕= 2, then the Sj-blocks in K1 and
K2 abut a section that contains no S2-block, contradicting Lemma 18(i). Thus the block
in K2 adjacent to B2 is an S2-block. Repeating this argument gives that B1 ∪ K1 and
B2 ∪K2 define the same permutation on {1, 2, . . . , r + 1}. It follows that Bi ∪Ki defines
the same permutation on {1, 2, . . . , r+1} for all i in [n]. Thus Bi ∪Ki ∪Bi+1 defines the
same reversible cyclic ordering on {1, 2, . . . , r+1} for all i in [n]; it is this reversible cyclic
ordering that we extract from C and use to order the circuit {1, 2, . . . , r + 1} in Ur,n.

In this way, every circuit of Ur,n is ordered using the corresponding circuit of M . Since
the ordering of M is consistent, so too is the ordering it gives to Ur,n.

Theorem 20. Let Ur,n be a non-binary uniform matroid of rank at least three. If M is a
matroid with a series minor isomorphic to Ur,n, then M is not orderable.

Proof. By [5, Proposition 5.4.2], we may write Ur,n = M\X/Y where each element of Y
is in series with an element of M\X not in Y . By Corollary 17, the matroid Ur,n is not
orderable. Therefore, by Proposition 19, neither is its series extension M\X. Thus, M is
not orderable.

Recall that, in a balanced series extension N of a matroid M without coloops, each
element of M is replaced by k elements in series for some positive integer k.
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Lemma 21. Let N be a balanced series extension of a matroid M . If M is orderable,
then so is N .

Proof. A consistent ordering of N may be obtained from a consistent ordering of M by
extracting a linear order from each ordered circuit of M , then repeating this linear order
k times in the corresponding circuit of N . Specifically, if x1, x2, . . . , xn is a linear order
for the elements of a circuit C of M , and x1

i , x
2
i , . . . , x

k
i are the k elements in series in N

that replace the element xi, then

!
x1
1 x1

2 . . . x1
n x2

1 x2
2 . . . x2

n . . . xk
1 xk

2 . . . xk
n

"

is the ordering of the circuit of N corresponding to C.

The following proposition specializes some of the results about uniform matroids to
U2,n with n ! 4. These rank-two uniform matroids will serve as the foundation from
which all non-binary orderable matroids are built.

Proposition 22. Let M be an orderable series extension of U2,n for some n ! 4, and fix
a consistent ordering of M . Then

(i) for all series classes S of M , every S-block of the ordering consists of a single
element; and

(ii) M is a balanced series extension of U2,n.

Proof. Statement (ii) follows from combining (i) with Lemma 18(ii), so it suffices to show
(i). Let E(U2,n) = [n]. Suppose, to the contrary, that M has an S1-block B of size at
least two.

Applying Lemma 18(i), we have that B is adjacent to both an S2-block and an S3-
block in the circuit of M containing {1, 2, 3}. Let 12 be the element of B adjacent to the
S2-block and let 13 be the element of B adjacent to the S3-block, where 12 and 13 are
necessarily distinct. In the circuit of M containing {1, 2, 4}, Lemma 18(i) now gives that
B is adjacent to both an S2-block and an S4-block. Consistency dictates that 12 is again
adjacent to the S2-block. Therefore 13 is now adjacent to the S4-block.

Now consider the circuit of M containing {1, 3, 4}. Consistency with the two afore-
mentioned circuits requires that 13 be adjacent to both an S3-block and an S4-block. As
|B| ! 2, this is a contradiction.

The next theorem identifies all orderable matroids that are 3-connected and non-
binary.

Theorem 23. If M is a 3-connected non-binary orderable matroid, then M ∼= U2,n for
some n ! 4.

The next two results will be used in the proof of this theorem.

Proposition 24. If M is an orderable matroid, then M has no minor isomorphic to U3,5.
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Proof. Assume instead that M\X/Y ∼= U3,5, with X coindependent and Y independent.
Then M∗/X\Y ∼= U2,5 where M∗/X has rank two. Thus, after deleting a set Z of loops
fromM∗/X, we obtain a parallel extension of U2,n for some n ! 5. This makesM\(X∪Z)
an orderable series extension of Un−2,n, contradicting Theorem 20.

Proposition 25. If M is an orderable matroid, then M has no minor isomorphic to W3.

The proof of this proposition will rely on the next lemma and its corollary. This second
pair of results will use the following modification of the (e, f, g)-property. A matroid M
has the series (e, f, g)-property if

(i) M has a circuit containing {e, f, g};

(ii) Sf (M) is distinct from both Se(M) and Sg(M); and

(iii) M has a circuit D containing f but not {e, g} and, for each d in D, there is a circuit
of M containing {e, f, g, d}.

Note that e and g may be equal in this definition.

Lemma 26. Suppose that M has the series (e, f, g)-property and that N is a series exten-
sion of M . Then, in a consistent ordering of N , if Se(N) ∕= Sg(N), then no Sf (N)-block
is adjacent to both an Se(N)-block and an Sg(N)-block; and, if Se(N) = Sg(N), then no
Sf (N)-block is adjacent to two Se(N)-blocks.

Proof. Let D be the circuit of M whose existence is guaranteed by condition (iii). Let
D′ be the circuit of N corresponding to D, and let Bf be an Sf (N)-block. Notice D
must have an element d not in {e, f, g}, so D′ − (Se(N) ∪ Sf (N) ∪ Sg(N)) is nonempty.
If Se(N) = Sg(N) and Bf is adjacent to two Se(N)-blocks, then e is not in D, so Bf is
not adjacent to any elements of D′ − Bf , a contradiction. Now suppose Se(N) ∕= Sg(N)
and, without loss of generality, suppose e is in D but g is not. If Bf is adjacent to an
Se(N)-block and an Sg(N)-block, then all of the elements in D′ − Bf adjacent to Bf

are in Se(N). This contradicts the fact that Bf is adjacent to an Se(N)-block and an
Sg(N)-block in a common circuit.

Corollary 27. Let C be a circuit of a matroid M . Suppose that C contains an element c
so that M has the series (e, c, g)-property for every choice of e and g in C − c. Then no
series extension of M is orderable.

Proof of Proposition 25. Assume instead thatM\X/Y ∼= W3, with X coindependent and
Y independent. Let L be the set of loops of M∗/X, and let N denote M∗/(X ∪L). Note
that N is a loopless rank-3 extension of W3, so si(N) is 3-connected. Further, N is a
parallel extension of si(N), which makes N∗ an orderable series extension of co(N∗).

27.1. si(N) is ternary.
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Number n of elements Restrictions of O7 with n elements
0 U0,0

1 U1,1

2 U2,2

3 U2,3, U3,3

4 U2,4, U3,4, U2,3 ⊕ U1,1

5 U2,4 ⊕ U1,1, P (U2,3, U2,3), U2,4 ⊕2 U2,3

6 P (U2,4, U2,3), M(K4), W3

7 O7

Figure 13: Choices for K, the complement of si(N) in PG(2, 3).

To see this, first note that, as N∗ is orderable, it has no U3,5-minor by Proposition 24.
Thus, si(N) has no U2,5-minor. As si(N) is 3-connected and its rank and corank each
exceed two, [5, Proposition 12.2.15] gives that si(N) has no U3,5-minor. The rank of F ∗

7

exceeds three, so si(N) also has no F ∗
7 -minor.

Finally, suppose si(N) has an F7-minor. Then si(N)|Z ∼= F7 for some set Z. As F7

has no W3-minor, si(N) has an element e not in Z. Then si(N)/e has a U2,5-restriction,
a contradiction. We conclude that si(N) has no F7-minor. Thus 27.1 holds.

By 27.1, si(N) has the form PG(2, 3) −K, where K is a restriction of O7, the com-
plement of W3 in PG(2, 3). The matroid O7 is obtained from M(K4) by adding a point
freely to an existing 3-point line; the fifteen restrictions of O7 are given in Figure 13. In
the remainder of the proof, we eliminate each possibility for K.

If K = U0,0, then si(N) = PG(2, 3). Let si(N) be labelled as in Figure 14. Suppose
N∗ has a consistent ordering, and let Bx, By, and Bz be Sx-, Sy-, and Sz-blocks in a
common circuit C of N∗, where x, y, and z are elements of E(si(N)). Assume also that
By is adjacent to Bx and Bz. Then, by Lemma 26, co(N∗) does not have the series
(x, y, z)-property. We show next that

27.2. x, y, and z are collinear in si(N), and x ∕= z.

Suppose x, y, and z are not collinear in si(N). Then one easily finds circuits of
co(N∗) that verify the series (x, y, z)-property in co(N∗), a contradiction. Similarly, when
x = z there are circuits of co(N∗) that verify the series (x, y, z)-property in co(N∗), a
contradiction. Thus, 27.2 holds.

By symmetry, we may assume that C is the circuit {1, 2, 3, 4, 5, 6, 7, 8, 9} of co(N∗);
let C ′ be the corresponding circuit of N∗. Consider an S1-block B in C ′. The block B is
adjacent to an Se- and Sf -block for some e and f in C − 1. By 27.2, the elements 1, e,
and f are collinear in si(N); without loss of generality, say e = 2 and f = 3. Let B3 be
the S3-block adjacent to B. By repeatedly applying 27.2, we have that B3 is adjacent to
an S2-block B2, the block B2 is adjacent to another S1-block B1, the block B1 is adjacent
to another S3-block, and so on. It follows that C ′ has a proper subset X of elements not
adjacent to any element of C ′ −X, a contradiction.

If K = U2,4, then si(N) = AG(2, 3). Figure 15 gives two labelled copies of si(N)
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Figure 14: The matroid PG(2, 3).

in order to illustrate some of the symmetries of this matroid. Using Corollary 27, let c
be the element 1 in the circuit C = {1, 2, 3, 4, 5, 6} of co(N∗). When e = g = 2, the
circuits C and {1, 2, 3, 7, 8, 9} certify that co(N∗) has the series (2, 1, 2)-property with
D = {1, 3, 4, 6, 7, 9}. Since co(N∗) has a doubly transitive automorphism group, it follows
that co(N∗) has the series (e, 1, e)-property for each e in C. When {e, g} = {2, 3}, the
circuits C and {1, 2, 3, 7, 8, 9} certify that co(N∗) has the series (2, 1, 3)-property with
D = {1, 3, 4, 6, 7, 9}. The circuits C, {1, 2, 4, 5, 7, 8}, and {1, 2, 4, 6, 8, 9} certify that
co(N∗) has the series (2, 1, 4)-property with D = {1, 3, 4, 6, 7, 9}. A symmetric set of
circuits certifies that co(N∗) has the series (e, 1, g)-property for each independent set
{e, 1, g} contained in C. By Corollary 27, N∗ is not orderable.

If K = U2,4 ⊕ U1,1, then si(N) = AG(2, 3)\9 with AG(2, 3) labelled as in Figure 15.
Using Corollary 27 again, let c be the element 1 in the circuit C = {1, 2, 3, 7, 8} of co(N∗).
When e = g = 2, the circuits C and {1, 2, 4, 6, 8} certify that co(N∗) has the series
(2, 1, 2)-property with D = {1, 3, 4, 6, 7}. A symmetric set of circuits certifies that co(N∗)
has the series (e, 1, e)-property for each e in C − 1.

When {e, g} = {2, 3}, the circuits C and {1, 2, 4, 6, 8} certify that co(N∗) has the series
(2, 1, 3)-property with D = {1, 3, 4, 6, 7}. From Figure 15, we see that the cases {e, g} =
{2, 7} and {e, g} = {3, 8} are symmetric; and the circuits C and {1, 2, 4, 5, 7, 8} certify
that co(N∗) has the series (2, 1, 7)-property with D = {1, 3, 4, 5, 8}. The cases {e, g} =
{2, 8} and {e, g} = {3, 7} are also symmetric, and the circuits C and {1, 2, 4, 6, 8} certify
that co(N∗) has the series (2, 1, 8)-property with D = {1, 3, 4, 6, 7}. Finally, the circuits
{1, 2, 4, 5, 7, 8} and {1, 3, 5, 6, 7, 8} certify that co(N∗) has the series (7, 1, 8)-property with
D = {1, 2, 3, 4, 5, 6}. Corollary 27 now implies N∗ is not orderable.
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Figure 15: Two geometric representations of the matroid AG(2, 3).

The next five cases make frequent use of Proposition 22(ii). The strategy is to contract
strategic parallel classes of N to get parallel extensions of U2,4. These parallel extensions
are dual to orderable series extensions of U2,4, and Proposition 22(ii) implies that the
parallel classes of such a parallel extension have the same size. For each case, we view
si(N) as a restriction of the labelled copy of PG(2, 3) in Figure 14. For each element e in
E(N), let pe be the size of the parallel class of N containing e.

If K = U1,1, then si(N) = PG(2, 3)\d. The following equations are obtained by apply-
ing Proposition 22(ii) in the minors N/ cl({a}), N/ cl({b}), and N/ cl({c}), respectively:

pb + pc = p1 + p2 + p3 = p4 + p5 + p6 = p7 + p8 + p9;

pa + pc = p1 + p5 + p9 = p2 + p6 + p7 = p3 + p4 + p8;

pa + pb = p3 + p6 + p9 = p2 + p5 + p8 = p1 + p4 + p7.

Combining these equations, we obtain

3(pa + pb) + 3(pa + pc) + 3(pb + pc) = 3(p1 + p2 + · · ·+ p9),

which implies
2(pa + pb + pc) = p1 + p2 + · · ·+ p9,

and therefore
3(pa + pb + pc) = |E(N)|.

We conclude that exactly one-third of the elements of E(N) lie on the line {a, b, c}.
By symmetry, the same is true of the lines {1, 6, 8}, {3, 5, 7}, and {2, 4, 9}, so now four
disjoint lines each account for one-third of the elements in N , a contradiction.

If K = U2,3, then si(N) = PG(2, 3)\{b, c, d}. The following equations are obtained by
applying Proposition 22(ii) in the minors N/ cl({1}), N/ cl({2}), and N/ cl({3}), respec-
tively:

p2 + p3 + pa = p4 + p7 = p6 + p8 = p5 + p9 =
1

4

!
|E(N)|− p1

"
; (1)

the electronic journal of combinatorics 29(4) (2022), #P4.31 16



p1 + p3 + pa = p4 + p9 = p5 + p8 = p6 + p7 =
1

4

!
|E(N)|− p2

"
; (2)

p1 + p2 + pa = p5 + p7 = p6 + p9 = p4 + p8 =
1

4
(|E(N)|− p3).

Solving equations (1) and (2) for |E(N)|, we see that

p1 + 4p2 + 4p3 = 4p1 + p2 + 4p3,

so p1 = p2. Through additional substitutions, it follows that pi = pj for each i, j ∕= a.
But now pa = 0, a contradiction.

If K = P (U2,3, U2,4), then si(N) = PG(2, 3)\{7, 8, 9, a, b, d} ∼= P7. From the minors
N/ cl({1}) and N/ cl({3}) and Proposition 22(ii), we get the equations

p2 + p3 = p4 + pc = p5 = p6,

p1 + p2 = p6 + pc = p4 = p5.

It follows that pc = 0, a contradiction.
If K = W3, then si(N) = PG(2, 3)\{6, 8, 9, b, c, d} ∼= O7. From the minors N/ cl({7})

and N/ cl({5}) we get the equations

p1 + p4 = p3 + p5 = p2 = pa,

p3 + p7 = p4 + pa = p1 = p2.

It follows that p4 = 0, a contradiction.
If K = O7, then si(N) = PG(2, 3)\6, 8, 9, a, b, c, d ∼= W3. From the minors N/ cl({2})

and N/ cl({4}) we get the equations

p1 + p3 = p4 = p5 = p7,

p1 + p7 = p2 = p3 = p5,

so p1 = 0, a contradiction.
For the next six cases, we continue to view N as a parallel extension of a restriction of

PG(2, 3), with PG(2, 3) labelled as in Figure 14. However, we now represent the deletion
of an element e from PG(2, 3) by setting pe to be 0. Each of these cases is eliminated
using the following assertion.

27.3. Let N be a restriction of PG(2, 3) such that

(i) pc = pd = 0;

(ii) px ∕= 0 for each x in {a, b, 1};

(iii) si(N/ cl({x})) ∼= U2,4 for each x in {a, b, 1}; and

(iv) p2 and p3 are not both zero.

Then N∗ is not orderable.
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Figure 16: The matroid F−
7 .

To see this, we first use the minors N/ cl({a}) and N/ cl({b}) to establish the equations

pb = p1 + p2 + p3 = p4 + p5 + p6 = p7 + p8 + p9,

pa = p2 + p6 + p7 = p1 + p5 + p9 = p3 + p4 + p8,

from which we obtain
3pa = p1 + p2 + · · ·+ p9 = 3pb,

so pa = pb, and |E(N)| = 5pa. Now, N/ cl({1}) gives that

|E(N)|− p1 = 4(p2 + p3 + pa),

and substituting 5pa for |E(N)| produces

pa = p1 + 4(p2 + p3).

Finally, since pa = p1 + p2 + p3, we deduce that p2 + p3 = 0, a contradiction. Thus 27.3
holds.

The six options for K eliminated by 27.3 are the matroids U2,2, U3,3, U3,4, U2,3 ⊕ U1,1,
P (U2,3, U2,3), and U2,3 ⊕2 U2,4. It is straightforward to check that, for each K in this list,
we may set classes of PG(2, 3) equal to zero in such a way that the zeroed classes form a
restriction isomorphic to K, and the conditions of 27.3 hold. For example, U2,3 ⊕2 U2,4 is
produced when p5, p7, p9, pc, and pd are the zeroed classes.

In the final case, K = M(K4) and si(N) = F−
7 . Label F−

7 as in Figure 16, and, for
each e in [7], let Se = Se(N

∗). Suppose N∗ has a consistent ordering, and let B be an S1-
block in the ordering. In N∗, there is a circuit corresponding to each circuit {1, 2, 3, 5, 7},
{1, 3, 4, 5, 7}, and {1, 3, 5, 6, 7} of co(N∗); let X be the collection of these circuits of N∗.
Similarly, let Y be the collection of circuits of N∗ corresponding to the circuits {1, 2, 3, 4},
{1, 4, 5, 6}, and {1, 2, 6, 7} of co(N∗).

Suppose B is adjacent to an Se-block for some e in {2, 4, 6}. Then the consistency
of the circuits in X implies that B is adjacent to an Se-block for every e in {2, 4, 6}.
The circuits in Y now imply that B is adjacent to an S2-, S4-, and S6-block. Further,
B is not adjacent to an Se-block for any e in {3, 5, 7}. It follows that, in the circuit of
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N∗ corresponding to {1, 2, 3, 5, 7}, the block B must be adjacent to a pair of S2-blocks,
contradicting the fact that B is adjacent to both an S2-block and an S4-block in the
circuit of N∗ corresponding to {1, 2, 3, 4}.

We now know that, for each e in {2, 4, 6}, the block B is not adjacent to an Se-block.
The circuits in Y now imply that, in the circuit of N∗ corresponding to {1, 2, 3, 5, 7}, the
block B is adjacent to an Se-block for every e in {3, 5, 7}. This contradiction implies N∗

is not orderable.

The next proposition is a result of Oxley [4] (see also [5, Corollary 12.2.18]). We will
use it to prove Theorem 23.

Proposition 28. A 3-connected non-binary matroid whose rank and corank exceed two
has a minor isomorphic to one of W3, P6, Q6, and U3,6.

Proof of Theorem 23. Assume that the theorem fails for M . Then r(M) ! 3. As P6, Q6,
and U3,6 each have U3,5 as a minor, Proposition 28 and Propositions 24 and 25 now imply
that r∗(M) " 2, so r∗(M) = 2. As M is 3-connected, it follows that M ∼= Un−2,n for some
n ! 5. Hence M has a U3,5-minor, a contradiction.

If {M1,M2, . . . ,Mn} is a set of a matroids, then a matroid-labelled tree with vertex set
{M1,M2, . . . ,Mn} is a tree T such that

(i) if e is an edge of T with endpoints Mi and Mj, then E(Mi)∩E(Mj) = {e}, and {e}
is not a separator of Mi or Mj; and

(ii) E(Mi) ∩ E(Mj) is empty if Mi and Mj are non-adjacent.

The matroids M1,M2, . . . ,Mn are called the vertex labels of T . Now suppose e is an
edge of T with endpoints M1 and M2. We obtain a new matroid-labelled tree T/e by
contracting e and relabelling the resulting vertex with M1⊕2M2. As 2-sum is associative,
T/X is well defined for all subsets X of E(T ).

Let T be a matroid-labelled tree with V (T ) = {M1,M2, . . . ,Mn} and
E(T ) = {e1, e2, . . . , en−1}. Then T is a tree decomposition of a connected matroid M if

(i) E(M) = (E(M1) ∪ E(M2) ∪ · · · ∪ E(Mn))− {e1, e2, . . . , en−1};

(ii) |E(Mi)| ! 3 for all i unless |E(M)| < 3, in which case n = 1 and M = M1; and

(iii) M labels the single vertex of T/E(T ).

In this case, the elements {e1, e2, . . . , en−1} are the edge labels of T . The next theorem
of Cunningham and Edmonds [3] (see also [5, Theorem 8.3.10]) tells us that M has a
canonical tree decomposition, unique to within relabelling of the edges.

Theorem 29. Let M be a 2-connected matroid. Then M has a tree decomposition T
in which every vertex label is 3-connected, a circuit, or a cocircuit, and there are no
two adjacent vertices that are both labelled by circuits or are both labelled by cocircuits.
Moreover, T is unique to within relabelling of its edges.
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Let T be a tree decomposition of a matroid M , and let N and p be a vertex label and
edge label of T , respectively. For the remainder of this section, we define Mp,N and M ′

p,N

to be the matroids such thatM = Mp,N⊕2M
′
p,N with basepoint p, where E(Mp,N) contains

the subset of E(M) corresponding to the component of T\p containing N . Notice that if
the vertex labels M1 and M2 lie in different components of T\p, then Mp,M1 = M ′

p,M2
.

In the next four lemmas, M is assumed to be a connected, orderable, non-binary
matroid whose canonical tree decomposition is T .

Lemma 30. Suppose that T has a vertex label U that is isomorphic to U2,n for some
n ! 4. Then, for all e, f ∈ E(U),

(i) e is an edge label of T , unless M is a parallel extension of U2,n;

(ii) all circuits of M ′
e,U containing e have the same size; and

(iii) the circuits of M ′
e,U containing e have the same size as the circuits of M ′

f,U containing
f .

Proof. We may assume that M is not a parallel extension of U2,n otherwise (i) holds.
For each element y of E(U) that labels an edge of T , let Cy be a circuit of M ′

y,U that
contains y. As M is not a parallel extension of U2,n, we may assume that |Cx| ! 3 for
some element x. Let M ′′ be the matroid that is obtained from U by attaching each Cy

via 2-sum. This matroid is a restriction of M having Cx − x as a non-trivial series class.
Moreover, M ′′ is a series extension of U2,n and it is orderable. Thus, by Proposition 22(ii),
M ′′ is a balanced series extension of U2,n. Hence (i) holds. Furthermore, |Cx| = |Cy| ! 3
for all y in E(U)− {x}. Parts (ii) and (iii) now follow without difficulty.

The next lemma generalizes Lemma 30(ii) to arbitrary edges of T .

Lemma 31. Suppose that T has a vertex label U that is isomorphic to U2,n for some
n ! 4, and suppose e is an edge label of T . Then the circuits of M ′

e,U that contain e all
have the same size.

Proof. Let N be the endpoint of e in the same component of T\e as U . If U = N , then
the assertion holds by Lemma 30(ii), so assume otherwise. Let f be the label of the edge
incident with U that lies on the path connecting U to N in T . Next, let T ′ be the subtree
of T\{e, f} containing N , and let M ′ be the matroid with tree decomposition T ′.

Fix a circuit C of M ′ that contains e and f . Observe that, for each circuit D of
M ′

e,N that contains e, there is a circuit (D − e) ∪ (C − e) of M ′
f,U that contains f . By

Lemma 30(ii), the quantity |(D− e) ∪ (C − e)| is the same for each choice of D, so every
such circuit D has the same size.

Lemma 32. The tree T has exactly one 3-connected non-binary vertex label, and this
label is isomorphic to U2,n for some n ! 4.
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Proof. As M is non-binary, it has at least one 3-connected non-binary vertex label N .
For each element y of E(N) that labels an edge of T , let Cy be a circuit of M ′

y,N that
contains y. Let M ′′ be the matroid that is obtained from N by attaching each Cy via
2-sum. Then M ′′ is a restriction of M . Thus M ′′ is an orderable series extension of N .
By Propositions 24, 25, and 28, N ∼= U2,n for some n ! 4. Now suppose T has a pair of
3-connected non-binary vertex labels N1

∼= U2,n1 and N2
∼= U2,n2 with n1, n2 ! 4. Let e1

and e2 be the edge labels of T incident with N1 and N2 that lie on the path connecting
N1 and N2 in T .

By Lemma 30(ii), the circuits of M ′
e1,N1

containing e1 all have size k and the circuits
of M ′

e2,N2
containing e2 all have size ℓ, where k and ℓ are integers exceeding one. Let

{e1, x, y} be a circuit of N1. By Lemma 30(i), x and y are also edge labels of T ; let
Cx be a circuit of M ′

x,N1
containing x, and Cy be a circuit of M ′

y,N1
containing y. Then

k = |Cx| = |Cy| by Lemma 30(iii). Now there is a circuit of M ′
e2,N2

containing e2 that also
contains Cx − x and Cy − y. Thus, ℓ ! 2(k − 1) + 1. A symmetric argument gives that
k ! 2(ℓ− 1) + 1, and substitution yields that k " 1, a contradiction.

The next lemma rules out 3-connected binary vertex labels that are not circuits or
cocircuits. It uses the following result of Seymour [6].

Proposition 33. Let M be a 3-connected binary matroid with at least four elements. If
e ∈ E(M), then M has an M(K4)-minor using e.

Lemma 34. No vertex of T is labelled by a 3-connected binary matroid with at least four
elements.

Proof. Suppose B is such a vertex label of T , let U be the unique vertex label with
U ∼= U2,n and n ! 4 given by Lemma 32, and say E(U) = {e1, e2, . . . , en}. Let p ∈ E(B)
and e1 ∈ E(U) be the labels of the edges incident with B and U , respectively, that lie
on the path connecting B to U in T . By Proposition 33, B has a minor isomorphic to
M(K4) that uses p.

This minor can be written in the form B/I\I∗, where I is independent in B and I∗

is coindependent in B. This makes B/I a rank-three binary matroid with M(K4) as a
restriction, so after deleting the loops from B/I, we obtain a parallel extension of either
M(K4) or F7. Dually, after deleting the coloops from B\I∗, we obtain a series extension
of M(K4) or F

∗
7 . Thus B has a restriction N1 using p that is a series extension of M(K4)

or F ∗
7 .
Suppose q is an edge label of T that is used in N1, and choose a circuit Cq of M ′

q,B

that contains q. Form the matroid N2 from N1 by replacing q with Cq − q in E(N1) for
each q in E(N1) − p that is an edge label of T . Then N2 is a series extension of M(K4)
or F ∗

7 that appears as a restriction of Mp,B. Now, for each i in {2, 3}, let Cei be a circuit
of M ′

ei,U
that contains ei. Then M ′

p,B has a circuit Cp that contains p and both Ce2 − e2
and Ce3 − e3. Form the matroid N from N2 by taking the 2-sum of N2 and Cp across the
basepoint p. Then N is a restriction of M that is a series extension of M(K4) or F

∗
7 . For

each element x of M(K4) or F
∗
7 , let Sx be Sx(N). By Lemma 31, every circuit of N2 that

contains p has the same size.
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Figure 17: K4 in the proof of Lemma 34.

Suppose first that N is a series extension of M(K4) with K4 labelled as in Figure 17.
Thus, every circuit of N that contains Sp has the same size. Since all circuits of N
containing Sp have the same size, |Sd|+ |Se| = |Sa|+ |Sb|+ |Se|, so

|Sd| = |Sa|+ |Sb|. (3)

Similarly, |Sa|+ |Sc| = |Sd|+ |Sb|+ |Sc|, so

|Sa| = |Sd|+ |Sb|. (4)

Equations (3) and (4) imply that |Sb| = 0, a contradiction.
Now suppose that N is a series extension of F ∗

7 with F ∗
7 labelled as in Figure 18. Since

the circuits of N containing Sp must have the same size,

|S2|+ |S5| = |S4|+ |S7|,

|S2|+ |S6| = |S3|+ |S7|,
and

|S5|+ |S6| = |S3|+ |S4|.
Together, these equations imply that

|S2| = |S7|. (5)

p

2 3

4

5

6

7

Figure 18: F ∗
7 in the proof of Lemma 34.
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Fix a consistent ordering of M . This induces a consistent ordering of N . Consider the
circuit C = Sp ∪S2 ∪S3 ∪S4 of N . Notice that M has, as a restriction, a series extension
U ′ of U2,n whose ground set contains C. Specifically, C = Se1 ∪ Se2 ∪ Se3 , where Sei is
Sei(U

′).
Let t be an arbitrary member of the series class S2 of N . In U ′, the element t belongs to

the class Se1 , so {t} is an Se1-block in the ordering of C by Proposition 22(i). Lemma 18(i)
implies that t is adjacent to some element x ∈ Se2 and some y ∈ Se3 ; notice that, in N ,
the elements x and y both belong to Sp. Thus, every element of S2 is adjacent to a pair of
elements from Sp in C. In particular, t is not adjacent to any element of S2 or of S3. Now
observe that t is adjacent to this same pair {x, y} in the circuit Sp∪S2∪S5∪S6 of N , so t
is also not adjacent to any element of S6. It follows that t is adjacent to a pair of elements
from S7 in the circuit S2 ∪S3 ∪S6 ∪S7 of N . Therefore |S2| < |S7|, contradicting (5).

Proposition 35. Let M ′′ be obtained from M by parallel-path addition. Then M is
orderable if and only if M ′′ is orderable.

Proof. In forming M ′′ from M , let P ′ be added in parallel to P . As M ′′ has M as a
restriction, M is orderable if M ′′ is. Conversely, fix a consistent ordering of M and let
C ′′ be a circuit of M ′′. If C ′′ does not meet P ′, give C ′′ the same ordering in M ′′ that it
has in M . Otherwise, C ′′ contains P ′ and either C ′′ = P ∪ P ′, or there is a circuit C of
M such that C = (C ′′ −P ′)∪P . In the the latter case, give C ′′ the same ordering in M ′′

that C has in M by replacing every element p ∈ P by the corresponding element p′ ∈ P ′.
If C ′′ = P ∪ P ′′, take a circuit D of M containing P . Let B1, B2, . . . , Bk be the

P -blocks of D, numbered sequentially as they appear in a traversal of the ordering of D
in M . For each i in [k], let B′

i = {p′ : p ∈ Bi}. Now, order C ′′ as B1, B
′
1, B2, B

′
2, . . . , Bk,

B′
k. It is straightforward to check that this gives a consistent ordering of M ′′.

We are now ready to prove the main result of the paper, which was given as Theorem 2
in the introduction and is restated here for convenience.

Theorem 36. Let M be a connected non-binary matroid. Then M is orderable if and only
if it can be obtained from U2,n for some n ! 4 by a sequence of the following operations:

(i) balanced series extension; and

(ii) parallel-path addition.

Proof. By Lemmas 21 and 35, a matroid obtained from U2,n by the given operations is
certainly orderable, so it remains to show the converse.

We may assume that M is simple, as adding an element in parallel is a parallel-path
addition of size one. If M ∼= U2,n, the result holds, so assume otherwise. Let T be the
canonical tree decomposition of M . Lemmas 32 and 34 imply that there is a single vertex
label U of T for which U ∼= U2,n and n ! 4, and every vertex of T − U is labelled by a
circuit or a cocircuit. By Lemma 30(i), each e in E(U) labels an edge of T . Let T ′

e be
the component of T\e that does not have U as a vertex. As M is simple, the leaves of
T are labelled by circuits. Therefore, if every T ′

e has only one vertex, then M is a series
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extension of U2,n, and the result holds by Proposition 22(ii). We show that, if this is
not the case, then each T ′

e can be reduced to a single vertex labelled by a circuit via a
sequence of deletions that can be undone by parallel-path additions.

Suppose T ′
e has at least two vertices. Since only one vertex of T ′

e is adjacent to U , not
all vertices of T ′

e are leaves of T . We now observe that

36.1. T ′
e has a vertex v that

(i) is adjacent to a leaf of T ; and

(ii) has exactly one neighbor that is not a leaf of T

If L is the set of leaves of T , such a vertex v can be found as a leaf of T − L. Since
the leaves of T are labelled by circuits and T is canonical, v is labelled by a cocircuit C∗.
Lemma 31 now implies that the circuits that label the leaves of T adjacent to C∗ all have
the same size, and every element of C∗ must be used as a basepoint labelling an edge of
T .

We can delete all but one of the leaves, C say, of T that are adjacent to C∗, along
with the corresponding basepoints in C∗, since the circuit that labels each deleted leaf
can be added via a parallel-path addition. As C∗ is now a pair of parallel elements, we
can delete the leaf labelled C and relabel v with C. At this point, v is a leaf, and is
either adjacent to U , in which case the work on this subtree is complete, or v is adjacent
to another vertex of T ′

e labelled by a circuit C ′. In the latter case, keep T canonical by
contracting the edge of T between v and C ′ and labelling the resulting vertex with the
circuit that is the 2-sum of C and C ′.

Provided the modification of T ′
e continues to have at least two vertices, condition 36.1

continues to hold, and the process described in the previous paragraph can be repeated.
Thus, we may assume T ′

e consists of a single vertex labelled by a circuit. By applying
this pruning process on the other subtrees attached to U , the tree T is reduced to the
decomposition tree of a balanced series extension of U2,n. Thus, M can be obtained from
a balanced series extension of U2,n by a sequence of parallel-path additions.

4 Theta-Orderability

Recall that theta-orderability of a matroid requires a consistent ordering of the matroid
with respect to the theta-graphs of that matroid. Each of the elementary properties of
orderability given in Proposition 8 also holds for theta-orderability. Their straightforward
proofs are omitted.

Proposition 37. Let M be a matroid.

(i) If M is theta-orderable, then M\e is theta-orderable for all e in E(M).

(ii) If r(M) " 2, then M is theta-orderable.

(iii) M is theta-orderable if and only if the connected components of M are
theta-orderable.
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(iv) M is theta-orderable if and only if si(M) is theta-orderable.

Next we prove Theorem 6, a characterization of graphic theta-orderable matroids.

Proof of Theorem 6. It is clear that a graphic matroid is theta-orderable. Moreover, Wag-
ner [9] proved that a matroid is graphic if and only if it has no set of incompatible arcs.
Now suppose that M has a circuit C and a set {A1, A2, A3} of incompatible arcs of C.
It remains to show that M is not theta-orderable. Our proof of this is a straightforward
modification of Wagner’s proof that no graphic matroid has a set of incompatible arcs [9,
Lemma 2]. Assume that M is theta-orderable. Because each of A1, A2, and A3 is an
arc, for each i in {1, 2, 3}, there is a theta-graph of M in which Ai is a theta-arc. As
M is theta-orderable, Ai is a block in a consistent ordering of M . As {A1, A2, A3} is an
incompatible set, there are distinct elements e1, e2, and e3 of C such that e ∈ A1∩A2∩A3

and ei ∈ Ai − (Aj ∪ Ak) for all {i, j, k} = {1, 2, 3}. For each h in {2, 3}, the set A1 ∪ Ah

is a block in C in which e appears between e1 and eh. Then e does not appear between
e2 and e3 in A2 ∪ A3, a contradiction.

To prove Theorem 7, we will establish the following equivalent version of it.

Theorem 38. A simple connected non-binary matroid is theta-orderable if and only if it
is a balanced series extension of U2,n for some n ! 4.

The proof of this theorem will use the next lemma and a corollary of it.

Lemma 39. Let M be a connected non-binary orderable matroid, and let S be a sequence
of balanced series extensions and parallel-path additions by which M is obtained from U2,n

for some n ! 4. Suppose that the operation s1 immediately precedes the operation s2 in
S. Then

(i) if s1 and s2 are balanced series extensions of orders m1 and m2, then s1 and s2 may
be replaced by a single balanced series extension of order m1m2; and

(ii) if s1 is a parallel-path addition of size k, and s2 is a balanced series extension of
order m, then, in S, the order of the operations s1 and s2 can be reversed provided
s1 is replaced by a corresponding parallel-path addition of size km.

Proof. Part (i) is immediate. For part (ii), let P1 be the k-element set that is added in
parallel to the subset P2 of a series class at step s1. After the balanced series extension
in step s2 is performed, P1 and P2 become parallel paths P ′

1 and P ′
2 of size mk. Thus, the

same result is obtained by first performing a balanced series extension of order m, then
adding the mk-element set P ′

1 in parallel to the subset P ′
2 of a series class.

The following is an immediate consequence of the last lemma.

Corollary 40. Let M be a connected non-binary orderable matroid. Then M is obtained
from a balanced series extension of U2,n for some n ! 4 by a sequence of parallel-path
additions.
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Figure 19: K4 in the proof of Proposition 43.

Proof of Theorem 38. First, for n ! 4, the matroid U2,n and its series extensions have no
theta-graphs. Therefore, consistent orderings of these matroids are also theta-orderings.

Conversely, suppose M is a simple connected non-binary orderable matroid. By Corol-
lary 40, for some n ! 4, we can obtain M from U2,n by a balanced series extension B
followed by a sequence of parallel-path additions. It now suffices to show that the sequence
of parallel-path additions is empty.

Suppose to the contrary that P ′ is a set added in parallel to a subset P of a series
class S of B. Note |P | ! 2 since M is simple. Now, by Proposition 22, each S-block
in a consistent ordering of B contains a single element. As B is a restriction of M , this
implies that the elements of P are not a block in a consistent ordering of M . Since M
has a theta-graph with P and P ′ as theta-arcs, this is a contradiction.

5 Characterizing 3-Connected Orderable Binary Matroids

This section proves the following partial result towards Conjecture 4. Theorem 5 is an
immediate consequence of this result.

Theorem 41. A 4-connected binary orderable matroid with no series minor isomorphic
to F ∗

7 is graphic.

Our proof will require the next three results, the first of which is due to Seymour [7].
Two elements are opposite in M(K4) if they form a matching in the K4.

Theorem 42. Let M be a 4-connected binary matroid and let e and f be elements of M .
Suppose there is no M(K4)-minor of M in which e and f are opposite elements. Then
there is a graph G with M = M(G) or M∗(G), and e and f are adjacent edges in G.

Proposition 43. In a consistent ordering of a series extension M of M(K4), if two
elements correspond to opposite elements in the M(K4), then they are not adjacent.

Proof. Let A, B, C, D, X, and Y be the series classes of M , labelled as in Figure 19.
Take elements x in X and y in Y , and suppose x and y are adjacent in the given consistent
ordering of M .

In the circuit A∪X ∪C ∪ Y , we have that y is adjacent to at most one member of C.
Therefore, in B∪C∪Y , there must be an element, by, of B that is adjacent to y. Similarly,
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in A∪X ∪B, there must be an element, bx, of B adjacent to x. Now, in B ∪X ∪D ∪ Y ,
we have the block bxxyby, so no member of D is adjacent to y. By symmetry, no member
of A is adjacent to y. Since y is adjacent to at most one element in Y , it follows that
there is no second element of A ∪D ∪ Y adjacent to y, a contradiction.

Lemma 44. Suppose M is a binary matroid with no series minor isomorphic to F ∗
7 . If

e and f are opposite elements in an M(K4)-minor of M , then e and f are not adjacent
in any consistent ordering of M .

Proof. Assume that M has a consistent ordering in which e and f are adjacent. Let N be
an M(K4)-minor of M in which e and f are opposite elements, and write N = M\X/Y
with X coindependent and Y independent. Then N∗ = M∗/X\Y , where r(M∗/X) =
r(N∗) = 3. Since M∗/X is binary and N∗ ∼= M(K4), if L is the set of loops of M∗/X,
then M∗/X\L is a parallel extension of either M(K4) or F7. It follows that M\(X ∪L) is
a series extension of M(K4) or F

∗
7 . By assumption, M has no series minor isomorphic to

F ∗
7 , so M\(X ∪ L) is a series extension of M(K4). However, e and f are adjacent in the

consistent ordering of M\(X ∪L) inherited from M and correspond to opposite elements
in N , a contradiction by Proposition 43.

We now prove the main result of this section.

Proof of Theorem 41. Let M be a 4-connected binary orderable matroid that does not
have F ∗

7 as a series minor. Take a consistent ordering of M and assume M is not graphic.
Suppose M is cographic, letting M = M∗(G) for some graph G. Take an edge e of G
with endpoints u and v. Let (x1 x2 · · · xn e) be the ordering on the edges meeting u,
and let (e y1 y2 · · · ym) be the ordering on the edges meeting v. Then we may assume
the ordering on the bond that is the symmetric difference of these two vertex bonds is
(x1 x2 · · · xn y1 y2 · · · ym), so xn and y1 are adjacent. Combining Lemma 44 and
Theorem 42, we now have that xn and y1 share an endpoint in G. Hence, {e, xn, y1} is a
triangle in G, a contradiction as M is 4-connected.

We may now assume that M is not cographic. Let e and f be adjacent elements of
M . By Theorem 42, e and f appear as opposite elements in some M(K4)-minor of M .
Lemma 44 now gives a contradiction.
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